
Math 205A: Complex Analysis, Winter 2018

Homework Problem Set #2

1. Uniform convergence on compact subsets

Given a sequence of functions fn : Ω→ C, n ≥ 1, defined on a region Ω ⊂ C,
we say that fn converges uniformly on compact subsets to a limiting
function f : Ω → C if for any compact subset K ⊂ Ω, fn(z) → f(z) as
n→∞, uniformly in z ∈ K.

(a) (Warm-up) Write this definition more precisely in ε-δ language.

(b) Prove that if fn are holomorphic functions, fn → f uniformly on compact
subsets, f ′n → g uniformly on compact subsets, and g is continuous, then
f is holomorphic and f ′ = g.

Hint. Fix some z0 ∈ C. Start by proving that for z in a sufficiently
small neighborhood of z we have the two identities

fn(z) = fn(z0) +

∫ z

z0

f ′n(w) dw,

f(z) = f(z0) +

∫ z

z0

g(w) dw,

where the integral is over the line segment connecting z0 to z.

(c) Prove that a power series
∑∞

n=0 anz
n converges uniformly on compact

subsets in its disk of convergence, and that the function it defines is
continuous.

Hint. It is enough (why?) to prove uniform convergence on any closed
disk of the form Dr(0) where 0 < r < R and R is the radius of conver-
gence of the series.

(d) Deduce that power series are holomorphic functions that can be differen-
tiated termwise (a fact we already proved in class in a more direct way;
the above approach provides an alternative proof).

Remark. We will prove later as a consequence of Cauchy’s theorem that in
part (b) above the assumption that the sequence of derivatives f ′n converges
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to a limit can be dropped; that is, if a sequence of holomorphic functions
converges uniformly on compact subsets, then the limiting function is auto-
matically a holomorphic function whose derivative is the limit (in the sense
of uniform convergence on compacts) of the sequence of derivatives of the
original sequence. This is a surprising and nontrivial fact, as illustrated for
example by the observation that the analogous statement in real analysis is
false (e.g., by the Weierstrass approximation theorem, any continuous func-
tion on a closed interval is the uniform limit of a sequence of polynomials).

2. Solve exercise 25 on pages 30–31 of the Stein-Shakarchi textbook.

3. Cauchy’s theorem and irrotational vector fields

Recall from vector calculus that a planar vector field F = (P,Q) defined
on some region Ω ⊂ C = R2 is called conservative if it is of the form

F = ∇g =
(
∂g
∂x
, ∂g
∂y

)
(the gradient of g) for some scalar function g : Ω → R.

By the fundamental theorem of calculus for line integrals, for such a vector
field we have ∮

γ

F · ds = 0

for any closed curve γ. Recall also that (as is easy to check) any conservative
vector field is irrotational, namely satisfies

curl F = 0

(where in the context of two-dimensional vector fields, the curl is simply
curl F = ∂Q

∂x
− ∂P

∂y
). The converse also holds under suitable conditions: if

the region Ω is simply-connected (a concept we will discuss later in the
course), then a theorem in vector calculus says that an irrotational vector
field is also conservative.

Use these background results to show that if f = u+ iv is holomorphic on a
simply-connected domain Ω, then∮

γ

f(z) dz = 0

for any closed curve γ in Ω. (This is, of course, Cauchy’s theorem.)

4. Bernoulli numbers
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Define the function

f(z) =


z

ez − 1
if z 6= 0,

1 if z = 0.

(a) Convince yourself that f(z) is analytic in a neighborhood of 0. Where
else is it analytic? In particular, find the maximal radius R such that
f(z) is analytic on the disk DR(0).

(b) As we will see later, analytic functions have a power series expansion.
The Bernoulli numbers are the numbers (Bn)∞n=0 defined by the power
series expansion

∞∑
n=0

Bn

n!
zn = f(z).

For example, the first three Bernoulli numbers are B0 = 1, B1 = −1/2,
B2 = 1/6. Prove that the Bernoulli numbers satisfy the following iden-
tities:

1. B2k+1 = 0 for k = 1, 2, . . . (but not for k = 0).

Hint. A function g(z) =
∑∞

n=0 anz
n satisfies a1 = a3 = a5 = . . . = 0

if and only if g(z) = g(−z), i.e., g(z) is an even function.

2. (n+ 1)Bn = −
∑n−1

k=0

(
n+1
k

)
Bk, (n ≥ 2).

3. (2n+ 1)B2n = −
∑n−1

k=1

(
2n
2k

)
B2kB2n−2k, (n ≥ 2).

Hint. Show that the function g(z) = f(z)+z/2 satisfies the equation

g(z)− zg′(z) = g(z)2 − z2/4.

4.
z

2
coth

(z
2

)
=
∞∑
n=0

B2n

(2n)!
z2n.

(c) As we will also see later, the radius of convergence of the power series of
an analytic function around z = z0 is precisely the radius of the maximal
disk around z0 where f is analytic. Assuming this, deduce that

lim sup
n→∞

∣∣∣∣Bn

n!

∣∣∣∣1/n = 1/R,
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where R is the number you found in part (a). (Note: we will derive a
much better estimate for the asymptotic rate of growth of the Bernoulli
numbers later in the course.)

5. Bessel functions

The Bessel functions are a family of functions (Jn)∞n=−∞ of a complex
variable,defined by

Jn(z) =
∞∑
k=0

(−1)k

k!(k + n)!

(z
2

)2k+n
.

(For example, note that J0(−2
√
x) =

∑∞
k=0

xk

(k!)2
, which is reminiscent of

the exponential function and already seems like a fairly natural function to
study.) Find the radius of convergence of the series defining Jn(z), and prove
that the Bessel functions satisfy the following properties:

(a) J−n(z) = (−1)nJn(z).

(b) Recurrence relation: Jn+1(z) =
2n

z
Jn(z)− Jn−1(z).

(c) Differential equation: z2J ′′n(z) + zJ ′n(z) + (z2 − n2)Jn(z) = 0.

(d) Summation identity:
∞∑
n=0

1

n!

(z
2

)n
Jn(z) = 1.

(e)* Other miscellaneous identities (for those who enjoy this sort of thing—
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feel free to skip if you find these sorts of computations uninteresting):

exp

[
z

2

(
t− 1

t

)]
=

∞∑
n=−∞

Jn(z)tn,

cos(z sin t) = J0(z) + 2
∞∑
n=1

J2n(z) cos(2nt),

sin(z sin t) = 2
∞∑
n=0

J2n+1(z) sin((2n+ 1)t),

cos(z cos t) = J0(z) + 2
∞∑
n=1

(−1)nJ2n(z) cos(2nt),

sin(z cos t) = 2
∞∑
n=0

(−1)nJ2n+1(z) sin((2n+ 1)t),

Jn(z) =
1

π

∫ π

0

cos (z sin t− nt) dt.

Hint for the last equation: cos(a− b) = cos(a) cos(b) + sin(a) sin(b).

Remark. The Bessel functions are very important functions in mathe-
matical physics, and appear naturally in connection with various prob-
lems in diffusion, heat conduction, electrodynamics, quantum mechan-
ics, Brownian motion, probability, and more. More recently they played
an important role in some problems in combinatorics related to longest
increasing subsequences (a subject I wrote a book about, available to
download from my home page). Their properties as analytic functions of
a complex variable are also a classical, though no longer very fashionable,
topic of study.
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