
Math 205A: Complex Analysis, Winter 2018

Homework Problem Set #4

February 6, 2018

Instructions. I will accept a submission of this homework problem set,
or any of the planned subsequent ones (Problem Sets 5, 6, 7 and 8), as
satisfying the course requirement for the second for-grading homework
submission (in addition to Problem Set #3, which is due on Wednesday
2/14). Please hand in your solutions by Wednesday, March 14.

You do not need to solve all the problems for an A grade in this submis-
sion. I will want to see that you’ve made a good effort — for example, if
you solve problems 1–4 and 6 I will be happy; anything more and I will
be quite impressed.

Notation. For the problems below, denote

Ĉ = C ∪ {∞} = the Riemann sphere,

K = the set of constant functions z 7→ c ∈ C,

L = the set of linear functions z 7→ az + b, a, b ∈ C,

P = the set of complex polynomials z 7→
n∑
k=0

akz
k,

R = the set of rational functions z 7→ p(z)

q(z)
, p, q ∈ P ,

M = the set of Möbius transformations z 7→ az + b

cz + d
, a, b, c, d ∈ C.

Note the containment relations K ⊂ L ⊂ P ⊂ R ⊃M ⊃ L ⊃ K.

1. (Warm-up problem) Prove that an entire function has a removable singu-
larity at ∞ if and only if it is constant.

2. Prove that the set of entire functions f : C→ C that have a nonessential
singularity at ∞ is P , the polynomials.
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3. Prove that the set of meromorphic functions f : C → Ĉ that have a
nonessential singularity at ∞ is R, the rational functions.

4. Prove that the set of meromorphic, one-to-one and onto functions f :
Ĉ→ Ĉ is M\K, the set of nonconstant Möbius transformations.

Hint. Use the characterization in exercise 3 above. Specifically, show that
a rational function f(z) = p(z)/q(z) that is one-to-one must be a Möbius
transformation. For example (I’m not sure if this is the simplest argument):
argue that if z0 is a complex number such that q(z0) 6= 0 and such that
p′(z0)q(z0) − p(z0)q′(z0) 6= 0, and w0 = f(z0), then the equation f(z) = w0

must have more than one solution in z, unless p(z), q(z) are linear functions.

5.* Prove that set of entire functions f : C → C that are one-to-one and
onto is precisely L \ K, the set of nonconstant linear functions.

Hint. This is a slightly more advanced problem since it relies on both the
Casorati-Weierstrass theorem and the open mapping theorem (although a
more elementary solution may exist). See the guidance for exercise 14 on
page 105 of [Stein-Shakarchi].

Remarks. Given a region Ω ⊂ C, or more generally a Riemann surface
Σ, complex analysts are interested in understanding the structure of its set
of holomorphic functions (C-valued holomorphic functions on Σ); its set of
meromorphic functions (Ĉ-valued holomorphic functions on Σ); and its set
of holomorphic automorphisms (holomorphic, one-to-one and onto mappings
from Σ to itself). Although we won’t get into the general theory of Riemann
surfaces, once one defines these concepts it easy to see that the above exercises
essentially prove the following conceptually important results:

1. The constant functions are the only holomorphic functions on Ĉ.

2. The rational functions are the meromorphic functions on Ĉ.

3. The nonconstant linear functions are the holomorphic automorphisms
of C.

4. The nonconstant Möbius transformations are the holomorphic auto-
morphisms of Ĉ.

Another related result that is not very difficult to prove is:
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5. The holomorphic automorphisms of the upper half-plane H = {z :
Im z > 0} are the Möbius transformations z 7→ az+b

cz+d
with a, b, c, d ∈

R and ad − bc > 0. (Try to prove that any such map is indeed an
automorphism of H; the reverse implication that all automorphisms of
H are of this form is a bit more difficult and requires a result known
as the Schwarz lemma, which will likely be covered at some point in
MAT205A/B.)

Note that the set of holomorphic functions on C (a.k.a. entire functions) and
the set of meromorphic functions on C are much larger families of functions
that do not have such a simple description as the functions in the relatively
small families L,P ,R,M. This is related to the fact that C is a non-compact
Riemann surface.

6. (a) Let z ∈ C\Z. Use the residue theorem to evaluate the contour integral

IN :=

∮
γN

π cot(πw)

(w + z)2
dw

over the contour γN going in the positive direction around the rectangle with
the four vertices (±(N +1/2),±N). Take the limit as N →∞ to deduce the
well-known identity

π2

(sinπz)2
=

∞∑
n=−∞

1

(z + n)2
(z ∈ C \ Z). (?)

Guidance. This is not a trivial exercise, but is not very difficult when broken
down into the following elementary steps:

i) Start by identifying the location of the singularities of the function

w 7→ fz(w) = π cot(πw)
(w+z)2

(considered as a function of w for a fixed z whose

value is not an integer), and their residues. This provides some good
practice with residue computations.

ii) Use the residue theorem to obtain an expression for the contour
integral IN defined above.

iii) Separately, obtain estimates for IN that can be used to show that
IN → 0 as N → ∞. Specifically, show using elementary manipulations
that

| sin(x+ iy)|2 = sin2 x+ sinh2 y, | cos(x+ iy)|2 = cos2 x+ sinh2 y,
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use this to conclude that when x = π(N + 1/2) and y is arbitrary,

| cot(x+ iy)| = sinh2 y

1 + sinh2 y
≤ 1,

and that when y = N and x is arbitrary,

| cot(x+ iy)| ≤ 1 + sinh2N

sinh2N
≤ 2 (if N > 10);

then use these estimates to bound the integral.

iv) By comparing the two results about IN , deduce (?).

(b) Integrate the identity (?) to deduce (using some additional fairly easy
reasoning) the formulas

π cot(πz) = lim
N→∞

N∑
n=−N

1

z + n
=

1

z
+
∞∑
n=1

2z

z2 − n2
(z ∈ C \ Z).

Remark. In next week’s homework we will see how these formulas contain
the secret to proving the famous formulas

∞∑
n=1

1

n2
=
π2

6
,

∞∑
n=1

1

n4
=
π4

90
,

∞∑
n=1

1

n6
=

π4

945
, . . .

and to additional interesting results such as Wallis’s infinite product for π,

π

2
=

2

1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· 8

7
· 8

9
· · · .

7. Let f(z) = p(z)/q(z) be a rational function such that deg q ≥ deg p + 2
(where deg p denotes the degree of a polynomial p). Prove that the sum of
the residues of f(z) over all its poles is equal to 0.

8. Additional exercises — strongly recommended to practice your compu-
tational skills, especially for those who have not had recent practice in such
things:

(a) Read section 2.1 of Chapter 3 (pages 77–83) of [Stein-Shakarchi] for ex-
amples of the use of the residue theorem for the evaluation of definite
integrals.

(b) Solve some or all of problems 1–10 in Chapter 3, pages 103–104 of [Stein-
Shakarchi].
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