
Math 205A: Complex Analysis, Winter 2018

Homework Problem Set #6

February 20, 2018

1. Prove the following properties satisfied by the gamma function:

(a) Values at half-integers:

Γ
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n+ 1

2

)
=

(2n)!

4nn!

√
π (n = 0, 1, 2, . . .).

(b) The duplication formula:

Γ(s)Γ(s+ 1/2) = 21−2s√πΓ(2s).

(c)* The multiplication theorem:
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s
)
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)
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· · ·Γ
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)
= (2π)(k−1)/2k1/2−ksΓ(ks).

2. For n ≥ 1, let Vn denote the volume of the unit ball in Rn. By evaluating
the n-dimensional integral

An =

∫∫
. . .

∫
Rn

exp

(
−1

2

n∑
j=1

x2j

)
dx1 dx2 . . . dxn

in two ways, prove the well-known formula

Vn =
πn/2

Γ
(
n
2

+ 1
) .

Note. This problem requires applying a small amount of geometric intuition
(or, alternatively, having some technical knowledge of spherical coordinates
in Rn). The solution can be found on this Wikipedia page.

3. The beta function is a function B(s, t) of two complex variables, defined
for Re(s),Re(t) > 0 by

B(s, t) =

∫ 1

0

xs−1(1− x)t−1 dx.
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(a) (Warm-up) Convince yourself that the improper integral defining B(s, t)
converges if and only if Re(s),Re(t) > 0.

(b) Show that B(s, t) can be expressed in terms of the gamma function as

B(s, t) =
Γ(s)Γ(t)

Γ(s+ t)
.

Hint. Start by writing Γ(s)Γ(t) as a double integral on the positive
quadrant [0,∞)2 of R2 (with integration variables, say, x and y); then
make the change of variables u = x + y, v = x/(x + y) and use the
change of variables formula for two-dimensional integrals to show that
the integral evaluates as Γ(s+ t)B(s, t).

Remark. Note the similarity of the identity relating the gamma and
beta functions to the formula

(
n
k

)
= n

k!(n−k)! ; indeed, using the relation

Γ(m + 1) = m! and the functional equation Γ(s + 1) = sΓ(s), we see
using the above relation that for nonnegative, integer-valued arguments
we have

B(n,m)−1 =
nm

n+m
· Γ(n+m+ 1)

Γ(n+ 1)Γ(m+ 1)
=

nm

n+m

(
n+m

n

)
.

In other words, except for the correction factor nm
n+m

, the inverse of the
beta function can be thought of as a natural extention of binomial coef-
ficients to real-valued arguments.

4. The digamma function ψ(s) is the logarithmic derivative

ψ(s) =
Γ′(s)

Γ(s)

of the gamma function, also considered as a somewhat important special
function in its own right.

(a) Show that ψ(s) has the convergent series expansions

ψ(s) = −γ − 1

s
+
∞∑
n=1

s

n(n+ s)

= −γ +
∞∑
n=0

(
1

n+ 1
− 1

n+ s

)
(s 6= 0,−1,−2, . . .).

where γ is the Euler-Mascheroni constant.
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(b) Equivalently, show that ψ(s) can be expressed as

ψ(s) = − lim
n→∞

(
n∑
k=1

1

k + s
− log n

)
.

(c) Show that ψ(s) satisfies the functional equation

ψ(s+ 1) = ψ(s) +
1

s
.

(d) Show that

ψ(n+ 1) = −γ +
n∑
k=1

1

k
(n = 0, 1, 2, . . .).

That is, ψ(x) + γ can be thought of as extending the definition of the
harmonic numbers Hn =

∑n
k=1

1
k

to non-integer arguments.

(e) Show that ψ(s) satisfies the reflection formula

ψ(1− s)− ψ(s) = π cot(πs).

(f)* Here is an amusing application of the digamma function. Consider the
sequence of polynomials

Pn(x) = x(x− 1) . . . (x− n) (n = 0, 1, 2, . . .)

and their derivatives
Qn(x) = P ′n(x).

Note that by Rolle’s theorem, Qn(x) has precisely one root in each inter-
val (k, k+ 1) for 0 ≤ k ≤ n− 1. Denote this root by k+αn,k, so that the
numbers αn,k (the fractional parts of the roots of Qn(x)) are in (0, 1).

A curious phenomenon can now be observed by plotting the points αn,k,
k = 0, . . . , n − 1 numerically, say for n = 50 (Figure 1(a)). It appears
that for large n they approximate some smooth limiting curve. This is
correct, and in fact the following precise statement can be proved.
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Theorem. Let t ∈ (0, 1). Let k = k(n) be a sequence such that 0 ≤
k(n) ≤ n − 1, k(n) → ∞ as n → ∞, n − k(n) → ∞ as n → ∞, and
k(n)/n→ t as n→∞. Then we have

lim
n→∞

αn,k(n) = R(t) :=
1

π
arccot

(
1

π
log

(
1− t
t

))
.

In the above formula, arccot(·) refers to the branch of the inverse cotan-
gent function taking values between 0 and π. The limiting function R(t)
is shown in Figure 1(b).

Prove this.

Guidance. Take the logarithmic derivative of Pn(x) to see when the
equation Qn(x)/Pn(x) = 0 (which is equivalent to Qn(x) = 0) holds.
This will give an equation with a sum of terms. Find a way to separate
them into two groups such that the sum in each group can be related, in
an asymptotic sense as n→∞, to the digamma function evaluated at a
certain argument (using property (b) above). Take the limit as n→∞,
then simplify using the reflection formula (part (c)).

5. Given two integrable functions f, g : R → C (of a real variable), their
convolution is the new function h = f ∗ g defined by the formula

h(x) = (f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t) dt (x ∈ R).

The convolution operation is extremely important in harmonic analysis, since
it corresponds to a simple multiplication operation in the Fourier domain;
in probability theory, where it corresponds to the addition of independent
random variables; and in many other areas of mathematics, science and en-
gineering.

For α > 0 define the gamma density with parameter α, denoted γα : R→
R, to be the function

γα(x) =
1

Γ(α)
e−xxα−11[0,∞)(x) (x ∈ R)

(where 1A(x) denotes the characteristic function of a set A ⊂ R, equal to 1 on
the set and 0 outside it). Note that γα(x) is the nonnegative function whose
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Figure 1: (a) A plot of the fractional parts of the roots of Qn(x) for n = 50.
(b) The limiting function R(t). (c) The two previous plots combined. (d)
The polynomial P7(x). Note that the roots of Q7(x) correspond to the local
minima and maxima of P7(x), which are highlighted.

integral equals Γ(α), except that it is divided by Γ(α) so that it becomes a
probability density function. See Figure 2 for an illustration.

Show that for each α, β > 0 we have

γα ∗ γβ = γα+β.

That is, the family of density functions (γα)α>0 is closed under the convo-
lution operation. This fact is one of the reasons why the family of gamma
densities plays a very important role in probability theory and appears in
many real-life applications.
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Figure 2: The gamma densities γα(x) for α = 1, 2, 3, 4, 5.
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