Math 205A: Complex Analysis, Winter 2018

Homework Problem Set \#7
February 28, 2018

1. (a) Show that the Laurent expansion of $\Gamma(s)$ around $s=0$ is of the form

$$
\Gamma(s)=\frac{1}{s}-\gamma+O(s)
$$

(where γ is the Euler-Mascheroni constant). If you're feeling especially energetic, derive the more detailed expansion

$$
\Gamma(s)=\frac{1}{s}-\gamma+\left(\frac{\gamma^{2}}{2}+\frac{\pi^{2}}{12}\right) s+O\left(s^{2}\right)
$$

and proceed to derive (by hand, or if you prefer using a software package such as Mathematica) as many additional terms in the expansion as you have the patience to do.
(b) Show that the Laurent expansion of $\zeta(s)$ around $s=1$ is of the form

$$
\zeta(s)=\frac{1}{s-1}+\gamma+O(s-1)
$$

2. Show that the symmetric version of the functional equation for the zeta function

$$
\zeta^{*}(1-s)=\zeta^{*}(s)
$$

where $\zeta^{*}(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$, can be rewritten in the equivalent form

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

3. Show that the Taylor expansion of the digamma function $\psi(s)=\frac{\Gamma^{\prime}(s)}{\Gamma(s)}$ around $s=1$ is given by

$$
\psi(s)=-\gamma-\sum_{n=1}^{\infty}(-1)^{n-1} \zeta(n+1)(s-1)^{n} \quad(|s-1|<1)
$$

4. Define a function $D(s)$ of a complex variable s by

$$
D(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}=1-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+\ldots
$$

(a) Prove that the series defining $D(s)$ converges uniformly on any half-plane of the form $\operatorname{Re}(s) \geq \alpha$ where $\alpha>0$, and conclude that $D(s)$ is defined and holomorphic in the half-plane $\operatorname{Re}(s)>0$.
(b) Show that $D(s)$ is related to the Riemann zeta function by the formula

$$
D(s)=\left(1-2^{1-s}\right) \zeta(s) \quad(\operatorname{Re}(s)>1)
$$

(c) Using this relation, deduce a new proof that the zeta function can be analytically continued to a meromorphic function on $\operatorname{Re}(s)>0$ that has a simple pole at $s=1$ with residue 1 and is holomorphic everywhere else in the region.
5. Let $\psi(x)=\sum_{p^{k} \leq x} \log p$ denote von Mangoldt's weighted prime counting function. Show that $\psi(n)=\log \operatorname{lcm}(1,2, \ldots, n)$, where for integers a_{1}, \ldots, a_{k}, $\operatorname{lcm}\left(a_{1}, \ldots, a_{k}\right)$ denotes the least common multiple of a_{1}, \ldots, a_{k}.
Note that this implies that an equivalent formulation of the prime number theorem is the interesting statement that

$$
\operatorname{lcm}(1, \ldots, n)=e^{(1+o(1)) n} \quad \text { as } n \rightarrow \infty
$$

6. (a) Prove that for all $x \geq 1$,

$$
\prod_{p \leq x} \frac{1}{1-\frac{1}{p}} \geq \log x
$$

(where the product is over all prime numbers p that are $\leq x$).
(b) Pass to the logarithm and deduce that for some constant $K>0$ we have the bound

$$
\sum_{p \leq x} \frac{1}{p} \geq \log \log x-K \quad(x \geq 1)
$$

That is, the harmonic series of primes $\sum_{p} \frac{1}{p}$ diverges as $\log \log x$, in contrast to the usual harmonic series which diverges as $\log x$.
7. Recall that we defined the Jacobi theta function by

$$
\vartheta(t)=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} t} \quad(t>0)
$$

and showed that it satisfies the functional equation

$$
\vartheta\left(\frac{1}{t}\right)=\sqrt{t} \vartheta(t)
$$

(a) Use the residue theorem to evaluate the contour integral

$$
\oint_{\gamma_{N}} \frac{e^{-\pi z^{2} t}}{e^{2 \pi i z}-1} d z
$$

where γ_{N} is the rectangle with vertices $\pm(N+1 / 2) \pm i$ (with N a positive integer), then take the limit as $N \rightarrow \infty$ to derive the integral representation

$$
\vartheta(t)=\int_{-\infty-i}^{\infty-i} \frac{e^{-\pi z^{2} t}}{e^{2 \pi i z}-1} d z-\int_{-\infty+i}^{\infty+i} \frac{e^{-\pi z^{2} t}}{e^{2 \pi i z}-1} d z
$$

for the function $\vartheta(t)$.
(b) In this representation, expand the factor $\left(e^{2 \pi i z}-1\right)^{-1}$ as a geometric series in $e^{-2 \pi i z}$ (for the first integral) and as a geometric series in $e^{2 \pi i z}$ (for the second integral). Evaluate the resulting infinite series, rigorously justifying all steps, to obtain an alternative proof of the functional equation for $\vartheta(t)$.

