
Complex Analysis Lecture Notes — Additional Material

Dan Romik

March 8, 2020

Solution to problem 24

24. Characterizing some important families of holomorphic functions on C and Ĉ.
Denote

Ĉ = C ∪ {∞} = the Riemann sphere,

K = the set of constant functions z 7→ c ∈ C,

L = the set of linear functions z 7→ az + b, a, b ∈ C,

P = the set of complex polynomials z 7→
n∑

k=0

akz
k,

R = the set of rational functions z 7→ p(z)

q(z)
, p, q ∈ P,

M = the set of Möbius transformations z 7→ az + b

cz + d
, a, b, c, d ∈ C.

Note the containment relations K ⊂ L ⊂ P ⊂ R ⊃M ⊃ L ⊃ K.

(a) Claim. An entire function has a removable singularity at ∞ if and only if it is constant.

Proof. If f(z) = c (a constant function) then f(1/z) = c for z 6= 0, so f(1/z) has a

removable singularity at z = 0, therefore by definition f(z) has a removable singularity

at ∞.

Conversely, if f is entire and has a removable singularity at ∞, then g(z) = f(1/z)

has a removable singularity at z = 0. In particular, g(z) is bounded near z = 0, i.e.,

satisfies |g(z)| < M for some constant M > 0, for all z in some punctured neighborhood

{|z| < r} \ {0} of 0. That implies that |f(z)| = |g(1/z)| < M for z satisfying |z| > 1/r.

On the other hand, f is also bounded in the closed disc |z| ≤ 1/r since it is continuous

there. It follows that f is bounded on all of C. Since it is a bounded entire function, it

is constant by Liouville’s theorem.

1



SOLUTION TO PROBLEM 24 2

(b) Claim. The set of entire functions f : C→ C that have a nonessential singularity at ∞
is P, the polynomials.

Proof. If f(z) = anz
n + . . . + a1z + a0 is a polynomial of degree n, then we can write

f(1/z) = g(z)/zn, where

g(z) = znf(1/z) = a0z
n + a1z

n−1 . . . + an.

Since g(z) is analytic at 0 and nonzero (an 6= 0 since we assumed f is a polynomial of

degree n), by definition, f(1/z) = g(z)/zn has a pole of order n at 0, and therefore, again

by definition, f(z) has a pole of order n at ∞. In the case n = 0, this is a removable

singularity. In general, we showed that polynomials are entire functions that have a

nonessential singularity at ∞.

For the converse, assume that f is entire and has a pole of order n at ∞. We will show

that f is a polynomial of degree n. Working from the definitions again, this means that

f(1/z) has a pole of order n at 0, and so can be expressed in some punctured neighborhood

N0 \ {0} of 0, with N0 = {|z| < r0}, in the form

f(1/z) =
g(z)

zn
,

where g(z) is analytic in N0 and satisfies g(0) 6= 0. On the other hand, inspired by this

relationship between f(1/z) and g(z), we can define a function h(z) by

h(z) = znf(1/z),

which is of course identical to g(z) on the punctured neighborhood N0 \ {0}, but is in

fact analytic on the larger region C \ {0}. It also has a removable singularity at z = 0,

since g(z) is analytic at 0. So really after defining the value of h(z) at 0 to be g(0) we

can say that we have found an entire function h(z) that satisfies

f(z) = znh(1/z)

for all z ∈ C \ {0}. In particular, since |h(z)| is bounded by some constant A > 0 on the

closed unit disc {|z| ≤ 1}, it follows that f(z) satisfies

|f(z)| ≤ A|z|n

for |z| ≥ 1. Also, since f is entire, |f | is bounded on the closed unit disc {|z| ≤ 1}, that

is, we have

|f(z)| ≤ B (|z| ≤ 1)

for some constant B > 0. Combining the above two inequalities, we see that f(z) satisfies

|f(z)| ≤ A|z|n + B
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for all z ∈ C. We now appeal to a previous homework problem in which we proved that

an entire function satisfying this inequality must be a polynomial of degree at most n.

This finishes the proof.

(c) Claim. The set of meromorphic functions f : C→ Ĉ that have a nonessential singularity

at ∞ is R, the rational functions.

Proof. If f(z) is a rational function, write it in the form f(z) = cp(z)/q(z), where c 6= 0

and q(z) are monic polynomials with respective degrees m = deg p, n = deg q. Then the

possibilities for the behavior of f(z) at ∞ are:

1. If m = n then it is easy to see that limz→∞ f(z) = c. In particular, f(1/z) is bounded

in a neighborhood of 0 and hence has a removable singularity by the Riemann removable

singularity theorem. So f(z) has a removable singularity at∞. (Note: one can also show

this directly through a short calculation without appealing to the Riemann removable

singularity theorem.)

2. If m > n then similarly one can show that limz→∞ f(z)/zm−n = c, and therefore that

f(z) has a pole of order m− n at ∞ by similar reasoning as above.

3. If m < n then similarly one can show that limz→∞ zn−mf(z) = c, and therefore that

f(z) has a zero of order n−m at ∞ by similar reasoning.

Thus, in each of the three cases, f(z) is a meromorphic function with a nonessential

singularity at ∞.

Now let us prove the converse statement: assume that f(z) is a meromorphic function

with a nonessential singularity at ∞. The goal is to show that it is a rational function.

We start by showing that f(z) has only finitely many poles in C. Let n ≥ 0 be the order

of the pole f has at ∞. By the usual logic (I skip some of the argumentation involving

the coordinate change z 7→ 1/z, which is becoming obvious at this point) the function

f(z)/zn has a removable singularity, and hence is bounded in modulus, in a neighborhood

{|z| > R0} of the point at infinity. Therefore all poles of f(z) in C must be in the disc

{|z| ≤ R0}. But poles are isolated points, so in any compact set there can be only finitely

many of them.

Having shown there are only finitely many poles, denote the poles of f(z) by z1, . . . , zm
and their respective degrees by d1, . . . , dm. The function

g(z) = f(z) ·
m∏

k=1

(z − zk)dk

is meromorphic, has removable singularities at z1, . . . , zm and is analytic everywhere else,

and by an easy calculation is seen to still have a nonessential singularity at ∞ (a pole

of order n +
∑m

k=1 dk, to be precise). By the claim of part (b), g(z) (after redefining its

values at z1, . . . , zm to remove the singularities, turning it into an entire function) is a
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polynomial. Therefore

f(z) =
g(z)∏m

k=1(z − zk)dk

is a rational function, as claimed.

(d) Claim. The set of meromorphic, one-to-one and onto functions f : Ĉ→ Ĉ isM\K, the

set of nonconstant Möbius transformations.

Proof. If f(z) = az+b
cz+d is a nonconstant Möbius transformation (so ad − bc 6= 0), then

clearly f(z) is meromorphic, and it is one-to-one and onto since the function g(z) = dz−b
−cz+a

satisfies

f(g(z)) = z, g(f(z)) = z

(check this by direct computation for generic z, and check it separately if z is one of the

special values 0,∞, f(0) = b
d , f(∞) = a

c , g(0) = − b
a , g(∞) = −d

c ).

We now turn to the converse claim. Let f(z) be a meromorphic, one-to-one and onto

function on Ĉ. Clearly f is nonconstant. By the assumption, f(z) has a nonessential

singularity at ∞, so by the result proved above, f(z) is a rational function, i.e., we can

write it as before as f(z) = cp(z)/q(z), where c 6= 0 and p(z) q(z) are monic polynomials

with respective degrees m = deg p, n = deg q.

The goal is now to show that only the case when max(m,n) = 1 — that is, the case of

a Möbius transformation — is compatible with the assumption that f is one-to-one and

onto. To show this, assume by contradiction that at least one of m, n is greater than 1.

The injectiveness requires that for any w0 ∈ C the equation

f(z) = w0

has precisely one solution in z. But now, imagine that w0 is of the form w0 = f(z0)

for some complex number z0 (left unspecified momentarily — we will say below what

properties we require it to have in order for this approach to work). We rewrite the

equation f(z) = w0 as

gz0(z) := cp(z)− w0q(z) = cp(z)− c
p(z0)

q(z0)
q(z) = 0 ⇐⇒ p(z)− p(z0)

q(z0)
q(z) = 0.

But now observe that for this equation to have only one solution seems like a difficult thing

to achieve under our assumption that max(m,n) > 1. The reason for this is because, we

now claim, for a “generic” value of z0, this will be a polynomial equation in z of degree

K := max(m,n) > 1 with simple roots, which therefore must have K solutions. To make

precise the meaning of “generic,” first, require that q(z0) 6= 0 to avoid division by zero

in the above equation — that’s not a problem; we can easily avoid the bad situation

where q(z0) = 0 by excluding a finite number of possible values for z0. Second, note that

the degree of gz0(z) as a polynomial in z is indeed K = max(m,n) for all values of w0,
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except possibly one value (which is a situation that arises only in the case m = n, where

one can cause cancellation of the leading coefficients of p and q, lowering the degree in

the definition of gz0), and that one value of w0 is of the form f(z0) for a unique number

z0, by the injectivity assumption. So again, excluding that value of z0 still leaves an

uncountably infinite number of allowed values for choosing z0.

Third, for a given choice of z0 as described above, the equation gz0(z) = 0 will have

K > 1 solutions in z, counting multiplicities, with one of the solutions being z = z0. If

z = z0 were actually a simple zero of gz0(z), then we would reach a contradiction, since

that would mean there has to be at least one other (simple or otherwise) zero, which

would contradict the injectiveness assumption. And this situation of a simple zero would

happen precisely if

g′z0(z0) 6= 0 ⇐⇒ cp′(z0)− cp(z0)

q(z0)
q′(z0) 6= 0,

or, equivalently, if

p′(z0)q(z0)− p(z0)q′(z0) 6= 0.

This is again a polynomial inequality in z0: it is satisfied for all but finitely many values

of z0, so in particular for some value of z0 (which is all we care about).

To summarize this somewhat strange chain of logical reasoning, we showed that the

equation f(z) = w0 = f(z0) will have more than one solution (as an equation in z) for

any choice of z0 for which the following conditions are satisfied:

a. deg gz0 = K;

b. q(z0) 6= 0;

c. p′(z0)q(z0)− p(z0)q′(z0) 6= 0.

And we showed that there exists at least one value z0 for which these conditions are

satisfied — in fact, all but finitely many values of z0 have the required properties. This

contradicts the injectivity assumption, and therefore finishes the proof that f is a Möbius

transformation.

Remark. An alternative proof of the fact that f is a Möbius transformation if it is an

injective, onto rational function uses injectivity to infer first of all that f(z) must be of

the form

f(z) = c
(z − z0)m

(z − z1)n

for some integers m,n ≥ 0: indeed, this follows from the fact that, after ensuring that

the fraction p(z)/q(z) is in reduced form, that is, p(z) and q(z) don’t share any roots,

p(z) must have at most one root (not counting multiplicities in this case), since f(z) = 0

has at most one solution, and similarly q(z) must have at most one root, not counting

multiplicities, since f(z) =∞ must have at most one solution.
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Once the fact that f(z) is of the concrete form c(z− z0)m/(z− z1)n has been established,

the problem becomes conceptually a bit easier. It is then a bit tedious, but not particularly

difficult, to prove that max(m,n) = 1 as before (for example, by considering each of the

subcases m = n, m < n and m > n separately).

(e) Claim. The set of entire functions f : C → C that are one-to-one and onto is precisely

L \ K, the set of nonconstant linear functions.

Proof. Let f : C→ C be an entire, one-to-one and onto function.1 If f has a nonessential

singularity at ∞, by part (b) it is a polynomial, and since it is injective it must be a

nonconstant linear function (this is a special case of the subclaim proved in (d) above for

rational functions, but it is also easy to prove directly that all polynomials of degree ≥ 2

are not injective without going through that claim), and we are done.

It remains to consider the situation when f has an essential singularity at ∞. Let D
denote the open unit disc. Denote w0 = f(0). Since f is an open mapping by the open

mapping theorem, the image f(D) of D under f contains an open neighborhood E of w0.

But by the Casorati-Weierstrass theorem, the image f(C \DR(0)) of the complement of

any closed disc around 0 (i.e., any neighborhood of ∞) is dense in C, and therefore has

a nonempty intersection with E. This intersection means the existence of points z1 ∈ D
and z2 ∈ C \DR(0) for which

f(z1) = f(z2).

Of course, if R > 1 then z1 6= z2, in which case we get a contradiction to the assumption

that f was injective. Thus, the situation when f is injective but has an essential singularity

at ∞ is impossible, and the proof is finished.

Remarks. Given a region Ω ⊂ C, or more generally a Riemann surface Σ, complex analysts

are interested in understanding the structure of its set of holomorphic functions (C-valued

holomorphic functions on Σ); its set of meromorphic functions (Ĉ-valued holomorphic functions

on Σ); and its set of holomorphic automorphisms (holomorphic, one-to-one and onto mappings

from Σ to itself). Although we won’t get into the general theory of Riemann surfaces, once

one defines these concepts it easy to see that the above exercises essentially prove the following

conceptually important results:

(i) The constant functions are the only holomorphic functions on Ĉ.

(ii) The rational functions are the meromorphic functions on Ĉ.

(iii) The nonconstant linear functions are the holomorphic automorphisms of C.

(iv) The nonconstant Möbius transformations are the holomorphic automorphisms of Ĉ.

Another related result that is not very difficult to prove is:

1Actually this proof does not use the assumption that f is onto: the assumption that f is entire and one-to-one is

sufficient to imply the conclusion.
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(v) The holomorphic automorphisms of the upper half-plane H = {z : Im z > 0} are the

Möbius transformations z 7→ az+b
cz+d with a, b, c, d ∈ R and ad − bc > 0. (Try to prove

that any such map is indeed an automorphism of H; the reverse implication that all

automorphisms of H are of this form is a bit more difficult and requires a result known

as the Schwarz lemma, which will likely be covered at some point in MAT205A/B.)

Note that the set of holomorphic functions on C (a.k.a. entire functions) and the set of

meromorphic functions on C are much larger families of functions that do not have such

a simple description as the functions in the relatively small families L,P,R,M. This is

related to the fact that C is a non-compact Riemann surface.
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