MAT 21B - Solutions to Midterm 2
Dan Romik

Question 1

A mechanical engineer is evaluating two springs made by competing manufacturers for possible use in a sliding tray mechanism for a DVD player her company is designing.

The first spring obeys Hooke's law for the spring force,

$$
F=k x
$$

where x is the compression of the spring relative to its natural length, and the spring constant is $k=0.02 \frac{\mathrm{~N}}{\mathrm{~cm}}$. (N=Newtons; cm=centimeters).

The second spring is a "nonlinear spring" whose restoring force equation is

$$
F=c x^{3 / 2}
$$

(this equation is known as the Hertz elastic contact law), with the constant c equal to $c=0.015 \frac{\mathrm{~N}}{\mathrm{~cm}^{3 / 2}}$.

Calculate the work needed to compress each of the springs by 4 centimeters from their natural lengths.

Solution. The work needed to compress the first spring is

$$
W_{1}=\int_{0}^{4} F(x) d x=\int_{0}^{4} k x d x=\left.\frac{1}{2} k x^{2}\right|_{0} ^{4}=\frac{1}{2} \times 0.02 \times 4^{2}=0.16
$$

(The units are Newton-centimeter $=$ one hundredths of Joules, so in Joules W_{1} is equal to 0.0016.) For the second spring, the work is

$$
W_{2}=\int_{0}^{4} F(x) d x=\int_{0}^{4} c x^{3 / 2} d x=\left.\frac{2}{5} c x^{5 / 2}\right|_{0} ^{4}=\frac{2}{5} \times 0.015 \times 4^{5 / 2}=\frac{64}{5} \times 0.015=0.192
$$

again in units of Newton-centimeter.

Question 2

Use integration to find the volume and surface area of the solid body which is the solid of revolution (whose technical name is a conical frustum) formed by revolving the straight line connecting the points $(0,2)$ and $(5,1)$ in the plane around the x-axis.

Solution. The equation for the straight line is $y=2-x / 5$. The volume is computed as

$$
\begin{aligned}
V & =\int_{0}^{5} \pi y(x)^{2} d x=\pi \int_{0}^{5}\left(4-\frac{4}{5} x+\frac{1}{25} x^{2}\right) d x \\
& =\pi\left(4 \times 5-\frac{4}{5} \times \frac{1}{2} \times 5^{2}+\frac{1}{25} \times \frac{1}{3} \times 5^{3}\right)=\frac{35 \pi}{3}
\end{aligned}
$$

The arc length element is

$$
d s=\sqrt{d x^{2}+d y^{2}}=\sqrt{1+(d y / d x)^{2}} d x=\frac{1}{5} \sqrt{26} d x
$$

The surface area element is

$$
d S=2 \pi y d s=2 \pi(2-x / 5) \times \frac{1}{5} \sqrt{26} d x
$$

The surface area is therefore

$$
S=\int_{0}^{5} \frac{2}{5} \pi \sqrt{26}(2-x / 5) d x=\frac{2}{5} \pi \sqrt{26}\left(2 \cdot 5-\frac{1}{2} \cdot \frac{1}{5} \cdot 5^{2}\right)=3 \pi \sqrt{26}
$$

Question 3

Find the center of mass of a thin plate of material shaped like the top half of the ellipse

$$
x^{2}+4 y^{2}=1
$$

(that is, the part of the ellipse that lies above the x-axis) if the material has uniform density $\delta=1$.

Solution. The semi-ellipse is bounded between the x-axis and the graph of the function

$$
y(x)=\frac{1}{2} \sqrt{1-x^{2}} \quad(-1 \leq x \leq 1)
$$

The area of the semi-ellipse is $\pi / 4$, which is the same as the total mass when the density is 1 :

$$
M=\frac{\pi}{4} .
$$

Next, we compute the moment M_{y} and from it the x-component \bar{x} of the center of mass. We use the method of vertical strips, and observe that $\tilde{x}=x$, which means that M_{y} is given by the integral

$$
M_{y}=\int_{-1}^{1} \tilde{x} \cdot \frac{1}{2} \sqrt{1-x^{2}} d x=\int_{-1}^{1} x \cdot \frac{1}{2} \sqrt{1-x^{2}} d x=0
$$

since the function being integrated is an odd function of x. The x-coordinate of the center of mass is therefore

$$
\bar{x}=\frac{M_{y}}{M}=\frac{2}{\pi} \cdot 0=0,
$$

a fact that is also obvious from the symmetry of the half-ellipse relative to the y-axis.
Now we compute the numbers M_{x} and \bar{y}. The average y-value \tilde{y} on each vertical strip at coordinate x is half the height of the semi-ellipse at that strip:

$$
\tilde{y}=\frac{1}{4} \sqrt{1-x^{2}}
$$

Therefore M_{x} can be calculated as
$M_{x}=\int_{-1}^{1} \tilde{y} \cdot \frac{1}{2} \sqrt{1-x^{2}} d x=\int_{-1}^{1} \frac{1}{8}\left(1-x^{2}\right) d x=\frac{1}{8} \times 2 \int_{0}^{1}\left(1-x^{2}\right) d x=\frac{1}{4} \times\left(1-\frac{1}{3}\right)=\frac{1}{6}$.
The y-coordinate of the center of mass is therefore

$$
\bar{y}=\frac{M_{x}}{M}=\frac{2}{3 \pi} .
$$

To summarize, the center of mass of the semi-ellipse is

$$
(\bar{x}, \bar{y})=\left(0, \frac{2}{3 \pi}\right) .
$$

Question 4

The density of air in the Earth's atmosphere as a function of altitude follows an exponential decay law of the form

$$
d(y)=\delta_{0} e^{-k y}
$$

where

y	is the altitude above sea level, measured in meters,
$d(y)$	is the density of air at altitude y, measured in kilograms per cubic meter,
k	is a constant, with units of meters ${ }^{-1}$,
$\delta_{0}=1.225 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$	is the density of air at sea level.

It is known that the density at an altitude of 1000 meters is 88% of its value at sea level.
(a) Find the value of k.

Solution. We have the equation

$$
0.88=\frac{y(1000)}{y(0)}=\frac{\delta_{0} e^{-1000 k}}{\delta_{0} e^{0}}=e^{-1000 k}
$$

which implies that

$$
k=-\frac{1}{1000} \ln (0.88)=0.000127833 \quad \text { (approximately) }
$$

in units of m^{-1}.
(b) The Karman line is an altitude above the Earth's surface above which "outer space" officially begins. It is known that at the Karman line, the density of air is

$$
\delta_{\text {Karman }}=3.43877 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} .
$$

Find the altitude $y_{\text {Karman }}$ where outer space begins according to this definition, in meters.
Solution. The equation for $y_{\text {Karman }}$ is

$$
d\left(y_{\text {Karman }}\right)=\delta_{0} e^{-k y_{\text {Karman }}}=\delta_{\text {Karman }} .
$$

Solving for $y_{\text {Karman }}$ gives

$$
y_{\text {Karman }}=-\frac{1}{k} \ln \left(\frac{\delta_{\text {Karman }}}{\delta_{0}}\right)=-\frac{1}{0.000127833} \ln \left(\frac{3.43877 \times 10^{-6}}{1.225}\right)=100000 \text { (meters). }
$$

Thus, according to the Karman line definition, outer space begins at an altitude of 100 kilometers above sea level, or around 62 miles.

