
UC Davis, Winter 2018 MAT 21B Midterm 1 solutions

Solutions to Midterm 1

Question 1

A cannonball is shot vertically upwards from the ground with an initial velocity of v0 = 320
feet per second. Neglecting the effects of air resistance, find its height y = h(t) above the
ground as a function of time at t = 5, t = 10, and t = 20.

(Reminder: the force of gravity causes falling objects a downwards acceleration of 32 feet
per second per second.)

Solution:

y = h(t) = height of the cannonball above the ground at time t,

dy

dt
= h′(t) = v(t) = velocity of the cannonball in the y direction,

d2y

dt2
= h′′(t) = v′(t) = a(t) = acceleration of the cannonball = −32 (gravity),

h(0) = 0,

v(0) = v0 = 320.

It follows that v(t) can be recovered from a(t) by integration, and h(t) can be recovered
from v(t) by integration:

v(t) = v(0) +

∫ t

0

v′(s) ds = 320 +

∫ t

0

(−32) ds = 320− 32s
∣∣∣t
0

= 320− 32t,

h(t) = h(0) +

∫ t

0

h′(s) ds =

∫ t

0

v(s) ds =

∫ t

0

(320− 32s) ds = (320s− 16s2)
∣∣∣t
0

= 320t− 16t2.

Finally, plug in the values t = 5, 10, 20 to the formula for h(t):

h(5) = 320× 5− 16× 25 = 1600− 400 = 1200,

h(10) = 320× 10− 16× 100 = 1600,

h(20) = 320× 20− 16× 400 = 6400− 6400 = 0.

(All three values are in units of feet.)
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Question 2

Write the sum S = (0× 2) + (1× 3) + (2× 4) + (3× 5) + . . . (9× 11) in
∑

notation, and
evaluate it.

These formulas may prove useful for your solution:

n∑
k=1

k =
n(n + 1)

2
,

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
, (a− 1)(a + 1) = a2 − 1

Solution:

S = (0× 2)︸ ︷︷ ︸
k=1

+ (1× 3)︸ ︷︷ ︸
k=2

+ (2× 4)︸ ︷︷ ︸
k=3

+ (3× 5)︸ ︷︷ ︸
k=4

+ . . . + (9× 11)︸ ︷︷ ︸
k=10

=
10∑
k=1

(k − 1)(k + 1) =
10∑
k=1

(k2 − 1) =
10∑
k=1

k2 −
10∑
k=1

1

=
10× 11× 21

6
− 10 =

2× 5× 11× 3× 7

2× 3
− 10 = 5× 7× 11− 10 = 375.

An alternative solution would be to use a different indexing scheme where we regard the
summation index as ranging between the values 0 and 9, and write the sum (using a different
letter, j, for the summation index) as

S = (0× 2)︸ ︷︷ ︸
j=0

+ (1× 3)︸ ︷︷ ︸
j=1

+ (2× 4)︸ ︷︷ ︸
j=2

+ (3× 5)︸ ︷︷ ︸
j=3

+ . . . + (9× 11)︸ ︷︷ ︸
j=9

=
9∑

j=0

j(j + 2) =
9∑

j=1

(j2 + 2j) (the term with j = 0 is 0 so can be omitted)

=
9∑

j=1

j2 + 2
9∑

j=1

j =
9× 10× 19

6
+ 2× 9× 10

2
.

This still comes out to 375.
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Question 3

(a) Evaluate the definite integral

∫ 4

1

√
x dx.

Solution: ∫ 4

1

√
x dx =

2

3
x3/2

∣∣∣4
1

=
2

3

(
43/2 − 13/2

)
=

2

3
× (8− 1) =

14

3
.

(b) Evaluate the indefinite integral

∫
cos(x)

√
2 + sin(x) dx.

Solution: Make the substitution u = 2 + sin(x), so that du = cos(x) dx. Then∫
cos(x)

√
2 + sin(x) dx =

∫ √
u du =

2

3
u3/2 + C =

2

3
(2 + sin(x))3/2 + C,

where (of course) C is an integration constant.

(c) Evaluate the definite integral

∫ 3

1

f(x)f ′(x) dx if f(x) is a differentiable function that

satisfies: f(0) = 0, f(1) = 4, f(2) = −10, f(3) = 5.

Solution: Note that f(x)f ′(x) = d
dx

(
1
2
f(x)2

)
, that is, 1

2
f(x)2 is an antiderivative of

f(x)f ′(x) — this can be verified using the chain rule, and can be found by making the
substitution u = f(x). This allows us to compute the integral as∫ 3

1

f(x)f ′(x) dx =
1

2
f(x)2

∣∣∣3
1

=
1

2
f(3)2 − 1

2
f(1)2 =

1

2
×
(
52 − 42

)
=

1

2
× (25− 16) =

9

2
.
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Question 4

Determine which of the following sums is a Riemann sum for the integral

∫ 1

0

(1 − x)2 dx.

For each of the sums that is a Riemann sum, explain whether it is a lower sum, an upper
sum, a sum associated with the midpoint rule, or something else. For a sum that is not a
Riemann sum, give a brief explanation why it isn’t.

(a) A =

(
1− 0

)2

× 1

4
+

(
1− 1

4

)2

× 1

4
+

(
1− 1

2

)2

× 1

4
+

(
1− 3

4

)2

× 1

4

Answer: A is a Riemann sum for the integral. Specifically, it is an upper sum,
as shown in the figure below illustrating the rectangles the sum of whose areas A is
calculating.
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Figure 1: The graph of f(x) = (1− x)2 and the Riemann sum A

(b) B =

(
1− 1

4

)2

× 1

4
+

(
1− 1

2

)2

× 1

4
+

(
1− 3

4

)2

× 1

4

Answer: B is a Riemann sum for the integral. It is a lower sum, see the figure
below.

Note: some students wrote that B is not a Riemann sum because there are only 3 terms
in the sum but the intervals are of length 1/4 so the fourth term is missing. Partial
credit was given for that answer.
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Figure 2: Illustration of the Riemann sum B

(c) C =

(
1− 1

4

)2

× 1

4
+

(
1− 1

2

)2

× 1

4
+

(
1− 5

8

)2

× 1

2

Answer: C is a Riemann sum for the integral, associated with the partition
{x0, x1, x2, x3} = {0, 1

4
, 1
2
, 1} of the interval [0, 1] (which partitions [0, 1] into subinter-

vals of unequal length, but that is permitted in the definition of Riemann sums), and
with the intermediate points c1 = 1

4
, c2 = 12, c3 = 5

8
. Because c3 is neither a minimum

point or a maximum point for (1−x)2 in the subinterval [1
2
, 1], nor the midpoint of the

subinterval, the sum is not a lower sum or an upper sum or a sum associated with the
midpoint rule. Again, it’s good to keep in mind that the concept of Riemann sums is
more general than those particular kinds of sums.
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Figure 3: Illustration of the Riemann sum C
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(d) D =
n∑

k=1

(
1− k − 1/2

n

)2

× 1

n

Answer: D is a Riemann sum for the integral, computed according to the midpoint
rule with a partition of [0, 1] into n subintervals of equal length. One can see that k−1/2

n
,

the point where the function gets evaluated in the kth summand, is the midpoint
between the two points xk−1 = k−1

n
and xk = k

n
which are the endpoints of the kth

partition subinterval.
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Question 5

Evaluate the limit

lim
n→∞

(
1

n + 1
+

1

n + 2
+

1

n + 3
+ . . . +

1

n + n

)
= lim

n→∞

(
1

1 + 1/n
· 1

n
+

1

1 + 2/n
· 1

n
+

1

1 + 3/n
· 1

n
+ . . . +

1

1 + n/n
· 1

n

)
by relating it to a definite integral. (An answer expressed in terms of standard mathematical
constants and functions is acceptable.)

Solution: the key is to observe that the second way of writing the sum inside the limit
expresses it as a Riemann sum. Take f(x) = 1

1+x
, then the sum is of the form

1

1 + 1/n
· 1

n
+

1

1 + 2/n
· 1

n
+

1

1 + 3/n
· 1

n
+ . . . +

1

1 + n/n
=

n∑
k=1

1

1 + k/n
· 1

n

=
n∑

k=1

f(k/n) · 1

n
,

which is a Riemann sum (associated with a partition of the interval [0, 1] into n subintervals
of equal length) for the definite integral∫ 1

0

f(x) dx =

∫ 1

0

1

1 + x
dx = ln |1 + x|

∣∣∣1
0

= ln |2| − ln |1| = ln(2).

Thus, the limit is equal to ln(2).
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