
Solutions to practice problem set Math 67 — UC Davis, Winter 2020

Problem 1

You are given a system of 4 linear equations in 5 unknowns:
2x1 − 4x2 + 2x3 + 6x5 = 6

x3 − x4 = −1
2x1 − 4x2 − x3 + x4 + 8x5 = 7

x3 + x4 − 2x5 = 1

(a) Represent the system as an augmented matrix.

Solution. 
2 −4 2 0 6 6
0 0 1 −1 0 −1
2 −4 −1 1 8 7
0 0 1 1 −2 1


(b) Use the Gaussian elimination method to bring the augmented matrix to Reduced Row-

Echelon Form (RREF).

Solution.
2 −4 2 0 6 6
0 0 1 −1 0 −1
2 −4 −1 1 8 7
0 0 1 1 −2 1


R1←1

2R1

R2←R2−2R1

−−−−−−−−−−→


1 −2 1 0 3 3
0 0 1 −1 0 −1
0 0 −3 1 2 1
0 0 1 1 −2 1


R1←R1−R2

R3←R3+3R2

R4←R4−R2

−−−−−−−−−−→


1 −2 0 1 3 4
0 0 1 −1 0 −1
0 0 0 −2 2 −2
0 0 0 2 −2 2


R3←−1

2R3

R1←R1−R3

R2←R2+R3

R4←R4−2R3

−−−−−−−−−−→


1 −2 0 0 4 3
0 0 1 0 −1 0
0 0 0 1 −1 1
0 0 0 0 0 0

 = RREF

(c) Use the RREF obtained in part (b) above to write the general form of the solution to
the original system.

Solution. The free variables in the RREF are x2 and x5. Denoting x2 = s, x5 = t
where s, t are arbitrary real numbers, we get that the general form of the solution is

v =


x1
x2
x3
x4
x5

 =


2s− 4t+ 3

s
t

t+ 1
t

 =


3
0
0
1
0

+ s


2
1
0
0
0

+ t


−4
0
1
1
1


1



Solutions to practice problem set Math 67 — UC Davis, Winter 2020

(d) Use the general form of the solution obtained in part (c) to write a specific solution
to the system. That is, write specific numbers x1, x2, x3, x4, x5 that solve the system.
Substitute the numbers into the system to verify that they actually satisfy the equations.

Solution. Setting s = t = 0 gives that the vector


3
0
0
1
0

 is a solution.
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Problem 2

(a) Find a basis for R2 of eigenvectors of the matrix

(
8 −3
−3 0

)
.

Solution. Denote the matrix by A. The characteristic polynomial of A is

pA(x) = det

(
x− 8 3

3 x

)
= (x− 8)x− 9 = x2 − 8x− 9 = (x+ 1)(x− 9),

so the eigenvalues are λ1 = −1, λ2 = 9. For λ1 = −1, the eigenvectors are solutions of

(A+ I)

(
x
y

)
=

(
9 −3
−3 1

)(
x
y

)
=

(
0
0

)
,

which leads to the eigenvector v1 =

(
1
3

)
. Similarly, for the eigenvalue λ2 = 9 we get

the equation

(A− 9I)

(
x
y

)
=

(
−1 −3
−3 −9

)(
x
y

)
=

(
0
0

)
,

which gives the second eigenvector v2 =

(
−3
1

)
. Together v1 and v2 form a basis.

(b) Given real numbers a, b, c, find a formula for the eigenvalues λ1, λ2 of the matrix(
a b
b c

)
. Show that the eigenvalues are always real numbers, and characterize for

what values of the parameters a, b, c is it true that λ1 = λ2.

Solution. The characteristic polynomial of this matrix is

p(x) = det

(
x− a −b
−b x− c

)
= (x− a)(x− c)− b2 = x2 − (a+ c)x+ ac− b2.

The eigenvalues are the solutions of the equation p(x) = 0, which gives

λ1,2 =
a+ c±

√
(a+ c)2 − 4ac+ 4b2

2

Note that (a+ c)2 − 4ac = a2 + c2 − 2ac = (a− c)2, so this can be rewritten as

λ1,2 =
a+ c±

√
(a− c)2 + 4b2

2

which shows that the solutions are always real numbers (since the expression in the
square root is non-negative). The two eigenvalues λ1, λ2 are equal exactly when (a −
c)2 = b2 = 0, or in other words when b = 0 and a = c. Note that in this case the matrix
is simply (

a 0
0 a

)
,

i.e., it is a scalar multiple of the identity matrix.
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(c) Define what it means for a matrix to be diagonalizable.

Solution. A matrix is diagonalizable if there is a basis of the vector space on which
the matrix acts consisting of eigenvectors of the matrix.

(d) Prove that the matrix

(
a b
b c

)
(where a, b, c are real numbers as above) is always

diagonalizable.

Hint: divide into two cases according to whether λ1 = λ2 or λ1 6= λ2.

First solution. If λ1 = λ2 then as noted in the solution to part (b) above the matrix
is a scalar multiple of the identity matrix, which we know is diagonalizable (any basis
is a basis of eigenvectors, since any non-zero vector is an eigenvector). On the other
hand if λ1 6= λ2 then the two eigenvectors v1, v2 are linearly independent (there is
a theorem that says that eigenvectors associated with distinct eigenvalues are always
linearly independent; for two vectors this is also very easy to see directly, since two
vectors are linearly dependent only if one is a scalar multiple of the other).

Second solution.1 The matrix is a real symmetric matrix, which is a special case of
a self-adjoint or Hermitian matrix. The spectral theorem discussed in the last lecture
contains as part of its statement that such matrices are always diagonalizable.

1This solution uses material from Chapter 11 that you are not required to know for the final exam.
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Problem 3

Let A be the matrix

A =

 −1 0 0
−2 1 0
−2 −1 2

 .

(a) Compute A−1.

Solution. A−1 =

 −1 0 0
−2 1 0
−2 1

2
1
2

. It can be computed either using Gaussian elimina-

tion (starting with the augmented matrix (A | I) and bringing the matrix on the left to
RREF, which gives

(
I |A−1

)
), or using the formula A−1 = 1

det(A) adj(A).

(b) Multiply the matrix you obtained in part (a) above by A to check that it is indeed the
inverse matrix of A.

(c) Find all the eigenvalues of A.

Hint: you should be able to answer this without any computations (or with a very
short computation that will make the answer obvious).

Solution. The characteristic polynomial of A is

pA(x) = det(xI −A) = det

 x+ 1 0 0
2 x− 1 0
2 1 x− 2

 = (x− (−1))(x− 1)(x− 2),

(since xI − A is a lower triangular matrix, so the determinant is the product of the
diagonal entries), so the eigenvalues are λ1 = −1, λ2 = 1, λ3 = 2. In general, the
eigenvalues of a (lower or upper) triangular matrix are exactly the diagonal entries.

(d) Find a basis of R3 consisting of eigenvectors of A.

Solution. By writing the three matrices A − I, A + I and A − 2I and solving the
corresponding systems of equations, after a short computation one finds that the vector

v1 =

 1
1
1

 is an eigenvector corresponding to the eigenvalue λ1 = −1. v2 =

 0
1
1


is an eigenvector corresponding to the eigenvalue λ2 = 1, and v3 =

 0
0
1

 corresponds

to the eigenvalue λ3 = 2.
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Problem 4

(a) Compute the following determinants:

i. det


0 0 0 1
0 −1 0 0
2 1 2 1
5 0 0 0

 = (−1) det

 0 −1 0
2 1 2
5 0 0

 = (−1)

[
−(−1) det

(
2 2
5 0

)]

= −(2 · 0− 5 · 2) = 10 (using first row expansion)

ii. det


1 1 1 1 1
0 2 2 2 2
0 0 3 3 3
0 0 0 2 2
0 0 0 0 1

 = 1 · 2 · 3 · 2 · 1 = 12

(the determinant of a triangular matrix is equal to the product of the diagonal entries)

iii. det

n columns︷ ︸︸ ︷
1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

 = 0 if n ≥ 2 since the matrix has identical rows and is

therefore not invertible. For n = 1 the determinant is 1.

(b) Let A,B be square matrices of order n. Assume that B is invertible. Prove that

det(BAB−1) = det(A).

Solution. We use the known facts that the determinant of a product of matrices is
equal to the product of the determinants, and the determinant of the inverse matrix of
B (assuming it exists) is the reciprocal of the determinant of B. Hence we have

det(BAB−1) = det(B) det(A) det(B−1) = det(B) det(B)−1 det(A) = det(A).

(c) A square matrix A of order n is called anti-symmetric if it satisfies the condition

A> = −A

For example, the matrix  0 5 −1
−5 0 2
1 −2 0


is anti-symmetric. Prove that if n is an odd number and A is an anti-symmetric matrix
of order n then A is not invertible. (Hint: use determinants.)
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Solution. Recall that the transpose operation does not change the determinant, and
for a matrix A of order n and a scalar c we have the relation det(cA) = cnA. If n is
odd and A is anti-symmetric then

det(A) = det(−A>) = (−1)n det(A>) = (−1)n det(A) = −det(A),

so det(A) = 0 (the only number equal to the negative of itself is 0), which means that
A is not invertible.
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Problem 5

(a) If a linear operator T : V → V has two eigenvectors v1, v2. Assume that the associated
eigenvalues λ1 and λ2 are distinct. Are v1, v2 necessarily linearly independent? Prove
that they are, or give an example that shows they don’t have to be.

Solution. Yes, they are linearly independent. Two vectors are linearly dependent if
and only if one of them is a scalar multiple of the other, but if that were the case then
both of them would be eigenvectors associated with the same eigenvalue.

(b) Let V be a vector space with dim(V ) = 3, and let T : V → V be a linear operator on
V . Assume that v1, v2, v3 are eigenvectors of T , with associated eigenvalues

λ1 = 0, λ2 = 0, λ3 = 1.

Assume also that v1 and v2 are linearly independent. Prove that {v1, v2, v3} is a basis
of V .

Hint: If v1, v2, v3 are linearly dependent, show that you can find linearly dependent
eigenvectors u,w such that T (u) = λ1u and T (w) = λ3w, and explain why this leads to
a contradiction.

Solution. We prove that v1, v2, v3 are linearly independent, and since dim(V ) = 3 that
also implies that they form a basis. Assume that we have a representation of the 0
vector as a linear combination of the form

av1 + bv2 + cv3 = 0.

This can also be written as u + cv3 = 0, where u = av1 + bv2. Since u is a linear
combination of v1, v2 (which are both eigenvectors associated with the eigenvalue λ1),
it also satisfies T (u) = λ1u. If u = 0 that means that av1 + bv2 = 0, but since we
assumed that v1, v2 are linearly independent then a = b = 0, which also implies c = 0
(which implies that the linear combination av1+bv2+cv3 = 0 is the trivial combination
with all coefficients equal to 0, which is exactly what we need to show).

On the other hand, if u 6= 0, then u is an eigenvector associated with the eigenvalue
λ1. v3 is an eigenvector associated with the eigenvalue λ3, which is different than λ1,
so by part (a) above, u and v3 are linearly independent. This implies that c = 0, which
forces u to be 0, a contradiction.
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