Homework due. Wednesday 2/19/20 via upload to Canvas.

Reading material. Chapter 6 in the textbook.

Problems

- 1. Solve the following problems in the textbook:
 - (a) Calculation exercises 1(b), 1(f), 2(a), 6 in Chapter 6.
 - (b) Proof-writing exercise 2 in Chapter 6.
- 2. Compute the coordinate vector $[v]_B$, where:
 - (a) $v = (1, 0, 1), B = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}.$
 - (b) $v = (1, 0, 1), B = \{(1, 0, 1), (1, 0, 0), (0, 1, 0)\}.$
 - (c) $v=z^3-2z, B=\{z+1,z-1,z^2,z^3\}$ in the space P_3 of polynomials of degree ≤ 3 .
- 3. Compute the representation matrix $M=M(T)_C^B$ of a linear transformation T relative to two bases B,C, where:
 - (a) $T(x,y) = (x+10y,-x), B = C = \{(1,0),(0,1)\}.$
 - (b) $T(x, y, z) = (z, y, 3x), B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}, C = \{(1, 0, 1), (0, 1, 0), (-1, 0, 1)\}$
 - (c) T(p) = p' (the derivative operator) considered as a linear map from the space P_2 of polynomials of degree ≤ 2 (aka quadratic polynomials) to the space P_1 of polynomials of degree ≤ 1 (aka linear functions), with $B = \{1, x, x^2\}$, $C = \{1, x\}$.
- 4. Let U, V, W be finite-dimensional vector spaces, and let $S: U \to V, T: V \to W$ be linear transformations. The goal of this problem is to prove the inequality:

$$\dim(\operatorname{null}(T \circ S)) < \dim(\operatorname{null}(S)) + \dim(\operatorname{null}(T)),$$

where $T \circ S : U \to W$ denotes the composition of the two transformations. Prove this by using the following steps:

- (a) Denote $H = \text{null}(T \circ S)$ (a linear subspace of U), and define a linear transformation $R: H \to V$ by R(v) = S(v) (i.e., it is the same as S, but its domain is a subspace of the domain of S; sometimes R defined in this way will be referred to as the restriction of S to H). Show that $\text{null}(S) \subseteq H$, and explain why this implies that null(R) = null(S).
- (b) Show that $range(R) \subseteq null(T)$.
- (c) Apply the dimension formula (Theorem 6.5.1 in the textbook) for a suitable linear transformation to deduce the inequality stated at the beginning of the question.