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Automatic Tractography Segmentation Using a
High-Dimensional White Matter Atlas

Lauren J. O’Donnell* and Carl-Fredrik Westin, Member, IEEE

Abstract—We propose a new white matter atlas creation method
that learns a model of the common white matter structures present
in a group of subjects. We demonstrate that our atlas creation
method, which is based on group spectral clustering of trac-
tography, discovers structures corresponding to expected white
matter anatomy such as the corpus callosum, uncinate fasciculus,
cingulum bundles, arcuate fasciculus, and corona radiata. The
white matter clusters are augmented with expert anatomical
labels and stored in a new type of atlas that we call a high-di-
mensional white matter atlas. We then show how to perform
automatic segmentation of tractography from novel subjects by
extending the spectral clustering solution, stored in the atlas, using
the Nystrom method. We present results regarding the stability
of our method and parameter choices. Finally we give results
from an atlas creation and automatic segmentation experiment.
We demonstrate that our automatic tractography segmentation
identifies corresponding white matter regions across hemispheres
and across subjects, enabling group comparison of white matter
anatomy.

Index Terms—Atlas, clustering, diffusion magnetic resonance
imaging (MRI), tractography, white matter.

I. INTRODUCTION

DIFFUSION magnetic resonance imaging (MRI) is
presently the only technique that allows measurement of

white matter fiber orientation in the human brain in vivo. The
power of diffusion MRI lies in the fact that the diffusion of water
molecules probes tissue structure at very small scales, much
smaller than the voxel resolution. This allows measurement of
the voxel-averaged effects of collisions of water molecules with
cellular components such as membranes. In tissues which have
an oriented fibrous structure, such as white matter and muscle,
water diffusion is anisotropic (varies with direction), and the
direction of fastest diffusion parallels the fibrous structure.
There is a large difference in size between macroscopic MRI
voxels and microscopic neurons, as many thousands of axons
can fit in a volume corresponding to one image voxel. However,
diffusion imaging can measure the orientation of axons in white
matter fiber tracts because the distance diffused by a water
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TABLE I
SIZE SCALES OF DIFFUSION IMAGING

Fig. 1. An example of whole brain white matter tractography, with fiber trajec-
tories colored random shades of gray. This data is the input to our method.

molecule during imaging is approximately an axon diameter
(Table I).

Diffusion MRI can be used to create a representation of
white matter tracts in the brain via a process called tractog-
raphy [1]–[5] that estimates white matter tract trajectories by
following likely tract directions. The two main tractography
strategies are probabilistic (an attempt to describe all pos-
sible fiber trajectories [6]–[8]) and streamline (which locally
chooses the most probable fiber trajectory [2]–[5]). Tractog-
raphy methods have been adapted to various representations of
diffusion and fiber tract orientation data, including diffusion
tensor MRI (DTI), q-ball [9], and multiple tensor models.

The most common combination of diffusion data and fiber
tractography method today is DTI and streamline tractography.
In DTI, a tensor model is used to represent diffusion [10] and the
major eigenvector of the tensor (principal diffusion direction) is
associated with the fiber tract direction. The streamline method
of tractography estimates entire fiber trajectories by stepping
along the major eigenvector direction, usually for a predefined
step size (around 0.5 mm) and using the Runge-Kutta numerical
integration method of order 2 or higher [2], [3], [11].

When performed in the entire brain, tractography outputs
many thousands of fiber trajectories per subject (Fig. 1).
These trajectories are not immediately useful to clinicians or
researchers: they must first be organized into anatomically
meaningful structures. We refer to this as the tractography
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segmentation problem. After segmentation, tractography then
becomes useful in applications such as the localization of
specific tracts for surgical planning and the definition of tract
regions of interest for quantitation of diffusion in clinical studies
of diseases that affect the white matter. Our goal, therefore, is to
perform automatic segmentation of tractography data to enable
further clinical and research applications of tractography.

In this paper, we propose a method for white matter atlas
building and automatic white matter segmentation. Because we
have access to tractography data from multiple subjects, we
have designed our method to learn common white matter struc-
tures that are present across subjects. These white matter struc-
tures are found by simultaneously clustering registered (rigidly
aligned) tractography from all subjects. The clustering is per-
formed in a high-dimensional spectral embedding space where
each fiber trajectory is represented as a point. Then the clusters
are visualized and expertly labeled with anatomical names, cre-
ating an anatomical model of white matter structures that we call
a high-dimensional white matter atlas. We use the atlas to per-
form automatic segmentation of tractography from new subjects
by embedding the new fiber trajectories as points in the atlas
spectral embedding space, then labeling the fibers according to
the nearest cluster centroid.

In Section II, we relate background information on tractog-
raphy segmentation approaches and goals. Section II describes
related work in the machine learning literature. Next, we de-
scribe each step of our method in detail. Then we present atlas
and automatic segmentation results from an application of our
technique, as well as results regarding choices of parameter set-
tings and stability of the method. Finally, we conclude with a
discussion of the method.

II. BACKGROUND: TRACTOGRAPHY SEGMENTATION

A. Existing Techniques

Existing tractography segmentation approaches can be di-
vided into three categories: interactive methods, automatic clus-
tering methods, and automatic atlas-based methods.

1) Interactive: In interactive tractography segmentation ap-
proaches, fiber selection and anatomical labeling are done using
expert knowledge. These methods, also known as “virtual dis-
section,” select fibers that pass through user-defined regions of
interest (ROIs) [3], [15] and have been employed to create a fiber
tract atlas [16] and in clinical studies [17]–[19]. In fact, Partridge
et al. found tractography-based definitions of a pyramidal tract
ROI to be more reproducible than manual ROI drawing [19].
Interactive methods are currently the most commonly used, but
require extensive knowledge about complex 3-D white matter
fiber tract anatomy.

2) Clustering: Most published automatic tractography seg-
mentation methods have used clustering approaches (algorithms
that group similar items) to organize the large number of fiber
trajectories into clusters, or fiber bundles. However, few of these
methods have attempted to automatically attach anatomical la-
bels to the clusters or to find corresponding clusters across sub-
jects.

In order to perform clustering, first a mathematical definition
of fiber similarity (or more commonly a fiber distance) must

be specified. Then, pairwise fiber distances may be calculated
and used as input to a clustering algorithm such as hierarchical
clustering [20]–[22] or spectral clustering [23]–[26].

Various fiber distances have been proposed in the literature,
all based on the assumption that fiber trajectories that begin
near each other, that follow similar paths, and that terminate
near each other should belong to the same anatomical struc-
ture. Early work by Brun et al. performed spectral embedding
based on distance between fiber endpoints, then colored fibers
using their embedding coordinates to give a soft visual percep-
tion of connectivity [27]. Later Brun et al. introduced a 9-D
tract shape descriptor vector, defined as the mean and lower tri-
angular part of the covariance matrix of the points on a fiber,
and computed the Euclidean distance between shape descriptors
[23]. Gerig et al. and Corouge et al. proposed distances that em-
ployed pointwise comparison of tract shapes: they defined three
measures related to the Hausdorff distance including the mean
closest point distance we employ [20], [21]. In work by Jonasson
et al. (who used fiber trajectories through high angular resolu-
tion diffusion data) a similarity measure was calculated based
on the number of times two trajectories shared the same voxel
[24]. The preceding methods all used streamline tractography
as input, however the method of Johansen-Berg et al. employed
probabilistic tractography and connectivity matrix reordering to
find the boundary between the supplementary motor area and
the presupplementary motor area [28].

There is convergence in the literature with respect to the
choice of fiber distance measure, as multiple authors have
employed some type of mean closest point distance [20], [21],
[22], [26], [29], [30] and it was found to be the most effective
in a small study where the ground truth clusters were known
[31]. The mean closest point measure has also been applied to
trajectory clustering in outdoor video [32].

3) Atlas-Based: Automated fiber grouping via atlas-based la-
beling of tractography was described by Maddah et al. [33] who
used manual interactive methods to create a tractography atlas
and gave an algorithm for transferring its labels to a novel sub-
ject. Their further work created an atlas of the corpus callosum
using labeled tractography from several subjects and used an
electromagnetic (EM) framework to classify fibers from novel
subjects [34]. Their atlas contained statistical models of trac-
tography in subregions of the corpus callosum (the average and
standard deviation of fibers in each region) and the fibers were
represented using spline coefficients [34]. A different applica-
tion of an atlas was presented in [30], where a gray matter atlas
was used to initialize clustering, then the mean closest point and
Hausdorff distances were used to group fibers.

B. Techniques for Corpus Callosum Parcellation

One application of our tractography segmentation method is
the subdivision of the corpus callosum into regions. Subdivi-
sion of the corpus callosum is of interest because many studies
have localized intersubject differences to specific regions of the
corpus callosum, for example in callosal atrophy with age [35]
and in fractional anisotropy (FA) changes in Alzheimer’s dis-
ease [36]. DTI-based approaches have mostly aimed to parcel-
late according to whether corpus callosum tractography goes to
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temporal, occipital, frontal, or parietal regions [37]–[39] though
one approach employed a statistical model of tractography [34],
and another used functional MRI (fMRI) visual field maps [40].

C. Goals of Tractography Segmentation

Ideally, an automatic tractography segmentation algorithm
should satisfy several goals: grouping of like trajectories into
fiber bundles (for further processing or visualization), bundle
correspondence across subjects (for cross-subject comparison),
and anatomical labeling of bundles (for analysis of specific
white matter structures). The first goal (grouping) is satisfied
by the clustering and atlas-based algorithms. The second goal
(bundle correspondence) has been approached by cluster post-
processing and matching [22], [41], by simultaneous clustering
of multiple subjects [25], and by labeling using an atlas [33],
[42]. Finally, the third goal of anatomical labeling of bundles
has been satisfied by atlas-based approaches [30], [33], [42].

It is clear that atlas information is beneficial to satisfy the
automatic segmentation goals. However, the construction of an
atlas itself requires tractography segmentation, with the inherent
challenges of the large number of fiber trajectories per sub-
ject and the three-dimensionality, anatomical complexity, and
intersubject variability of the data. Consequently, here we pro-
pose a unified approach to atlas creation and subsequent tractog-
raphy segmentation that takes advantage of a clustering method
to identify common white matter structures across subjects and
uses expert input to anatomically label those structures.

III. BACKGROUND: EXTENDING SPECTRAL CLUSTERING

TO NEW DATA

Our automatic segmentation method uses the results of a
spectral clustering solution (stored in the high-dimensional
white matter atlas) to classify novel data. Related work exists
in the machine learning literature, where using spectral clus-
tering for embedding novel data was proposed by Bengio et
al. in 2004 [43]. They describe how to embed out-of-sample
(nontraining) data using the Nystrom method, for various
methods of spectral embedding including normalized cuts and
multidimensional scaling (MDS), but they do not discuss use
of clustering results in the embedding space for labeling or
segmenting the out-of-sample points. Other related work is the
Nystrom extension to normalized cuts by Fowlkes et al. [44] on
which our approach is based. However, Fowlkes et al. discuss
eigenvector approximation of a matrix where all data is at
hand, not the use of the method for embedding new data. It has
also been pointed out that the embedding of new data via the
Nystrom method is equivalent up to scale factors to the method
of projection onto eigenvectors of kernel principal component
analysis (PCA) [45].

In contrast to related work, our approach segments novel data
using spectral embedding and the results of an existing clus-
tering solution, and we augment the learned cluster model with
additional anatomical information specific to our segmentation
problem. In this paper, we show specifically how to embed novel
data using the framework for normalized cuts spectral clustering
and matrix normalization of Fowlkes et al. [44], and we show

Fig. 2. Toy example of atlas creation. For purposes of illustration all points
and fibers are colored according to cluster. The fibers (right) were embedded
as points (left). The image on the left shows the first three dimensions of the
actual embedding space. Then the points were clustered (cluster membership is
indicated by color), and finally the clusters were given expert anatomical labels
(shown in left image).

Fig. 3. Toy example of automatic segmentation using spectral embedding. For
purposes of illustration all points and fibers are colored according to cluster. The
new fibers (right) were segmented by first embedding them as points in the atlas
embedding space (left) and then assigning each point to the closest atlas cluster.

that our tractography data can be segmented according to its dis-
tance to existing atlas cluster centroids.

IV. METHOD

A. Overview

Our method has two parts: atlas generation and automatic
segmentation. The atlas contains a high-dimensional model
of white matter structure. It differs from traditional dig-
ital (voxel-based) atlases because it represents long-range
connections from tractography rather than local voxel-scale
information.

The high-dimensional atlas is constructed via a process called
spectral embedding, where each fiber is represented as a point
in an atlas embedding space. Common white matter structures
(across subjects) are identified as clusters in this space, then the
clusters are inspected and given expert anatomical labels. Fig. 2
shows the actual spectral embedding for a very small example
dataset.

Automatic segmentation of tractography is achieved by first
spectrally embedding the new fibers as points in the atlas embed-
ding space, then assigning the points to the existing atlas clus-
ters. This process is shown visually for a few new fibers (Fig. 3),
using the atlas from Fig. 2.
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Fig. 4. Atlas generation flowchart.

TABLE II
CONTENTS OF THE HIGH-DIMENSIONAL ATLAS

Now we describe the atlas generation and automatic segmen-
tation parts of the method in detail.

B. Atlas Generation Procedure

The sequence of steps in the atlas generation procedure is:
group image registration, multiple subject whole brain tractog-
raphy, fiber affinity calculation, fiber spectral embedding, fiber
clustering, and expert anatomical labeling (Fig. 4). The full con-
tents of the atlas are listed in Table II for reference. In the rest
of this section, each step will be explained.

1) Group Image Registration: The following steps assume
that all subjects’ tractography is in a common coordinate

TABLE III
PARAMETERS FOR WHOLE BRAIN TRACTOGRAPHY

system. We have employed the congealing algorithm [46]
for rigid (rotation, translation, and scaling) group registration
of subject FA images. Then we have applied the registration
to subject tractography data. The congealing algorithm is an
unbiased group registration technique that does not at any point
register to a subject in the group. The mean FA image from
group registration defines the coordinate system of the atlas
and it is stored as the reference image for registration of future
subjects to the atlas.

2) Multiple Subject Whole Brain Tractography: Our method
is applicable to any tractography data that is represented as tra-
jectories in three dimensions. Specifically in this paper, we con-
sider whole brain tractography from streamline integration in
DTI data, because this is currently the most common type of
tractography and data. We generate tractography in the entire
white matter of the brain of each subject, using Runge-Kutta
order two tractography [2], [11] with a fixed step size of 0.5
mm.

We have three threshold parameters for tractography: ,
, and . The first two are anisotropy thresholds based

on the linear anisotropy measure [47]

(1)

where and are the largest two eigenvalues of the diffusion
tensor, sorted in descending order. The goal of the anisotropy
thresholds is to limit tractography to the white matter. We
seed (initiate) tractography in every voxel in the brain with

higher than the threshold . Tractography stops when
on the fiber falls below , indicating gray matter or

areas of planar anisotropy. We have chosen the measure
rather than the FA [48] because FA can be relatively high in
regions of planar anisotropy, which can indicate tract crossings
or branchings [49]. The third threshold is a length threshold

used to remove very short fibers from the clustering.
The thresholds vary by application, generally higher (less
inclusive) if only the major tracts are desired, and lower (more
inclusive) for neurosurgical visualization where one would like
to see “everything.”

Depending on the subject, the seeding resolution, and the
various thresholds, whole brain tractography produces between
10 000 and 100 000 fibers per subject. In practice, we randomly
sample from these fibers to obtain a practical number, where
approximately 10 000 fibers per subject is reasonable for visu-
alization of a subject’s white matter. All random sampling of
fibers is performed without replacement. Useful ranges for the
thresholds and random sampling are listed in Table III.

3) Fiber Affinity Calculation: The next step in the method
calculates information about the subjects’ fiber trajectories. As
described in Section III, the assumption of all fiber clustering
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Fig. 5. Illustration of computation of mean closest point distance measure be-
tween two fibers. In this example each fiber is represented by 10 yellow points.
The directed closest point distances (from fiber i to j) are represented with black
arrows.

methods is that fibers which follow similar trajectories belong
to the same anatomical structure. We quantify pairwise fiber tra-
jectory similarity by first computing a pairwise fiber distance,
then converting it to a pairwise fiber affinity. We employ the
mean closest point distance , which is defined as the mean
distance between pairs of closest points on two fibers. This mea-
sure is often used in fiber clustering ([20], [21], [22], [26], [29],
[30]). To compute this distance from fiber to fiber , first for
each point on fiber , the closest point on fiber is found, and the
distance is stored. After computing the distances from all points
on fiber , the distances are averaged

(2)

where is the number of points on fiber , and is the distance
between point on fiber and the closest point on fiber . Note
that this is a directed distance so . Fig. 5 illus-
trates the computation of this distance measure.

Practically, it is not necessary to use all points on each fiber
to compute the distance measure. In the interest of decreasing
computation time, before computing the distance measure we
represent each fiber using 15 equidistant points (where distances
are computed along the trajectory of the fiber), including both
endpoints. Then the mean closest point distances are computed
using only these 15 points. As the fiber lengths range from
around 10 mm (20 points) to 150 mm (300 points), using only
15 points per fiber significantly decreases computation time.

The clustering requires a symmetric distance, so we sym-
metrize the mean closest point distance by taking the minimum
of the two possible distances and

(3)

We have also employed the mean of the two distances, and
we find that the minimum performs qualitatively better when
clustering using bilateral matching (described below), while the
mean is generally better when doing standard clustering. The
minimum encourages the grouping of shorter fibers with longer
fibers, if they run parallel for some distance; this is beneficial
for clustering similar anatomy in both hemispheres.

Optionally, we can obtain cluster correspondence across
hemispheres to facilitate both visual and quantitative compar-
ison of anatomical structures that are present bilaterally. A
modification to the distance computation allows us to consider

Fig. 6. Optional midsagittal reflection enables bilateral (both hemispheres)
clustering to find corresponding anatomical structures.

symmetry across hemispheres. First, the midsagittal plane is
defined by anterior commissure-posterior commissure (AC-PC)
alignment of the group mean FA image. Then, before com-
puting the distance metric, we create a reflected version of all
fibers by reflecting the brain across the midsagittal plane. The
directed pairwise fiber distance from fiber to now becomes
the minimum of the distance from to and the distance from
to the reflected . Distances are then symmetrized as described
above. This modification of the method allows fibers with
similar shapes and locations in either hemisphere to cluster
together, automatically giving anatomical correspondences
(Fig. 6).

The bilateral clustering is a new approach in clustering of
tractography. We find that this method produces better separa-
tion of some difficult anatomical structures, for example the in-
ferior parts of the cingulum from the inferior parts of the fornix.
We believe the improvement in clustering is because reflecting
across the midsagittal plane effectively doubles the number of
prototype brain examples input to the clustering process. Note
that our clustering/atlas creation method is not dependent upon
this reflection approach, however, the bilateral matching is a
useful additional property that we can obtain.

The parameters of the distance computation method must be
stored in the atlas so that when performing segmentation these
fiber distances are computed in the same way as during atlas
creation. For generality (as other distance measures may be
tested in the future), we refer to these parameters collectively
as . Specifically for the mean closest point distance
measure, the method for symmetrization of distances (min-
imum or mean) is stored in . In addition, whether or not
midsagittal reflection was used in atlas generation is stored in

.
Next, the distance measures are converted to affinity mea-

sures suitable for spectral clustering. Each distance is con-
verted to an affinity measure via a Gaussian kernel

(4)

a method that is frequently employed in the clustering literature
[50]–[52]. Since the distances are symmetric, this conversion
produces a symmetric affinity matrix for clustering.
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Fig. 7. Diagram of the parts of the multisubject fiber affinity matrixW, for an
example five-subject clustering problem. The regions withinA andB represent
individual subjects.C is the part of the matrix that does not need to be calculated
when using the Nystrom method.

The role of in (4) is to define the size scale of the problem by
setting the distance over which fibers can be considered similar.
We standardly choose based on our clustering experience to be
30 mm with bilateral matching (and minimum symmetrization),
and 60 mm in standard clustering (with mean symmetrization).
For smaller clustering problems (not the whole brain), values as
low as 10 mm can give better clusterings. Note that a larger value
of incorporates more information from anatomically neigh-
boring structures. A benefit of this affinity measure is that the
clustering is insensitive to small registration errors and to small
anatomical differences across subjects due to the capture range
of the mean closest point distance and the Gaussian kernel.

The entire pairwise fiber affinity matrix contains affini-
ties for all pairs of fibers across all brains. Because is too
large to compute, we use an approximation called the Nystrom
method [44]. Instead of calculating all pairwise affinities, we
randomly choose a subset of the fiber trajectories (sampling an
equal number from each subject), and then compute affinities
from all fibers to just that subset. This produces two affinity ma-
trices, one that holds the subset’s pairwise affinities , and
another that holds affinities of the rest of the fibers to the
subset. The layout of the affinity matrix for group clustering is
illustrated in Fig. 7. Note that the and matrices contain in-
formation from all subjects together.

4) Fiber Spectral Embedding: Next a spectral embedding of
all fibers is created based on the fiber affinity values. In the em-
bedding space each fiber is represented as a point, and nearby
points in general correspond to similar fiber trajectories. The
advantage of this space is that similarity relationships are repre-
sented spatially, so that clusters can be more easily found. The
embedding is calculated using the eigenvectors of the multisub-
ject fiber affinity matrix.

Specifically, the Nystrom method is employed to estimate the
leading eigenvectors of the normalized affinity matrix

(5)

In the above equation, is the full multisubject pairwise
affinity matrix for all fiber pairs across all brains, and normal-
ization is performed using , a diagonal matrix containing the
row sums of . The effect of this normalization is to divide
each element of by the square root of the row and column
sum at that location. We denote matrices using boldface and
their normalized counterparts using italics.

The row and column sums needed for normalization of the
and matrices, to give and , are estimated using the

following formula [44]

(6)

where and are column vectors containing the row sums of
and , and is a column vector containing the row sums of
. Once is computed, the known elements of (the values

in and ) are normalized as in (5)

(7)

Next the eigenvectors of (the quantities needed for em-
bedding) are estimated using the eigenvectors of . The eigen-
vectors and diagonal eigenvalue matrix of the normalized
matrix are first calculated, and the population eigenvectors
are then estimated via projection of normalized affinity values
in onto the eigenvector basis from . is estimated via the
following formula [44]

(8)

In (8), the ordering of the rows of is such that those corre-
sponding to rows of are first, followed by those corresponding
to rows from . (Note has the
same form as in (8), showing that the rows of both ma-
trices, and , are projected onto the orthogonal basis .
This basis defines the embedding space.)

Finally, spectral embedding vectors are calculated for each
fiber using the rows of the eigenvector matrix, giving

(9)

where the eigenvector ordering is in descending order according
to the eigenvalue. This generates a coordinate system, the spec-
tral embedding space, where each fiber is represented as a point,
and similar fibers are generally embedded near each other. (Note
that because the rows of the normalized matrix sum approxi-
mately to 1, the vector of all constant values is an eigenvector but
does not provide information for clustering. To discard this un-
informative vector, the embedding begins with the second eigen-
vector as indicated in (9).)

5) Fiber Clustering: By simultaneously performing clus-
tering in a group of registered subjects, we find population clus-
ters which represent common structures present in tractography.
The clustering is performed in the embedding space using the

-means algorithm to find clusters. The -means algorithm, a
simple iterative method for finding a local minimum of the sum
of squared distances to cluster centroids, is commonly used in
spectral clustering [44], [50].
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After clustering, each of the population white matter clus-
ters is likely to contain fibers from all or most subjects. There-
fore, when viewed or analyzed on a per-subject basis, the clus-
ters correspond across subjects.

For visualization purposes, cluster colors are assigned auto-
matically and also correspond across subjects. We color each
cluster according to the location of its cluster centroid in em-
bedding space. As proposed by Brun et al. [27], we scale the
first three embedding coordinates to fit into the interval
and use them to determine red, green, and blue (RGB) values.
(The first three embedding coordinates correspond to the eigen-
vectors with the second, third, and fourth largest eigenvalues.)
An example of these colors can be seen in the atlas creation flow-
chart (Fig. 4). These colors are used for display of all subjects’
tractography during the expert labeling step.

6) Expert Anatomical Labeling: The final step in atlas cre-
ation is the use of expert information to perform anatomical la-
beling. After cluster generation, clusters have been defined in
each subject, and these clusters correspond across subjects. For
example, this means that cluster number 10 represents approx-
imately the same region for every subject, because cluster 10
was created as a single cluster in the multiple-subject embed-
ding space. Thus, providing higher-level anatomical informa-
tion is reduced to the problem of defining a label for each of the

clusters.
Cluster labeling is performed as follows. The tractography

clusters are visualized using three dimensional graphics and the
color scheme discussed previously. Cluster(s) are selected with
the mouse and given an anatomical label that is defined by the
expert. In addition, a unique color is chosen for display of each
anatomical structure. Theoretically the cluster labeling could be
done by inspecting the clusters in only one subject, but due to
anatomical or tractography differences, a small number of clus-
ters are generally empty in each subject. We find the simplest ap-
proach is to label one subject, then transfer the cluster labels to
the next subject. Working through all subjects in this manner en-
sures that at the end all clusters have a high-level anatomical de-
scription. Due to the fact that tractography may cross from one
anatomical structure to another, these expert anatomical labels
represent the best approximate description of the white matter
regions discovered in group clustering.

C. Automatic Segmentation Procedure

Once an atlas has been created, it can be used for automatic
segmentation of whole brain tractography from novel subjects.
To apply the atlas to segment a novel subject, each new fiber
is embedded in the same atlas embedding space in which
clustering was performed originally. Then cluster labels and
anatomical information are assigned according to the nearest
cluster centroid. The steps in this process (Fig. 8) are reg-
istration to the atlas, fiber affinity calculation, fiber spectral
embedding, and fiber cluster assignment.

1) Registration to the Atlas: To segment a novel subject using
the atlas, the subject’s FA image should first be rigidly registered
to the reference image from atlas registration (the group mean
FA image).

2) New Fiber Affinity Calculation: To generate affinity
values for a new fiber, its mean closest point distance (2) is first

Fig. 8. Automatic segmentation flowchart.

Fig. 9. Diagram of the parts of the affinity matrix for extension of spectral
embedding to new data. The upper left part of the matrix was generated in the
atlas creation step (Fig. 7) but is not stored in the atlas. S contains affinities
for embedding a new subject and D is not computed. S is shown as having a
large size to emphasize that we can label a large number of fibers per subject
with this approach, without the overhead of actually clustering that many fibers
using k-means in the embedding space.

measured to each fiber stored in the atlas, using the distance
parameters stored in . If the atlas was created with
midsagittal reflection for bilateral matching, the new subject is
first reflected across its midsagittal plane, as described above
(Fig. 6). The distances are then symmetrized (3) using the
method (max/mean) stored in . Next, the distances are
converted to affinities (4) using from the atlas. To summarize,
in the affinity calculation step, the following contents from the
atlas (Table II) are used: the stored random subset of fibers
originally used for affinity computation, the parameters for
distance computation , and .

Fig. 9 shows the parts of the multisubject fiber affinity matrix
with a novel subject included: holds affinity values for the
new subject. The affinity values for each new fiber are stored in
a new row in the affinity matrix for the novel subject (a row of

in Fig. 9).
3) New Fiber Spectral Embedding: To perform embedding

using the normalized cuts framework, the affinity matrix must
be normalized by division of each element by the square root
of the row and column sums at that location [44]. The required
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row sums for the new fibers are estimates of the row sums of
in Fig. 9, which can be calculated as

(10)

where is a column vector containing the row sum of . For
normalization of each row of by column sum, we employ
the column sum from the original matrix

(11)

The above two normalization equations use information from
the atlas (Table II): and . Once is computed,
the elements of are normalized:

(12)

Performing the scaling in this way makes sense for two rea-
sons. First, if we re-embed a fiber that we have already seen
(whose information was in or ) it will be mapped to the
same location in the embedding space, because the matrix nor-
malization will be the same. This is why the column sum (11)
should not be updated with new information from . Second, we
would expect that each individual new fiber (row of ) would
not significantly change the column sum if it were present in
the original atlas affinity matrix due to the fact that thousands of
fibers are used in creation of the original atlas affinity matrices.
Thus, the scaling applied to a novel fiber (row of ) is basi-
cally the same as that which would have been applied if it were
part of the original clustering problem.

After normalization of the matrix, the eigenvectors are es-
timated using the Nystrom method

(13)

and the normalized cuts embedding vectors are given as the rows
of , each divided by the square root of the corresponding row
sum from [as in (9)]. This is the same as the embedding
process employed for the matrix in atlas creation.

4) New Fiber Cluster Assignment (Segmentation): Finally,
automatic segmentation is performed according to the cluster
centroid information from the atlas. The new subject’s embed-
ding vectors are each classified according to the nearest atlas
cluster centroid, giving a cluster label for each fiber. Then the
rest of the atlas cluster information is applied to the segmented
fibers. This includes the per-cluster expert anatomical labels and
the chosen colors for display of clusters and of expert-labeled
anatomical regions.

V. RESULTS

We first present experiments regarding the stability of the
spectral embedding and the number of clusters in the white
matter. Then we present results from an atlas generation
and automatic segmentation experiment, demonstrating the

anatomical structures found, illustrating the use of the method
for corpus callosum subdivision, and showing some challenges
to the method.

Two datasets were used in the experiments, Population I
(LSDI data acquired with 6 directions of diffusion weighting)
and Population II (EPI data acquired with 30 directions of
diffusion weighting). Further details about data acquisition are
located in the Appendix.

A. Embedding Stability Experiment

The reproducibility of clustering is directly related to the re-
producibility of the spectral embedding. Considering the em-
bedding problem as a Nystrom eigenvector approximation, suc-
cessive eigenvector approximations can be compared to test if
the embedding is stable. (The reason all of the eigenvector ap-
proximations are not identical is that they are calculated by ex-
tending the eigenvector solutions computed for different small
random subsets of the data.)

The normalized Frobenius matrix norm

(14)

where and are two matrices containing eigenvectors, is
high when the selected eigenvectors span the same subspace
[44]. If two sets of eigenvectors span a similar subspace, the two
embeddings are similar. The eigenvector basis can rotate when
eigenvalues are near each other, so the important thing is that
the same subspace is described.

We used this embedding stability measure to determine how
large should be for stable embedding. We would like to select
a random sample size that is just large enough to produce repro-
ducible embeddings. The drawback of choosing a large random
sample of fibers (when forming ) is the increase in run time of
the method, because every fiber’s distance must be computed to
each of the randomly sampled fibers. In addition, the matrix
must fit in memory and its eigenvectors must be computed. Prac-
tically with the 32-bit matlab software available during these ex-
periments, the maximum random sample size was 4000.

To investigate how large should be for stable embedding,
we performed spectral embedding for various sizes of the ma-
trix, for several random selections of per size. For each size of

, the mean and standard deviation of the reproducibility value
(matrix norm) were computed using all unique pairs of embed-
dings. In addition, we repeated the experiment using several dif-
ferent numbers of eigenvectors (where the number of eigenvec-
tors determines the dimensionality of the embedding space). We
performed this embedding stability experiment first for a single
subject and then using a 10 subject dataset. The DTI data used
was from Population I.

1) Single Subject Experiment: Fig. 10 shows the result of the
embedding stability experiment in the single subject dataset. 10
embeddings were performed for each size of (with parame-
ters of and mean symmetrization). For this dataset, sta-
bility is highest when using approximately 20 eigenvectors, in-
dicating that the cluster information is represented well in 20 di-
mensions. This has motivated our use of 20 eigenvectors for the
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Fig. 10. Embedding stability measure versus the size of theA matrix, for dif-
ferent numbers of eigenvectors (dimensionalities of the embedding space).A of
size 1500� 1500 or greater with 20 eigenvectors is optimal for this single-sub-
ject dataset.

atlas creation results presented later. Stability for any number
of eigenvectors is highest when using 1500 or more fibers when
creating the matrix. For this reason, 1500 is our recommended
minimum number of fibers for creation of .

2) Atlas Experiment: Fig. 11 demonstrates that the embed-
ding is stable for the atlas, even though multiple subjects are
being analyzed simultaneously. There were 10 subjects used in
the atlas embedding stability experiment, with 3000 fiber trajec-
tories each. Embedding was performed five times for each size
of the matrix (with parameters of and minimum sym-
metrization). In this experiment, the random sample of fibers
used to form came from all subjects (with an equal number
of random fibers from each), and embedding was performed for
all fibers from all subjects.

B. Number of Clusters Experiment

Interesting anatomical clusters exist at many size scales so
choosing the number of clusters is not trivial. In our applica-

Fig. 11. Embedding stability measure for atlas data versus the size of the A
matrix.

tion, the number must be large enough to avoid combining dis-
similar fibers. In addition, we would like to choose the smallest

that is experimentally shown to produce good quality clusters,
because the run time increases with . (The spectral clustering
method uses the -means algorithm to locate cluster centroids
in embedding space, and each -means iteration computes
cluster means.)

We investigated the inherent number of clusters present in
a single brain by measuring the quality of the clustering so-
lution for various numbers of clusters. The DTI dataset used
was from Population 1 (see Appendix I), and the mean closest
point distance measure was used with mean symmetrization and

of 60. A worst-case cluster measure, the maximum sum of
point-to-centroid distances over all clusters, is shown versus
number of clusters in Fig. 12. According to this measure, there
are more than 100 clusters inherent in a single subject. In fact,
the cluster quality is slightly better if more than approximately
200 clusters are found. This motivated our choice of 200 clus-
ters for the following atlas generation experiment.

C. Atlas Generation and Automatic Segmentation Experiment

1) Whole Brain Tractography Generation: DTI data from
Population II (see Appendix I) was analyzed for 15 subjects.
Tractography was performed in each subject using Runge-Kutta
order two integration, with the following parameters: seeding
threshold of 0.25, stopping threshold of 0.15,
step size 0.5 mm, and minimum length of 25 mm.

Group registration of subject FA images was performed using
the congealing algorithm [46] to calculate rotation, translation,
and scaling (no shear terms). Rigid registration without shear
was chosen so that the registration would have the same effect
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Fig. 12. Worst-case cluster measure (the maximum cluster centroid distance
sum) versus number of clusters, indicating that 100 or more clusters are present
in this single-subject dataset.

if applied to the tensors or to the tractography. This registra-
tion was then applied to the fiber trajectories generated via trac-
tography. For simplicity in the experiments presented here, this
registration was performed by congealing training and test sub-
ject FA images together, thus placing them all in the coordinate
system of the group mean FA image.

2) Parameters of Atlas Creation and Automatic Segmenta-
tion: The dataset was divided into 10 training subjects (used
in atlas creation) and 5 test subjects (used only for automatic
segmentation). To create the atlas, 3000 fibers were randomly
selected from each of the 10 subjects as input to the clustering,
giving 30 000 total fibers to cluster. For affinity computation we
used the mean closest point distance, of 30 mm, and minimum
symmetrization. The size of the random sample used to create
the matrix was 2500, 20 eigenvectors were used for embed-
ding, and clusters were generated.

First, an experiment was done to compare the midsagittal re-
flection method (bilateral clustering) with standard clustering.
The same 30 000 fibers were clustered using each method, and
the resulting clusters were used to label the voxels of an image
volume for visualization of the difference between the methods.

Next the final atlas was generated. We used the midsagittal re-
flection method for distance computation, where the midsagittal
plane was defined using the average group registered FA image.
The 200 atlas clusters from each subject were visually inspected
and labeled with anatomical names.

We then performed automatic segmentation of tractography
from all 15 subjects using the atlas. We labeled 10 000 fibers
from each of the 15 (10 used in atlas creation plus five novel)
subjects using the atlas. This 10 000 was a random sample from
the total tractography for each subject, which contained between
80 000 and 100 000 fibers. (Note that in the 10 training subjects,
this random sample was unlikely to contain many of the 3000
fibers which were used for clustering during atlas creation, so
performing segmentation of the 10 000 fibers was not the same
as reclassifying the original data.) The 10 000 labeled fibers per
subject were then used to produce the automatic segmentation
result images shown next.

Fig. 13. Comparison of standard and bilateral clustering (using midsagittal re-
flection). Note the increased right-left symmetry in the bilateral clustering re-
sult. However note that the conversion of the atlas to voxels (for visualization)
is imperfect because the atlas is not voxel-based. The atlas may represent any
number of structures inside the volume of a voxel, thus when one structure is
selected for visualization information is lost.

TABLE IV
MAJOR WHITE MATTER STRUCTURES IN ATLAS

3) Bilateral Clustering Comparison: The images in Fig. 13
demonstrate the difference between the bilateral clustering (with
midsagittal reflection) and the standard clustering.

4) Automatic Tractography Segmentation Results: Seg-
mented structures and their display colors are given in Table IV.

Figs. 14–16 demonstrate automatic segmentation of tractog-
raphy from all 15 (training and test) subjects. First, all major
structures are shown in a view from the left (Fig. 14) and an
inferior view (Fig. 15). These images demonstrate the ability of
the method to identify white matter structures such as the corpus
callosum, uncinate fasciculus, cingulum bundles, arcuate fas-
ciculus, inferior occipitofrontal fasciculus, and corona radiata.
The colors in the images correspond to the expert anatomical
labels, and most colored structures contain multiple clusters.

Next, selected regions are displayed. Fig. 16 shows two fasci-
culi: the uncinate (containing several clusters) and arcuate (con-
taining one cluster). Then Fig. 17 demonstrates the six indi-
vidual clusters discovered by the method in the region of the
cingulum, as segmented in the test subjects.

5) Corpus Callosum Subdivision Results: Our atlas can be
used to identify the corpus callosum fibers and to subdivide
the corpus callosum according to the clusters discovered during
atlas creation. (In the atlas clustering result, anatomical struc-
tures are generally divided into multiple clusters.) Fig. 18 shows
the corpus callosum parcellation for all subjects. Note especially
that the fibers going to the temporal lobe (yellow) are success-
fully segmented.
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Fig. 14. Result of automatic segmentation of training (top) and test (bottom) subjects (view from left). Structures and colors are as in Table IV.

Fig. 15. Result of automatic segmentation of training (top) and test (bottom) subjects (inferior view). Structures and colors are as in Table IV.

Fig. 16. Automatic segmentation of uncinate (orange) and arcuate (purple) fasciculi, with part of cerebral peduncle/internal capsule/corona radiata (yellow). The
arcuate is one cluster.

VI. DISCUSSION

When labeling tractography with anatomical names, it is im-
portant to note that the correspondence between tractography
and anatomical regions is imperfect. For instance, a fiber trajec-
tory may cross structures by traversing part of the arcuate fasci-
culus and part of the external capsule.

Tractography that crosses from one structure to another can
be seen in the limbic system segmentation results (Fig. 19).
Some fibers in the fornix region (green) cross structures to
follow part of the corona radiata (see anterior part of fornix,
to the left in the images). In addition, fibers in the cingulum
(purple) are shown entering and leaving this structure. Anatom-
ically, the cingulum bundle is the core of the purple structure,
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Fig. 17. The six individual clusters discovered in the cingulum region, segmented in the test data. Some clusters (second from right) are more variable.

Fig. 18. Automatic corpus callosum segmentation and subdivision result. The fibers to the temporal lobe (yellow) are distinct from those to the occipital lobe
(light blue).

Fig. 19. The limbic system, including the fornix (green) and cingulum bundles (magenta) is a challenge to the method due in part to tractography that crosses
anatomical structures.

but axons enter and leave the bundle all along its length. The
diffusion MRI measurements reflect this and consequently
the tractography enters and leaves the cingulum region. The
limbic system also presents a challenge to the atlas clustering
due to the proximity and similar shapes of the inferior parts
of the cingulum (purple) and fornix (green), as well as the

general noisiness of tractography in this region. The detection
of uncommon fiber trajectories, possibly caused by noise or by
crossing from one structure to another, merits further investi-
gation.

Due to the fact that the diffusion tensor model is ambiguous
in regions of fiber crossing, it is known that some anatomical
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structures (such as the lateral connections of the corticospinal
tract to the face motor area) cannot be traced using DTI stream-
line tractography. Consequently, it will be of interest in the fu-
ture to apply our method to tractography from diffusion data
reconstructed with a model (such as Q-ball or PAS-MRI) that
can represent fiber crossings. It would also be of interest to map
the white matter atlas to a standard anatomical space such as the
Talairach coordinate system.

VII. CONCLUSION

In this paper, we have presented a new method for automatic
tractography segmentation. The method learns a model of the
anatomical organization of white matter pathways from a pop-
ulation of subjects, using an unsupervised spectral clustering
method. It produces a quantitative description of white matter
architecture in the form of a cluster, and a quantitative model of
white matter architecture in the group. Each cluster is annotated
with an expert anatomical label, creating a high-dimensional
white matter cluster atlas. We have shown how to embed novel
data in the spectral clustering framework (normalized cuts with
the Nystrom method) of Fowlkes and Malik, and we have ap-
plied this technique to perform automatic segmentation of new
tractography data. We have demonstrated that the method is able
to identify known white matter anatomical structures including
the corpus callosum, uncinate fasciculi, cingulum bundles, ar-
cuate fasciculi, inferior occipitofrontal fasciculi, middle cere-
bellar peduncles, and corona radiata. Our work enables statis-
tical white matter analysis using tractography. By segmenting
corresponding white matter regions across subjects and across
hemispheres, we allow neuroscientific hypotheses to be tested
regarding group differences and questions of symmetry.

APPENDIX

DATA ACQUISTION

Population I: MR diffusion scans were performed with
a quadrature head coil on a 1.5 T GE Echospeed system
(General Electric Medical Systems, Milwaukee, WI), which
permits maximum gradient amplitudes of 40 mT/m. Coronal
LSDI scans were acquired perpendicular to both the AC-PC
line and interhemispheric fissure. To increase the precision
of the acquisition alignment, instead of one 3-D localizer,
a set of three 2-D T1-weighted localizers (sagittal, axial
oblique aligned to the AC-PC line, and another sagittal oblique
aligned to the interhemispheric fissure) were acquired. Finally,
the last sagittal oblique T1W image served as the localizer
for the LSDI coronal scans. For each section, six images
with high (1000 ) diffusion-weighting along six non-
collinear directions [e.g., relative amplitudes,

] and two
with low (5 ) diffusion-weighting have been collected.
The following scan parameters were used: rectangular field of
view (FOV) 220 165 ; 128 128 scan matrix (256
256 image matrix); slice thickness 4 mm; interslice distance
1 mm; receiver bandwidth T4 kHz; TE (echo time) 64 ms;
effective TR (repetition time) 2592 ms; scan time 60 s/slice
section. A total of 31–35 coronal slices covering the entire

brain (depending upon brain size) were acquired. The total scan
time was 31–35 min.

Population II: DTI images were acquired using a SENSE
head coil on 1.5 T whole-body MR scanners (Philips Medical
Systems, gyroscan NT) equipped with explorer gradients (40
mT/m). For acquisition, an eight-element arrayed RF coil,
converted to six-channel to be compatible with the six-channel
receiver, was used. For DTI acquisitions, a single-shot spin
echo-echo planar sequence (SE-EPI) was used, with dif-
fusion gradients applied in 30 noncollinear directions and

. Five additional reference image with least
diffusion weighting was also acquired.
Fifty to sixty axial slices were acquired to cover the entire
hemisphere and the cerebellum, parallel to the AC-PC line.
The field of view, the size of the acquisition matrix, and the
slice thickness were 240 240 mm/96 96/2.5 mm. and
resolutions were then zerofilled to 256 256. Other imaging
parameters were: TR 7000 ms and ; and SENSE
reduction factor . To improve the signal-to–noise ratio,
three datasets were acquired, leading to a total acquisition time
of 12–15 min. T2-weighted images with and 100 ms
were separately acquired with the same EPI acquisition scheme
to ensure the accurate coregistration. For anatomical image,
MPRAGE with higher resolution (1.25 mm isotropic) was also
acquired.
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