
An approximation formula in Hilbert space ∗

Zhihua Zhang and Naoki Saito

Dept. of Math., Univ. of California, Davis, California, 95616, USA.

E-mail: zzh@ucdavis.edu and saito@math.ucdavis.edu

Abstract Let {ϕk}∞1 be a frame for Hilbert space H. The purpose of this paper is to present an approximation

formula of any f ∈ H by a linear combination of finitely many frame elements in the frame {ϕk}∞1 and show that the

obtained approximation error depends on the bounds of frame and the convergence rate of frame coefficients of f as well

as the relation among frame elements.
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1. Introduction

Let H be a Hilbert space and {ek}∞1 be an orthonormal basis for H. It is well-known that any f ∈ H can

be approximated by the linear combination of {ek}n
1 and the approximation error depends on the convergence

rate of the Fourier coefficients[2].

As a generalization of the orthonormal bases, Duffin and Schaeffer[3] introduced the notion of frames.

Suppose that {ϕk}∞1 is a frame for H. For any f ∈ H, we will construct a linear combination of finitely many

frame elements in the frame {ϕk}∞1 to approximate to f and show that the approximation error depends on

the bounds of frame and the convergence rate of frame coefficients of f as well as the relation among frame

elements.

We recall some concepts and propositions.
∗The work was supported by NSF grant DMS-0410406 and Prof. Xiaoping Shen’s NSF grant
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Let {ϕk}∞1 be a sequence in Hilbert space H. If there exist two positive constants A, B such that

A ‖ f ‖2≤
∞∑

k=1

|(f, ϕk)|2 ≤ B ‖ f ‖2 ∀f ∈ H, (1.1)

then the sequence {ϕk}∞1 is said to be a frame for H, where A and B are said to be frame bounds. Specially,

if A = B = 1 and ‖ ϕk ‖= 1 (k ∈ Z+), then {ϕk}∞1 is an orthonormal basis for H.

Let {ϕk}∞1 be a frame for H. The frame operator S is defined as

S : H → H, Sf =
∞∑

k=1

(f, ϕk)ϕk ∀f ∈ H, (1.2)

where (f, ϕk) (k ∈ Z+) are said to be frame coefficients.

Proposition 1.1[1,p58-62]. Let {ϕk}∞1 be a frame with bounds A and B for H. Then

(i) The frame operator S is a self-conjugate operator and A ‖ f ‖≤‖ Sf ‖≤ B ‖ f ‖ ∀f ∈ H.

(ii) The inverse operator S−1 exists and 1
B ‖ f ‖≤‖ S−1f ‖≤ 1

A ‖ f ‖ ∀f ∈ H.

(iii) Denote ϕ̃k = S−1ϕk, the {ϕ̃k}∞1 is also a frame for H and

1
B
‖ f ‖2≤

∞∑
k=1

|(f, ϕ̃k)|2 ≤ 1
A
‖ f ‖2 ∀f ∈ H. (1.3)

(iv) For each k,

ϕ̃k =
2

A + B
ϕk +

2
A + B

∞∑
n=1

(
I − 2S

A + B

)n

ϕk, (1.4)

where I is the identity operator.

(v) Let R = I − 2S
A+B . Then ‖ R ‖≤ B−A

B+A .

The frame {ϕ̃k}∞1 is said to be a dual frame of {ϕk}∞1 .

Denote the partial sum of the series in (1.4) by ϕ̃N
k , i.e.

ϕ̃0
k =

2
A + B

ϕk, ϕ̃N
k =

2
A + B

ϕk +
2

A + B

N∑
n=1

(
I − 2S

A + B

)n

ϕk. (1.5)

Proposition 1.2[1,p58-62]. Under the conditions of Proposition 1.1, then

(i) for any f ∈ H, the reconstruction formula f =
∞∑

k=1

(f, ϕk)ϕ̃k holds
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(ii) for any f ∈ H, the series
∞∑

k=1

(f, ϕk)ϕ̃N
k is convergent and

‖ f −
∞∑

k=1

(f, ϕk)ϕ̃N
k ‖≤ qN+1 ‖ f ‖ (N ∈ Z+), (1.6)

where q = B−A
B+A .

2. A new frame approximation operator (σN
n (·))m

In order to approximate to any f ∈ H by a linear combination of finitely many frame elements, we present

a new frame approximation operator in this section.

Let {ϕk}∞1 be a frame for H with bounds A and B. The frame operator S, ϕ̃k, and ϕ̃N
k are stated in

(1.2), (1.4), and (1.5), respectively.

Definition 2.1 We truncate the series
∞∑

k=1

(f, ϕk)ϕ̃N
k by its partial sum, for n, N ∈ Z+, define

σN
n (f) :=

n∑
k=1

(f, ϕk)ϕ̃N
k ∀f ∈ H. (2.1)

Denote

Sm : H → H, Smf :=
m∑

j=1

(f, ϕj)ϕj ∀f ∈ H. (2.2)

and

S1
m := Sm, Sl

m := Sl−1
m (Sm) (l ∈ Z+),

S1 := S, Sl := Sl−1(S) (l ∈ Z+). (2.3)

Definition 2.2. For any k, N, m ∈ Z+, define

(ϕ̃0
k)m =

2
A + B

ϕk and (ϕ̃N
k )m =

2
A + B

ϕk +
2

A + B

N∑
n=1

(
I − 2Sm

A + B

)n

ϕk.

From this definition, we have

(ϕ̃N
k )m = (ϕ̃N−1

k )m +
2

A + B

(
I − 2Sm

A + B

)N

ϕk (N ∈ Z+). (2.4)

Definition 2.3. Define a frame approximation operator as follows.

(σN
n (·))m : H → H, (σN

n (f))m =
n∑

k=1

(f, ϕk)(ϕ̃N
k )m ∀f ∈ H.
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Lemma 2.4. (i) The sequence of operators {Sm}∞1 is uniformly bounded.

(ii) For any f ∈ H,

Sl
mf → Slf (m →∞) ∀l ∈ Z+. (2.5)

Proof. Combining (1.2) with (2.2), for any f ∈ H, we have

Smf → Sf (m →∞). (2.6)

Using the resonance theorem, we know that there exists M > 0 such that ‖ Sm ‖≤ M (m ∈ Z+). So we get (i).

We have known that (2.5) holds for l = 1. Now we assume that (2.5) holds for l − 1.

Noticing that Sl
mf − Slf = Sm(Sl−1

m f)− Sm(Sl−1f) + Sm(Sl−1f)− S(Sl−1f), we have

‖ Sl
mf − Slf ‖≤‖ Sm(Sl−1

m f − Sl−1f) ‖ + ‖ Sm(Sl−1f)− S(Sl−1f) ‖=: p(l)
m (f) + q(l)

m (f). (2.7)

Since ‖ Sm ‖≤ M , by the postulate of induction, we have

p(l)
m (f) ≤ M ‖ Sl−1

m f − Sl−1f ‖→ 0 (m →∞).

Let g = Sl−1f . Then by (2.6),

q(l)
m (f) =‖ Smg − Sg ‖→ 0 (m →∞).

Hence, by (2.7), we have Sl
mf → Slf (m →∞), i.e. (2.5) holds for any l ∈ Z+. So we get (ii).

Lemma 2.5. For any f ∈ H, (σN
n (f))m is a linear combination of {ϕj}λ

1 , where λ = max{m, n}.

Proof. By Definition 2.2 and the operator equality

(I − 2Sm

A + B
)n = I +

n∑
l=1

(
n
l

)(
− 2

A + B

)l

Sl
m,

we conclude that

(ϕ̃N
k )m =

2(N + 1)
A + B

ϕk +
2

A + B

N∑
n=1

n∑
l=1

(
n
l

)(
− 2

A + B

)l

Sl
mϕk.

Again by Definition 2.3, we get

(σN
n (f))m =

2(N + 1)
A + B

n∑
k=1

(f, ϕk)ϕk +
2

A + B

N∑
n=1

n∑
l,k=1

bn,l,kSl
mϕk =: M1 + M2,
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where bn,l,k =
(

n
l

)(
− 2

A+B

)l

(f, ϕk).

For any f ∈ H, by (2.2), we obtain that for any k, l ∈ Z+,

Sl
mϕk =

m∑
j=1

cjϕj , where cj =
m∑

ν1,...,νl−1=1

(ϕk, ϕν1)(ϕν1 , ϕν2) · · · (ϕνl−1 , ϕj).

So we see that for l, k ∈ Z+, Sl
mϕk is a linear combination of m frame elements ϕ1, ϕ2, ..., ϕm, further, the

sum M2 is a linear combination of m elements ϕ1, ϕ2, ..., ϕm. Clearly, the sum M1 is a linear combination of n

elements ϕ1, ϕ2, ..., ϕn. Therefore, (σN
n (f))m is a linear combination of {ϕj}λ

1 , where λ = max{m, n}. Lemma

2.5 is proved.

3. Approximation by (σN
n (·))m

We will approximate to f by (σN
n (f))m. First, we estimate ‖ f − σN

n (f) ‖ in Lemma 3.1. Next, we

estimate ‖ σN
n (f) − (σN

n (f))m ‖ in Lemma 3.3. Finally, we get an estimate ‖ f − (σN
n (f))m ‖ in Theorem 3.4.

Meanwhile, we show that the approximation error only depends on the frame bounds and the convergence rate

of the frame coefficients of f as well as the relation among frame elements.

Lemma 3.1. Let {ϕk}∞1 be a frame for H with bounds A, B and σN
n (f) be stated in (2.1). Denote

εn(f) :=
1

‖ f ‖

 ∞∑
j=n+1

|(f, ϕj)|2
 1

2

. (3.1)

Then for any f ∈ H, we have

‖ f − σN
n (f) ‖≤ qN+1 ‖ f ‖ +

1√
A

(
1 + qN+1

)
‖ f ‖ εn(f) (n, N ∈ Z+), (3.2)

where q = B−A
B+A .

Remark 3.2. Since {ϕk}∞1 is a frame, we see that
∞∑

k=1

|(f, ϕk)|2 < ∞. From this and (3.1), we get

εn(f) → 0 (n →∞).

Proof of Lemma 3.1. By Proposition 1.2(ii) and (2.1), we know that for any f ∈ H and N ∈ Z+, the

series
∞∑

k=1

(f, ϕk)ϕ̃N
k converges and σN

n (f) =
n∑

k=1

(f, ϕk)ϕ̃N
k is its partial sum. Denote its remainder term by

rN
n (f) :=

∞∑
k=n+1

(f, ϕk)ϕ̃N
k .
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So

‖ f − σN
n (f) ‖=‖ f −

( ∞∑
k=1

(f, ϕk)ϕ̃N
k − rN

n (f)

)
‖≤‖ f −

∞∑
k=1

(f, ϕk)ϕ̃N
k ‖ + ‖ rN

n (f) ‖ .

Using Proposition 1.2(ii), we get

‖ f − σN
n (f) ‖≤ qN+1 ‖ f ‖ + ‖ rN

n (f) ‖ . (3.3)

By Proposition 1.2(i), the series
∞∑

k=1

(f, ϕk)ϕ̃k converges, so we can decompose rN
n (f) as follows:

rN
n (f) =

∞∑
k=n+1

(f, ϕk)ϕ̃k +
∞∑

k=n+1

(f, ϕk)(ϕ̃N
k − ϕ̃k) =: uN

n (f) + vN
n (f). (3.4)

By (1.4) and (1.5), it follows that

ϕ̃k − ϕ̃N
k = 2

A+B

∞∑
n=N+1

(I − 2S
A+B )nϕk

= (I − 2S
A+B )N+1

(
2

A+B ϕk + 2
A+B

∞∑
n=1

(I − 2S
A+B )nϕk

)
= (I − 2S

A+B )N+1ϕ̃k = RN+1ϕ̃k,

where R = I − 2S
A+B . So we get

vN
n (f) = −

∞∑
k=n+1

(f, ϕk)RN+1ϕ̃k = −RN+1

( ∞∑
k=n+1

(f, ϕk)ϕ̃k

)
.

From this and (3.4), we get

rN
n (f) =

∞∑
k=n+1

(f, ϕk)ϕ̃k −RN+1

( ∞∑
k=n+1

(f, ϕk)ϕ̃k

)
= (I −RN+1)

∞∑
k=n+1

(f, ϕk)ϕ̃k. (3.5)

However, we have

‖
∞∑

k=n+1

(f, ϕk)ϕ̃k ‖2= sup
‖g‖=1

∣∣∣∣∣
( ∞∑

k=n+1

(f, ϕk)ϕ̃k, g

)∣∣∣∣∣
2

= sup
‖g‖=1

∣∣∣∣∣
∞∑

k=n+1

(f, ϕk)(ϕ̃k, g)

∣∣∣∣∣
2

.

Using Cauchy’s inequality in l2, we get

‖
∞∑

k=n+1

(f, ϕk)ϕ̃k ‖2≤

( ∞∑
k=n+1

|(f, ϕk)|2
)
· sup
‖g‖=1

( ∞∑
k=n+1

|(ϕ̃k, g)|2
)

.
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By Proposition 1.1 (iii), we know that {ϕ̃k}∞1 is also a frame for H and

∞∑
k=1

|(ϕ̃k, g)|2 ≤ 1
A
‖ g ‖2 .

From this, we get

‖
∞∑

k=n+1

(f, ϕk)ϕ̃k ‖2≤ 1
A

( ∞∑
k=n+1

|(f, ϕk)|2
)

.

Again by (3.1) and (3.5), we have

‖ rN
n (f) ‖≤‖ I −RN+1 ‖ ·

(
1
A
‖ f ‖2 ε2

n(f)
) 1

2

.

By Proposition 1.1(v), we have ‖ I −RN+1 ‖≤ 1 + qN+1 (q = B−A
B+A ). So

‖ rN
n (f) ‖≤ 1√

A

(
1 + qN+1

)
‖ f ‖ εn(f).

Finally, by (3.3), we obtain the conclusion of Lemma 3.1.

We will approximate to σN
n (f) by (σN

n (f))m.

Lemma 3.3. Let {ϕk}∞1 be a frame for H with bounds A, B, and let σN
n (f) and (σN

n (f))m be stated in

(2.1) and Definition 2.3, respectively. Then for any f ∈ H, we have

‖ σN
n (f)− (σN

n (f))m ‖≤
√

B ‖ f ‖
(

1 +
2

A + B

)N+1√
n αN,n,m (N, n, m ∈ Z+),

where

αN,n,m := max
1≤l≤N

1≤k≤n

‖ Slϕk − Sl
mϕk ‖ . (3.6)

Proof. By (1.5), we have

ϕ̃N
k = ϕ̃N−1

k +
2

A + B
ϕk +

2
A + B

N∑
l=1

(
N
l

)(
− 2

A + B

)l

Slϕk.

and by (2.4), we have

(ϕ̃N
k )m = (ϕ̃N−1

k )m +
2

A + B
ϕk +

2
A + B

N∑
l=1

(
N
l

)(
− 2

A + B

)l

Sl
mϕk (3.7)
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So we get

ϕ̃N
k − (ϕ̃N

k )m = ϕ̃N−1
k − (ϕ̃N−1

k )m +
2

A + B

N∑
l=1

(
N
l

)(
− 2

A + B

)l

(Slϕk − Sl
mϕk).

Recursively using the above formula, we have

ϕ̃N
k − (ϕ̃N

k )m = (ϕ̃1
k − (ϕ̃1

k)m +
2

A + B

N∑
j=2

j∑
l=1

(
j
l

)(
− 2

A + B

)l

(Slϕk − Sl
mϕk). (3.8)

By Definition 2.2 and (1.5), we get

ϕ̃1
k − (ϕ̃1

k)m = −
(

2
A + B

)2

(Sϕk − Smϕk).

From this and (3.8), we have

ϕ̃N
k − (ϕ̃N

k )m =
2

A + B

N∑
j=1

j∑
l=1

(
j
l

)(
− 2

A + B

)l

(Slϕk − Sl
mϕk).

So we obtain

‖ ϕ̃N
k − (ϕ̃N

k )m ‖≤ 2
A + B

 N∑
j=1

j∑
l=1

(
j
l

)(
2

A + B

)l
 · max

1≤l≤N
‖ Slϕk − Sl

mϕk ‖ .

However,

2
A + B

N∑
j=1

j∑
l=1

(
j
l

)(
2

A + B

)l

≤ 2
A + B

N∑
j=1

(
1 +

2
A + B

)j

≤
(

1 +
2

A + B

)N+1

.

So we have

‖ ϕ̃N
k − (ϕ̃N

k )m ‖≤
(

1 +
2

A + B

)N+1

· max
1≤l≤N

‖ Slϕk − Sl
mϕk ‖ . (3.9)

By (2.1) and Definition 2.3, using cauchy’s inequality, we obtain that for any f ∈ H,

‖ σN
n (f)− (σN

n (f))m ‖ ≤
n∑

k=1

|(f, ϕk)|· ‖ ϕ̃N
k − (ϕ̃N

k )m ‖

≤
(

n∑
k=1

|(f, ϕk)|2
) 1

2

·
(

n∑
k=1

‖ ϕ̃N
k − (ϕ̃N

k )m ‖2

) 1
2

(3.10)

Combining (3.9)-(3.10) with (3.6), we get

‖ σN
n (f)− (σN

n (f))m ‖≤
(

1 +
2

A + B

)N+1√
n αN,n,m

(
n∑

k=1

|(f, ϕk)|2
) 1

2
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From this and (1.1), we get the conclusion of Lemma 3.3.

Since

‖ f − (σN
n (f))m ‖≤‖ f − σN

n (f) ‖ + ‖ σN
n (f)− (σN

n (f))m ‖,

by Lemma 3.1 and Lemma 3.3, we conclude immediately the following

Theorem 3.4. Let {ϕk}∞1 be a frame with bounds A and B, and let

(σN
n (f))m =

N∑
k=1

(f, ϕk)(ϕ̃N
k )m (f ∈ H),

where (ϕ̃N
k )m is stated in Definition 2.2. Then for any f ∈ H and N, n, m ∈ Z+, we have

‖ f − (σN
n (f))m ‖ ≤ qN+1 ‖ f ‖

+ 1√
A

(
1 + qN+1

)
‖ f ‖ εn(f) +

√
B ‖ f ‖

(
1 + 2

A+B

)N+1√
n αN,n,m,

(3.11)

where εn(f) is stated in (3.1), q = B−A
B+A , and

αN,n,m = max
1≤l≤N

1≤k≤n

‖ Slϕk − Sl
mϕk ‖ (S is the frame operator).

Remark 3.5. In Lemma 2.5, we have shown that (σN
n (f))m is a linear combination of ϕ1, ..., ϕλ (λ =

max{m, n}). So Theorem 3.4 gives a formula approximating to any f ∈ H by a linear combination of finitely

many frame elements.

Remark 3.6. Denote

R1 := qN+1 ‖ f ‖,

R2 :=
1√
A

(
1 + qN+1

)
‖ f ‖ εn(f),

R3 :=
√

B ‖ f ‖
(

1 +
2

A + B

)N+1√
n αN,n,m. (3.12)

Since q = B−A
B+A < 1, we see that R1 → 0 (N → ∞). By Remark 3.2, we have R2 → 0 (n → ∞). From

Lemma 2.4(ii) and (3.6), we obtain αN,n,m → 0 (m →∞), so we have R3 → 0 (m →∞).
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Therefore, for any f ∈ H and an approximation error ε > 0, first we choose N such that R1 < ε
3 , next,

we choose n such that R2 < ε
3 , finally, for fixed N, n, we choose m such that R3 < ε

3 . Then from (3.11), we

have ‖ f − (σN
n (f))m ‖< ε.

Our result is a generalization of a known result on the orthonormal bases[2].

Remark 3.7. When {ϕk} is an orthonormal basis for H, the frame bounds B = A = 1 and the frame

operator S and Sm are both the identity operator. By (3.6),

αN,n,m = 0.

By (1.4), (1.5), (2.3), and (3.12), we have

ϕ̃k = ϕ̃N
k = (ϕ̃N

k )m = ϕk and R1 = R3 = 0, R2 =

( ∞∑
k=n+1

|(f, ϕk)|2
) 1

2

.

Therefore, Theorem 3.4 is reduced to a well-known result in Hilbert space[2].
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