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Abstract

In this paper, we discuss the continuous extension and wavelet approximation of the detected object on
a general domain Ω of R

2. We first extend continuously the image to a square T and such that it vanishes
on the boundary ∂T . On T \Ω, the extension has a simple and clear representation which is determined by
the equation of the boundary ∂Ω. We expand the extension into wavelet series on R

2. Since the extension
tool is polynomials, by the moment theorem, we know that the sequence of wavelet coefficients obtained by
us is sparse. Therefore, we can approximate and analyze the internal information of the object very well
even if we only store a few wavelet coefficients.
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1 Introduction

In the field of image analysis, detection and segmentation of objects of interest in a given image have drawn

considerable attention of both researchers and practitioners for more than 30 years. There have been significant

progress in this area since late 1980s due to the deeper theoretical understanding of the problems and the

rapid increase of computational power. The examples of such progress include: “snakes” [8],“balloons” [9],

geodesic active contours [10], geodesic active regions [11], optimal edge integrators [12], the variational method

of Mumford and Shah [13], the MDL-based image partitioning method [14], to name a few. One is interested in

analyzing the objects after their boundaries are detected and they are segmented either manually by a human

interpreter using a pointing device or automatically by one or more of the methods listed above. One needs

a set of tools to manipulate the detected objects, for example, to compress them, catalog them, analyze their

characteristics, and filter their certain spatial frequency features in an individual manner. Although it is true

that the boundary of the object provides us with important geometric and shape information, it becomes a

∗This research is partially supported by NSF grant DMS-0410406 and the ONR grant N00014-07-1-0166.

1



nuisance, particularly for the analysis of the internal information (e.g., textures) of the object. For example,

if we embed such an object in an otherwise empty rectangle and expand it into the Fourier series in a brute-

force manner, the boundary of the object generates the infamous Gibbs’ phenomenon, which prevents us from

effectively analyzing the spatial frequency information inside of the object. In order to analyze the object locally,

Saito, Yamatani, and Zhao [6][7, Chap.4] have generalized polyharmonic local sine transform in [2] and used it

to decouple the boundary/ geometry information from the internal information. Their idea is to split an object

of general shape into two components. The first component is a polyharmonic function on the general domain

which is determined by the values of the image on the boundary. The second component can be extended

smoothly to a square, and then can be approximated by Fourier series.

In this paper, we will present a new algorithm to deal with objects of general shape. We will embed

an object of general shape in a square, extend directly it from a general domain to a square, and then we

approximate the extension by wavelet series. In detail, we consider an object f living on a general domain Ω.

First we continuously extend f from Ω to a square T such that the extension F ∈ lip1 on T and vanishes on the

boundary of square T . In our extension, we use some simple polynomials as tool. We divide the complement of

the domain Ω in the square into some trapezoids with a curved side and some rectangles. On each trapezoid,

the extension F is a polynomial with respect to a variable. On each rectangle, the extension F is a polynomial

of two variables. Finally, we approximate F by wavelet series. The obtained wavelet coefficients are sparse,

thanks to the moment theorem of wavelets. This enables us to see that the algorithm presented by us can

represent data efficiently. If we do not continuously extend f and simply take f = 0 on the exterior of Ω, since

the discontinuity of f at the boundary of Ω, the wavelet coefficients decay very slow. On the other hand, we

know that it is very difficult to construct wavelet basis on a general domain, we cannot expect to realize the

wavelet approximation by a wavelet basis on a general domain. So our algorithm is a good tool.

Comparing with the algorithm in [6][7, Chap.4], the advantages of our algorithm lie in: (a) We do not

need to store the values of the object on the boundary. (b) With the help of the moment theorem of wavelet,

2



most of wavelet coefficients in our algorithm are zero, while none of Fourier coefficients in the algorithm in [6][7,

Chap.4] are zero. (c) The decay of wavelet coefficients depends on the local smoothness, while the decay of

Fourier coefficients depends on the whole smoothness, so the decay of wavelet coefficients is faster.

This paper is organized as follows. In Section 2, we discuss a partition of the complement of a general

domain in a large square. We will divide this complement into some trapezoids with a curved side and some

rectangles. In this section, we also recall some concepts and known results of wavelets. In Section 3, we state

the main results. In Section 4 we present our extension algorithm. In Section 5, we show that the sequence

of wavelet coefficients of the extension is sparse and wavelet coefficients decay fast. In Section 6, we give a

numerical experiment to explain our theory.

2 Preliminary

In this section, we discuss partitions of complements of domains in a large square and recall some results about

wavelets.

2.1 Partition of the complement of the domain

Let T = [0, 1]2 and Ω ⊂ T be a domain. Without loss of generality, we can divide the closed domain T \Ω into

some rectangles and trapezoids with a curved side. For convenience of representation, we assume that we can

choose four points (xi, yi) ∈ ∂Ω (i = 1, 2, 3, 4) such that T \ Ω can be divided into the four rectangles (as Fig.

1)

H1 = [0, x1] × [0, y1], H2 = [x2, 1]× [0, y2],

H3 = [x3, 1] × [y3, 1], H4 = [0, x4] × [y4, 1] (2.1)

and four trapezoids with a curved side (as Fig. 1)

E1 = {(x, y); x1 ≤ x ≤ x2, 0 ≤ y ≤ g(x)},
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Fig.1. Partition of the complement of the domain Ω

E2 = {(x, y); h(y) ≤ x ≤ 1, y2 ≤ y ≤ y3},

E3 = {(x, y); x4 ≤ x ≤ x3, g
∗(x) ≤ y ≤ 1},

E4 = {(x, y); 0 ≤ x ≤ h∗(y), y1 ≤ y ≤ y4}, (2.2)

where g, h, g∗, h∗ ∈ C1. Denote

M = max{g(x), x1 ≤ x ≤ x2}; τ = min{g(x), x1 ≤ x ≤ x2};

M∗ = max{g∗(x), x4 ≤ x ≤ x3}; τ∗ = min{g∗(x), x4 ≤ x ≤ x3}

and 0 < τ ≤ y1, y2 ≤M < M∗, τ ≤ τ∗ ≤ y3, y4 ≤M∗ < 1. Denote

N = max{h(y), y2 ≤ y ≤ y3}; λ = min{h(y), y2 ≤ y ≤ y3};

N∗ = max{h∗(y), y1 ≤ y ≤ y4}; λ∗ = min{h∗(y), y1 ≤ y ≤ y4};

and 0 < λ∗ ≤ x1, x4 ≤ N∗ < N, λ ≤ x2, x3 ≤ N < 1.

From the above construction, we know that T can be expressed into a disjoint union as follows.

T = Ω
⋃

(

4
⋃

i=1

Ei

)

⋃

(

4
⋃

i=1

Hi

)

. (2.3)
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2.2 Tensor product wavelets

Now we recall some concepts and known results of wavelets [1,5,15,16].

Let ψ ∈ L2(R). Its integral translates and dyadic dilations denoted by ψm,n, i.e.,

ψm,n = 2
m
2 ψ(2m · −n), m, n ∈ Z.

We say ψ is an orthonormal wavelet of L2(R) if {ψm,n}m,n∈Z is an orthonormal basis of L2(R). We say ψ is

compactly supported if its support D = clos {x ∈ R, ψ(x) 6= 0} is a compact set on R, write D = suppψ.

It is well-known that the ordinary tensor product wavelet {ψ(1), ψ(2), ψ(3)} generated by a scaling function

ϕ and its corresponding wavelet ψ, where

ψ(1)(x, y) = ϕ(x)ψ(y), ψ(2)(x, y) = ψ(x)ϕ(y), ψ(3)(x, y) = ψ(x)ψ(y), (2.4)

and so {ψ
(ν)
m,n(x, y)}, m ∈ Z, n ∈ Z

2, ν = 1, 2, 3 is an ordinary tensor product wavelet basis.

By (2.4), we have

ψ(1)
m,n(x, y) = ϕm,n1

(x)ψm,n2
(y), ψ(2)

m,n(x, y) = ψm,n1
(x)ψm,n2

(y),

ψ(3)
m,n(x, y) = ψm,n1

(x)ψm,n2
(y), (m ∈ Z n = (n1, n2) ∈ Z

2). (2.5)

Any f ∈ L2(R2) can be expanded into the wavelet series with convergence in L2(R2)−norm

f =

3
∑

ν=1

∑

m,n

c(ν)
m,nψ

(ν)
m,n,

where c
(ν)
m,n =

∫

R2

f(x, y)ψ
(ν)
m,n(x, y) dxdy is called the wavelet coefficient.

In our argument, we need the following moment theorem and a characterization of Holder space by wavelets

as well as the relation between the local smoothness of functions and wavelet coefficients. We say a function

f ∈ Cs+α(Ω) if its partial derivatives ∂i+jf
∂xi ∂yj ∈ lipα (0 < α ≤ 1) on Ω for i+ j ≤ s.

Proposition 2.1 [1]. Let ψ ∈ Cs(R) be a completely supported wavelet. Then, for each l = 0, 1, ..., s,

we have
∫

R

xlψ(x) dx = 0.
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Proposition 2.2 [5]. Let {ψ(ν)}3
1 ⊂ Cs+2(R2) be a completely supported wavelet of L2(R2).

(a) If f ∈ Cs(R2), then wavelet coefficients satisfy

c(ν)
m,n =

∫

R2

f(x, y)ψ
(ν)
m,n(x, y)dxdy = O(2−m(s+1)), ν = 1, 2, 3.

(b) If f is sth-differentiable at a point (x0, y0) and if m ∈ Z and n = (n1, n2) ∈ Z
2 are such that the point

( n1

2m ,
n2

2m ) in a neighborhood of (x0, y0), then

c(ν)
m,n = O(2−m(s+1))

(

1 + |(2mx0 − n1)
2 + (2my0 − n2)

2|
s
2

)

ν = 1, 2, 3..

3 Main results

Let a smooth function f be defined on a general domain Ω and Ω ⊂ [0, 1]2. We can extend the function f to

R
2 such that the extension F ∈ lip 1 (R2) and vanishes on the exterior of the unit square. We expand F into

the wavelet series, and then we discuss the decay and sparseness of wavelet coefficients. Our main results are

stated as follows.

Theorem 3.1. Let T : = [0, 1]2 and Ω ⊂ T be a simply connected Jordan closed domain whose boundary

is a piecewise smooth curve. If a target function f(x, y) ∈ C1(Ω), then there is a function F (x, y) ∈ lip 1(R2)

satisfying

F (x, y) = f(x, y), (x, y) ∈ Ω, (3.1)

F (x, y) = 0, (x, y) ∈ R
2 \ T. (3.2)

On T \ Ω, F (x, y) can be expressed locally in the forms

1
∑

j=0

ξj(x)y
j , or

1
∑

j=0

ηj(y)x
j , or

1
∑

i, j=0

cijx
iyj, (3.3)

where the functions ξj , ηj ∈ lip 1 and coefficients cij ’s are constants.
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We prove this theorem in Section 4.

Let Ω ⊂ T and f ∈ C1(Ω). We give a partition of T \ Ω as (2.3) in Section 2.

T = Ω
⋃

(

4
⋃

i=1

Ei

)

⋃

(

4
⋃

i=1

Hi

)

,

where each Ei is a trapezoid with a curved side and each Hi is a rectangle. In Section 4, we define the values

of the extension F on {Ei} and {Hi} such that F satisfies the conditions of Theorem 3.1.

Suppose that F is stated as above. Now we assume that a scaling function ϕ ∈ C3(R) is supported in a

bounded interval and the corresponding wavelet ψ ∈ C3(R) is also supported a bounded interval. Take a tensor

product wavelet {ψ(ν)}3
1 which is stated in (2.4). Denote

dm,n = suppϕm,n, Dm,n = suppψm,n. (3.4)

Clearly, dm,n and Dm,n are both bounded intervals. We expand F into the wavelet series with respect to the

wavelet basis {ψ
(ν)
m,n}3

1

F (x, y) =

3
∑

ν=1

∑

m,n

c(ν)
m,nψ

(ν)
m,n(x, y)

with convergence in the L2(R2)−norm, where wavelet coefficients

c(ν)
m,n =

∫

R2

F (x, y)ψ
(ν)
m,n(x, y) dxdy, m ∈ Z, n ∈ Z

2. (3.5)

Then wavelet coefficients decay fast and a lot of wavelet coefficients vanish. Precisely say, we have

Theorem 3.2. Let F (x, y) be an extension from Ω to R
2 as was stated in Theorem 3.1 and let {c

(ν)
m,n}

be wavelet coefficients of F , which are stated in (3.5).

(i) For m ∈ Z, n ∈ Z
2, and ν = 1, 2, 3, we have c

(ν)
m,n = O(2−2m).

(ii) Let m ∈ Z, n = (n1, n2) ∈ Z
2 such that ( n1

2m ,
n2

2m ) is in a neighborhood of the point (x0, y0). If

(x0, y0) 6∈

(

Ω
⋃

(
4
⋃

i=1

Ei)

)

, then

c(ν)
m,n = O(2−ml)(1 + (Am,n(x0, y0))

l
2 ).

where Am,n(x0, y0) = (2mx0 − n1)
2 + (2my0 − n2)

2 and l can be arbitrarily large.
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The proof of Theorem 3.2 sees Section 5.1.

The following theorem shows sparseness of wavelet coefficients.

Theorem 3.3. Let c
(ν)
m,n be wavelet coefficients of F . For m ∈ Z, n = (n1, n2) ∈ Z

2,

(i) If dm,n1

⋂

[λ∗, N ] = ∅ or Dm,n2

⋂

([τ, M∗]
⋃

{0}
⋃

{1}) = ∅, then c
(1)
m,n = 0;

(ii) If Dm,n1

⋂

([λ∗, N ]
⋃

{0}
⋃

{1}) = ∅ or dm,n2

⋂

[τ, M∗] = ∅, then c
(2)
m,n = 0;

(iii) If Dm,n1

⋂

([λ∗, N ]
⋃

{0}
⋃

{1}) = ∅ or Dm,n2

⋂

([τ,M∗]
⋃

{0}
⋃

{1}) = ∅, then c
(3)
m,n = 0,

where Dm,n and dm,n are stated in (3.4) and where τ, M∗, λ∗, N , and xi, yi are stated in Section 2.

The proof of this theorem is in Section 5.2.

From Theorem 3.2, we see that our extension method is such that a lot of wavelet coefficients vanish.

Besides this we find that our extension is such that more wavelet coefficients are very small. One regards very

small wavelet coefficients as zeros in application.

Remark 3.4. For f ∈ C1(Ω), if we do not extend continuously f and define simply

F (0)(x, y) =

{

f(x, y), (x, y) ∈ Ω,
0, (x, y) ∈ R

2 \ Ω,

then, for the global estimate of wavelet coefficients, we only have cm,n = O(2−m). Since the discontinuity of

F (0)(x, y) at the boundary of Ω, we know that wavelet coefficients near the boundary decay slowly. On the other

hand, we know that the construction of the wavelet basis for L2(Ω) is very difficult, so the above continuous

extension of an image is very useful for wavelet approximation.

4 Continuous extension of functions

Let T = [0, 1]2 and let Ω ⊂ T be a simply connected Jordan domain whose boundary is a piecewise smooth

curve. We can divide the complement T \ Ω into some rectangles and trapezoids with a curved side. With loss
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of generality, we can divide the complement T \ Ω as in Section 2.

T \ Ω =

(

4
⋃

i=1

Ei

)

⋃

(

4
⋃

i=1

Hi

)

,

where Ei and Hi are stated in (2.1) and (2.2), respectively.

Let f(x, y) ∈ C1(Ω). We define F (x, y) = f(x, y) on Ω, and then we will define F (x, y) on each Ei and

Hi such that F (x, y) ∈ lip1 (R2) and (3.2) holds.

4.1 Continuous extension on trapezoids with a curved side

First we continuously extend f from the domain Ω to each trapezoid Ei.

For i = 1, 2, 3, 4, we define Pi(x, y) on Ei as follows.

P1(x, y) = f(x, g(x))
y

g(x)
, (x, y) ∈ E1,

P2(x, y) = f(h(y), y)
1 − x

1 − h(y)
, (x, y) ∈ E2,

P3(x, y) = f(x, g∗(x))
1 − y

1 − g∗(x)
, (x, y) ∈ E3,

P4(x, y) = f(h∗(y), y)
x

h∗(y)
, (x, y) ∈ E4. (4.1)

Lemma 4.1. Let f ∈ C1(Ω) and

F (x, y) =







f(x, y), (x, y) ∈ Ω,

Pi(x, y), (x, y) ∈ Ei, i = 1, 2, 3, 4.
(4.2)

Then

F (x, y) ∈ lip 1 on Ω
⋃

(

4
⋃

i=1

Ei

)

and F (x, y) = 0 on ∂T
⋂

(

4
⋃

i=1

Ei

)

.

Proof. For (x, y) ∈ Ω
⋂

E1, we have y = g(x). So, by (4.1) and (4.2), we get

F (x, y) = P1(x, y) = f(x, g(x)) = f(x, y), (x, y) ∈ (Ω
⋂

E1).

From this, we know that F (x, y) is well defined on Ω
⋃

E1 and F ∈ C(Ω
⋃

E1).
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Since F (x, y) = f(x, y) ((x, y) ∈ Ω) and f ∈ C1(Ω), we have F ∈ lip1(Ω). Since f ∈ C1(Ω
⋂

E1), g ∈ C1,

and g(x) > 0 (x1 ≤ x ≤ x2), by (4.1), we have P1 ∈ lip1(E1). Again since F ∈ C(Ω
⋃

E1), by (4.2), we finally

have F ∈ lip1(Ω
⋃

E1). Similarly, we can prove that F ∈ lip1(Ω
⋃

Ei) for each i.

Note that ∂T
⋂

E1 = {(x, y), x1 ≤ x ≤ x2, y = 0}. When (x, y) ∈ ∂T
⋂

E1, we have y = 0, so

P1(x, y) = 0. By (4.2), we have F (x, y) = 0, (x, y) ∈ ∂T
⋂

E1. Similarly, for each i, F (x, y) = 0 on ∂T
⋂

Ei.

Lemma 4.1 is proved. �

4.2 Continuous extension to rectangles

Now we continuously extend F from Ω
⋃

(
4
⋃

i=1

Ei) to T .

For each i = 1, 2, 3, 4, we define Qi(x, y) on Hi as follows:

Q1(x, y) =
f(x1, y1)

x1y1
xy, (x, y) ∈ H1,

Q2(x, y) =
f(x2, y2)

(1 − x2)y2
(1 − x)y, (x, y) ∈ H2,

Q3(x, y) =
f(x3, y3)

(1 − x3)(1 − y3)
(1 − x)(1 − y), (x, y) ∈ H3,

Q4(x, y) =
f(x4, y4)

x4(1 − y4)
x(1 − y), (x, y) ∈ H4. (4.3)

Lemma 4.2. Let

F (x, y) =







































f(x, y), (x, y) ∈ Ω,

Pi(x, y), (x, y) ∈ Ei,

Qi(x, y), (x, y) ∈ Hi, i = 1, 2, 3, 4.

0, (x, y) ∈ R
2 \ T.

(4.4)

Then F (x, y) ∈ lip1 on R
2.

Proof. By (2.3), we have T =
4
⋃

i=1

Gi, where

G1 = H1

⋃

E1

⋃

E4

⋃

Ω, Gi = Hi

⋃

Ei−1

⋃

Ei

⋃

Ω (i = 2, 3, 4).
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We only need to prove F ∈ lip1 on each Gi. First we consider G1.

On E1

⋂

H1, we have x = x1 and g(x) = y1, so, by (4.1) and (4.3),

Q1(x, y) = f(x1, y1)
y

y1
= P1(x, y).

On E4

⋂

H1, we have y = y1 and h∗(y1) = x1, so

Q1(x, y) = f(x1, y1)
x

x1
= P4(x, y).

From this we see that F is well-defined on E1

⋃

H1

⋃

E4 and F ∈ C(E1

⋃

H1

⋃

E4). By Lemma 4.1, we have F ∈

lip1(E1

⋃

E4). Again by F ∈ lip1(H1), we get F ∈ lip1(E1

⋃

H1

⋃

E4). From this and F ∈ lip1(E1

⋃

Ω
⋃

E4)

(by Lemma 4.1), we have F ∈ lip1(G1). Similarly, we have F ∈ lip1(Gi) (i = 2, 3, 4). Therefore, we have

F ∈ lip1(T ).

We see easily that F = 0 on ∂T . Again noticing that F (x, y) = 0, (x, y) 6∈ T , we obtain F ∈ lip1(R2).

Lemma 4.2 is proved. �

Proof of Theorem 3.1. By Lemma 4.2, we know the extension F ∈ lip1(R2). From (4.1), (4.3), and

(2.3), we see that on T \ Ω, F (x, y) can be expressed locally in the form (3.3). Theorem 3.1 is proved. �

5 Wavelet approximation

Let Ω ⊂ T = [0, 1]2 and f ∈ C1(Ω) be stated in Section 2. We have extended f continuously to F ∈ lip 1(R2)

in Section 4 such that F (x, y) = f(x, y) ((x, y) ∈ Ω) and F (x, y) = 0 ((x, y) ∈ R
2 \ T ). The representations of

F on T \ Ω are stated in Section 4. Now we expand F into a kind of wavelet series.

Let ϕ ∈ C3(R) be a compactly supported scaling function of L2(R) and ψ be the corresponding wavelet.

Assume that the support of ϕ is a closed interval. From this, we know that ψ ∈ C3(R) and the support of ψ is

also a closed interval. Denote suppϕm,n = dm,n and suppψm,n = Dm,n. Let

ψ(1)(x, y) = ϕ(x)ψ(y), ψ(2)(x, y) = ψ(x)ϕ(y), ψ(3)(x, y) = ψ(x)ψ(y).
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So {ψ(1), ψ(2), ψ(3)} is an ordinary two-dimensional tensor product wavelet, and so {ψ
(1)
m,n, ψ

(2)
m,n, ψ

(3)
m,n} is a

wavelet basis of L2(R2). Moreover, {ψ(ν)}3
1 ⊂ C3(R2). We expand F into the wavelet series

F (x, y) =
3
∑

ν=1

∑

m,n

c(ν)
m,nψ

(ν)
m,n(x, y)

with convergence in L2(R2)−norm, where

c(ν)
m,n =

∫

R2

F (x, y)ψ
(ν)
m,n(x, y) dxdy =

∫

T

F (x, y)ψ
(ν)
m,n(x, y)dxdy, m ∈ Z, n ∈ Z

2

since F (x, y) vanishes outside T .

5.1 Decay of wavelet coefficients

If we do not extend continuously f and define simply

F (0)(x, y) =

{

f(x, y), (x, y) ∈ Ω,
0, (x, y) ∈ R

2 \ Ω.

Then, for wavelet coefficients, we have only the following estimate

∫

R2

F (0)(x, y)ψ
(1)
m,n(x, y)dxdy = 2m

∫

R2

F (0)(x, y)ϕ(2mx− n)ψ(2my − n)dxdy

= 2−m
∫

R2

F (0)(2−m(x+ n), 2−m(y + n))ϕ(x)ψ(y)dxdy

= O(2−m).

Proof of Theorem 3.2. If we continuously extend f ∈ C1(Ω) to F ∈ lip 1(R2) as in Section 4, then,

since F (x, y) ∈ lip 1(R2) and {ψ(ν)}3
1 ⊂ C3, by Proposition 2.2 (a), we know that for ν = 1, 2, 3, wavelet

coefficients have estimates

c(ν)
m,n =

∫

R2

F (x, y)ψ
(ν)
m,n(x, y)dxdy = O(2−2m). (5.1)

We get Theorem 3.2 (i).

By (2.3), we know that

R
2 = Ω

⋃

(

4
⋃

i=1

Ei

)

⋃

(

4
⋃

i=1

Hi

)

⋃

(R2 \ T ).
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From the construction of F (x, y), we know that F (x, y) possesses the different smoothness in the different do-

mains: F ∈ C1(Ω) and F ∈ lip 1 on each Ei. For any l ∈ Z+, F ∈ Cl on R
2 \ T and each Hi. From this, using

proposition 2.2 (b), we have Theorem 3.2 (ii). �

5.2 Sparseness of wavelet coefficients

In construction of F , we use polynomials as the tool of construction. It is well known that an orthogonal wavelet

is orthonormal to polynomials of lower degree. This enables wavelet coefficients {c
(ν)
m,n} to be sparse.

Proof of Theorem 3.3. By (2.3), we know that T = Ω
⋃

(
4
⋃

i=1

Ei)
⋃

(
4
⋃

i=1

Hi). For m ∈ Z, n = (n1, n2) ∈

Z
2, and ν = 1, 2, 3, we have

c
(ν)
m,n =

∫

Ω

F (x, y)ψ
(ν)
m,n(x, y) dxdy

+
4
∑

i=1

∫

Ei

F (x, y)ψ
(ν)
m,n(x, y)dxdy +

4
∑

i=1

∫

Hi

F (x, y)ψ
(ν)
m,n(x, y) dxdy

= I
(ν)
1 + I

(ν)
2 + I

(ν)
3 = I

(ν)
1 +

4
∑

i=1

I
(ν)
2,i +

4
∑

i=1

I
(ν)
3,i .

(5.2)

Now we discuss c
(1)
m,n. By (5.2), c

(1)
m,n = I

(1)
1 + I

(1)
2 + I

(1)
3 .

(i) We first consider I
(1)
2 =

4
∑

i=1

I
(1)
2,i .

By (5.2) and (2.5), we have

I
(1)
2,i =

∫

Ei

F (x, y)ψ
(1)
m,n(x, y) dxdy =

∫

Ei

F (x, y)ϕm,n1
(x)ψm,n2

(y) dxdy.

For i = 1, since E1 = { (x, y) : x1 ≤ x ≤ x2, 0 ≤ y ≤ g(x) } and (4.1), and (4.4),

F (x, y) = P1(x, y) = f(x, g(x))
y

g(x)
, (x, y) ∈ E1,

we get

I
(1)
2,1 =

x2
∫

x1

f(x, g(x))
ϕm,n1

(x)

g(x)







g(x)
∫

0

yψm,n2
(y) dy






dx. (5.3)
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By the assumption,

max
x1≤x≤x2

g(x) = M and min
x1≤x≤x2

g(x) = τ, and 0 < τ ≤M < 1,

When Dm, n2
= suppψm,n2

⊂ R \ [0,M ], we know that in (5.3), the integral

g(x)
∫

0

yψm,n2
(y)d y = 0 (x1 ≤ x ≤ x2).

When Dm,n2
⊂ [0, τ ]. The integral range [0, g(x)] ⊃ [0, τ ] ⊃ Dm,n2

. So ψm,n(y) = 0 if y ≤ 0 or y ≥ g(x).

Furthermore,
g(x)
∫

0

yψm,n2
(y) dy =

∫

R

yψm,n2
(y) dy.

We compute the integral

∫

R

y ψm,n2
(y)d y = 2

m
2

∫

R

y ψ(2my − n2) dy = 2−
3m
2

∫

R

(y + n2)ψ(y) dy.

Since ψ ∈ C3(R), by Proposition 2.1, we have
∫

R

yk ψ(y) dy = 0 (k = 0, 1). So
g(x)
∫

0

y ψm,n2
(y) dy=0.

Hence, by (5.3), we know that if Dm,n2

⋂

[0,M ] = ∅ or Dm,n2
⊂ [0, τ ], we have I

(1)
2,1 = 0. Again, since

Dm,n2
is an interval, we can conclude that

I
(1)
2,1 = 0 if Dm,n2

⋂

{[τ, M ], 0} = ∅. (5.4)

Similarly, we have

I
(1)
2,3 = 0 if Dm,n2

⋂

{[τ∗, M∗], 1} = ∅. (5.5)

Noticing that the representations (2.2) of E2, by (4.1) and (4.4), we have

I
(1)
2,2 =

y3
∫

y2

f(h(y), y)
1

1 − h(y)
ψm,n2

(y)







1
∫

h(y)

(1 − x)ϕm,n1
(x)dx






dy,

If Dm,n2
= suppψm,n2

⊂ R \ [y2, y3], then I
(1)
2,2 = 0. By the assumption,

max
y2≤y≤y3

h(y) = N, min
y2≤y≤y3

h(y) = λ > 0.

14



Hence, we have

I
(1)
2,2 = 0 if Dm,n2

⋂

[y2, y3] = ∅. (5.6)

Similarly, we have

I
(1)
2,4 = 0 if Dm,n2

⋂

[y1, y4] = ∅. (5.7)

(ii) From (5.2), we know that

I
(1)
3 =

4
∑

i=1

I
(1)
3,i , where I

(1)
3,i =

∫

Hi

F (x, y)ϕm,n1
(x)ψm,n2

(y) dxdy,

where the representation of each square Hi is stated in (2.1). By (4.3) and (4.4), we have

F (x, y) =

1
∑

k, j=0

c
(i)
kj x

k yj , (x, y) ∈ Hi,

where c
(i)
kj are constants, so we have

I
(1)
3,1 =

1
∑

k, j=0

c
(1)
kj

x1
∫

0

xk ϕm,n1
(x) dx

y1
∫

0

yj ψm,n2
(y) dy.

If Dm,n2
⊂ [0, y1], then we have

y1
∫

0

yj ψm,n2
(y) dy =

∫

R

yj ψm,n2
(y) dy. By Proposition 2.1, we can conclude

that
y1
∫

0

yj ψm,n2
(y)dy = 0, so I

(1)
3,1 = 0. If Dm,n2

⋂

[0, y1] = ∅, then we have I
(1)
3,1 = 0. Noticing that Dm,n2

is an

interval, we obtain that

I
(1)
3,1 = 0 if Dm,n2

⋂

({0}, {y1}) = ∅. (5.8)

Similarly, we have

I
(1)
3,2 = 0 if Dm,n2

⋂

({0}, {y2}) = ∅,

I
(1)
3,3 = 0 if Dm,n2

⋂

({y3}, {1}) = ∅,

I
(1)
3,4 = 0 if Dm,n2

⋂

({y4}, {1}) = ∅. (5.9)

(iii) We discuss I
(1)
1 .

By (5.2), we have

I
(1)
1 =

∫

Ω

F (x, y)ϕm,n1
(x, y)ψm,n2

(x, y) dxdy.
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So we deduce that

I
(1)
1 = 0 if (dm,n1

×Dm,n2
)
⋂

Ω = ∅. (5.10)

Below combining (5.4)-(5.10), we give a condition for which c
(1)
m,n = 0.

From the partition given in Section 2, we know that 0 < τ ≤ y1, y2 ≤M and τ∗ ≤ y3, y4 ≤M∗. So

[τ,M ]
⋃

[τ∗,M∗]
⋃

[y2, y3]
⋃

[y1, y4] = [τ,M∗].

From this and (5.4)-(5.7), we know that if Dm,n2

⋂

([τ,M∗]
⋃

{0}
⋃

{1}) = ∅, then I
(1)
2 = 0. By (5.8) and (5.9),

if Dm,n

⋂

{0, 1, y1, y2, y3, y4} = ∅, then we have I
(1)
3 = 0.

Since {yi}4
1 ⊂ [τ,M∗], it follows that

I
(1)
2 = 0 and I

(1)
3 = 0 if Dm,n2

⋂

([τ,M∗]
⋃

{0}
⋃

{1}) = ∅. (5.11)

From the partition given in Section 2, we know that Ω ⊂ [τ,M∗] × [λ∗, N ]. Hence, by (5.10), we obtain that

I
(1)
1 = 0 if dm,n1

⋂

[λ∗, N ] = ∅ or Dm,n2

⋂

[τ, M∗] = ∅.

Again by (5.11), we finally deduce that if m ∈ Z, n ∈ Z
2 such that

Dm,n2

⋂

([τ,M∗]
⋃

{0}
⋃

{1}) = ∅ or dm,n1

⋂

[λ∗, N ] = ∅,

we know that I
(1)
1 = 0, I

(1)
2 = 0, and I

(1)
3 = 0 simultaneously. So we have

c(1)m,n = I
(1)
1 + I

(1)
2 + I

(1)
3 = 0.

Theorem 3.3 (i) holds. The proof of Theorem 3.3 (ii) is similar.

Finally, we consider c
(3)
m,n = I

(3)
1 + I

(3)
2 + I

(3)
3 .

At first we discuss I
(3)
2 =

4
∑

i=1

I
(3)
2,i . By (5.2),

I
(3)
2,1 =

x2
∫

x1

f(x, g(x))
ψm,n1

(x)

g(x)







g(x)
∫

0

y ψm,n2
(y) dy






dx. (5.12)
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Similar to the argument of (5.4), we have

I
(3)
2,1 = 0 if Dm,n2

⋂

([τ,M ]
⋃

{0}) = ∅.

On the other hand, by (5.12), we have also I
(3)
2,1 = 0 if Dm,n1

⋂

[x1, x2] = ∅. So

I
(3)
2,1 = 0 if Dm,n1

⋂

[x1, x2] = ∅ or Dm,n2

⋂

([τ,M ]
⋃

{0}) = ∅. (5.13)

Similarly, we have

I
(3)
2,3 = 0 if Dm,n1

⋂

[x4, x3] = ∅ or Dm,n2

⋂

([τ∗, M∗]
⋃

{1}) = ∅. (5.14)

I
(3)
2,2 = 0 if Dm,n1

⋂

([λ, N ]
⋃

{1}) = ∅ or Dm,n2

⋂

[y2, y3] = ∅. (5.15)

I
(3)
2,4 = 0 if Dm,n1

⋂

([λ∗, N∗]
⋃

{0}) = ∅ or Dm,n2

⋂

[y1, y4] = ∅. (5.16)

Summarizing these results (5.13)-(5.16), noticing that I
(3)
2 =

4
∑

i=1

I
(3)
2,i , by

[τ, M ]
⋃

[τ∗, M∗]
⋃

[y2, y3]
⋃

[y1, y4] = [τ, M∗]

[λ, N ]
⋃

[λ∗, N∗]
⋃

[x1, x2]
⋃

[x4, x3] = [λ∗, N ],

we have

I
(3)
2 = 0 if Dm,n1

⋂

([λ∗, N ]
⋃

{0}
⋃

{1}) = ∅ or Dm,n2

⋂

([τ, M∗]
⋃

{0}
⋃

{1}) = ∅. (5.17)

Similarly, we have

I
(3)
3 = 0 if Dm,n1

⋂

{0, 1, x1, x2, x3, x4} = ∅ or Dm,n2

⋂

{0, 1, y1, y2, y3, y4} = ∅. (5.18)

I
(3)
1 = 0 if Dm,n1

⋂

[λ∗, N ] = ∅ or Dm,n2

⋂

[τ, M∗] = ∅. (5.19)

Noticing that c
(3)
m,n = I

(3)
1 + I

(3)
2 + I

(3)
3 , combining (5.17)-(5.19), we obtain that for n = (n1, n2),

c(3)m,n = 0 if Dm,n1

⋂

([λ∗, N ]
⋃

{0}
⋃

{1}) = ∅ or Dm,n2

⋂

([τ, M∗]
⋃

{0}
⋃

{1}) = ∅
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since each xi ∈ [λ∗, N ] and each yi ∈ [τ, M∗]. Theorem 3.3 (iii) holds. Theorem 3.3 is proved. �

From (5.2), we see that only if each I
(ν)
1 , I

(ν)
2,i , and I

(ν)
3,i vanishes ( i=1,2,3,4 ), we have c

(ν)
m,n = 0. In

reality, more wavelet coefficients are very small which are also regarded as zero in application. Since wavelet

coefficients decay fast and wavelet coefficients are sparse after the image is continuously extended, the wavelet

approximation can compress data very well.

6 Image Representation

In this section, we will examine the approximation performance of our extension algorithm. The quality of

approximation in this paper is measured by PSNR (or peak signal-to-noise ratio)

PSNR := 20 × log10

(

max
x∈Ω

|f(x)|/RMSE

)

,

where RMSE is the absolute ℓ2 error between the original and the approximation divided by the square root of

the total number of pixels in the original image and Ω is the support of the original image. The unit of PSNR

is decibel (dB).

We will use our algorithm to approximate the face part of the Barbara image as shown in Figure 2(a).

This is an image on a general domain. We denote this general domain by Ω. The number of the samples of this

image on Ω is 8159. We extend this image continuously and then approximated the extended image by Coiflet

with two vanishing moments. We will compare our algorithm with 2D Coiflet and tensor product of 1D Coiflet.

Figure 2 shows our extension process. Figure 3 shows the quality of approximations of Barbara face image using

0-1000 wavelet coefficients of 2D Coiflet, tensor product of 1D coiflet and our algorithm, respectively. Figure 4

shows reconstructed images on Ω using top 400 wavelet coefficients of 2D Coiflet, tensor product of 1D coiflet

and our algorithm, respectively. We can see that our algorithm can compress the image on a general domain

much better that 2D Coiflet and tensor product of 1D Coiflet.
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(a) (b)

(c) (d)

Fig.2. Extension of the Barbara face image
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Fig.3. PSNR values of the Barbara face image approximated by 0-1000 wavelet coefficients of 2D Coiflet,
tensor product of 1D Coiflet and our algorithm, respectively
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Fig.4. Reconstructed images on Ω using top 400 wavelet coefficients
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