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Motivations

Consider a bounded domain of general (may be quite complicated)
shape Ω ⊂ Rd .

Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to
Γ = ∂Ω.

Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ fast decaying expansion
coefficients relative to a meaningful basis.

Want to extract geometric information about the domain Ω =⇒
shape clustering/classification.
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Motivations . . . Data Analysis on a Complicated Domain
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Motivations . . . Clustering Complicated Objects
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Eigenfunctions of Laplacian

Our previous attempt was to extend the object to the outside
smoothly and then bound it nicely with a rectangular box followed by
the ordinary Fourier analysis.

Why not analyze (and synthesize) the object using genuine basis
functions tailored to the domain?

After all, sines (and cosines) are the eigenfunctions of the Laplacian
on the rectangular domain with Dirichlet (and Neumann) boundary
condition.

Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.
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Eigenfunctions of Laplacian . . .

Consider an operator L = −∆ in L2(Ω) with appropriate boundary
condition.

Analysis of L is difficult due to unboundedness, etc.

Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.

Thus L−1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.

L has a complete orthonormal basis of L2(Ω), and this allows us to
do eigenfunction expansion in L2(Ω).
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Eigenfunctions of Laplacian . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.

Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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Integral Operators Commuting with Laplacian

The key idea is to find an integral operator commuting with the
Laplacian without imposing the strict boundary condition a priori.

Then, we know that the eigenfunctions of the Laplacian is the same
as those of the integral operator, which is easier to deal with, due to
the following

Theorem (G. Frobenius 1878?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ = λϕ and Kϕ = µϕ.
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Integral Operators Commuting with Laplacian . . .

Let’s replace the Green’s function G (x, y) by the fundamental
solution of the Laplacian:

K (x, y) =


−1

2 |x − y | if d = 1,

− 1
2π log |x− y| if d = 2,

|x−y|2−d

(d−2)ωd
if d > 2.

The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Auburn Univ. @ Montgomery 14 / 72



Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x, y):

Kf (x)
∆
=

∫
Ω

K (x, y)f (y) dy, f ∈ L2(Ω).

Theorem (NS 2005)

The integral operator K commutes with the Laplacian L = −∆ with the
following non-local boundary condition:∫

Γ
K (x, y)

∂ϕ

∂νy
(y) ds(y) = −1

2
ϕ(x) + pv

∫
Γ

∂K (x, y)

∂νy
ϕ(y) ds(y),

for all x ∈ Γ, where ϕ is an eigenfunction common for both operators.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2005)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x, y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x, y) ∼
∞∑
j=1

µjϕj(x)ϕj(y),

and {ϕj}j forms an orthonormal basis of L2(Ω).
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1D Example

Consider the unit interval Ω = (0, 1).

Then, our integral operator K with the kernel K (x , y) = −|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ = λϕ, x ∈ (0, 1);

ϕ(0) + ϕ(1) = −ϕ′(0) = ϕ′(1).

The kernel K (x, y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).

In this case, we have the following explicit solution.
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1D Example . . .

λ0 ≈ −5.756915, which is a solution of tanh
√
−λ0
2 = 2√

−λ0
,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m − 1)2π2, m = 1, 2, . . .,

ϕ2m−1(x) =
√

2 cos(2m − 1)πx ;

λ2m, m = 1, 2, . . ., which are solutions of tan
√

λ2m
2 = − 2√

λ2m
,

ϕ2m(x) = A2m cos
√

λ2m

(
x − 1

2

)
,

where Ak , k = 0, 1, . . . are normalization constants.
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First 5 Basis Functions
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1D Example: Comparison

The Laplacian eigenfunctions with the Dirichlet boundary condition:
−ϕ′′ = λϕ, ϕ(0) = ϕ(1) = 0, are sines. The Green’s function in this
case is:

GD(x , y) = min(x , y)− xy .

Those with the Neumann boundary condition, i.e., ϕ′(0) = ϕ′(1) = 0,
are cosines. The Green’s function is:

GN(x , y) = −max(x , y) +
1

2
(x2 + y2) +

1

3
.

Remark: Gridpoint ⇔ DST-I/DCT-I;
Midpoint⇔ DST-II/DCT-II.
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2D Example

Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x, y) = − 1

2π log |x− y| gives rise to:

−∆ϕ = λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
Γ

=
∂ϕ

∂r

∣∣∣
Γ

= −∂Hϕ

∂θ

∣∣∣
Γ
,

where H is the Hilbert transform for the circle, i.e.,

Hf (θ)
∆
=

1

2π
pv

∫ π

−π
f (η) cot

(
θ − η

2

)
dη θ ∈ [−π, π].

Let βk,` is the `th zero of the Bessel function of order k,
Jk(βk,`) = 0. Then,

ϕm,n(r , θ) =

{
Jm(βm−1,n r)

(cos
sin

)
(mθ) if m = 1, 2, . . . , n = 1, 2, . . .,

J0(β0,n r) if m = 0, n = 1, 2, . . .,

λm,n =

{
β2

m−1,n, if m = 1, . . . , n = 1, 2, . . .,

β2
0,n if m = 0, n = 1, 2, . . ..
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First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace
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3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x, y) = 1

4π|x−y| .

Top 9 eigenfunctions cut at the equator viewed from the south:
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Discretization of the Problem

Assume that the whole dataset consists of a collection of data
sampled on a regular grid, and that each sampling cell is a box of size∏d

i=1 ∆xi .

Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are{xi}N

i=1.

Under these assumptions, we can approximate the integral eigenvalue
problem Kϕ = µϕ with a simple quadrature rule with node-weight
pairs (xj ,wj) as follows.

N∑
j=1

wjK (xi , xj)ϕ(xj) = µϕ(xi ), i = 1, . . . ,N, wj =
d∏

i=1

∆xi .

Let Ki ,j
∆
= wjK (xi , xj), ϕi

∆
= ϕ(xi ), and ϕ

∆
= (ϕ1, . . . , ϕN)T ∈ RN .

Then, the above equation can be written in a matrix-vector format
as: Kϕ = µϕ, where K = (Kij) ∈ RN×N . Under our assumptions,
the weight wj does not depend on j , which makes K symmetric.
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Image Approximation; Comparison with Wavelets

(a) What data?

(b) χJ · Barbara
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Image Approximation; Comparison with Wavelets
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First 25 Basis Functions
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Next 25 Basis Functions
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Reconstruction with Top 100 Coefficients

(a) Reconstruction

(b) Error
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Reconstruction with Top 100 Coefficients

(a) Reconstruction (b) Error
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Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Comparison of Coefficient Decay
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A Real Challenge: Kernel matrix is of 387924× 387924.
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First 25 Basis Functions via the FMM-based algorithm
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Conjecture on the Coefficient Decay Rate

Conjecture (NS 2007)

Let Ω be a C 2-domain of general shape and let f ∈ C
(
Ω

)
with

∂f

∂xj
∈ BV

(
Ω

)
for j = 1, . . . , d. Let {ck = 〈f , φk〉}k∈N be the expansion

coefficients of f with respect to our Laplacian eigenbasis on this domain.
Then, |ck | decays with rate O(k−α) with 1 < α < 2 as k →∞. Thus, the
approximation error using the first m terms measured in the L2-norm, i.e.,
‖f −

∑m
k=1 ckφk‖L2(Ω) should have a decay rate of O(m−α+0.5) as

m →∞.
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Comparison with PCA

Consider a stochastic process living on a domain Ω.

PCA/Karhunen-Loève Transform is often used.

PCA/KLT incorporate geometric information of the measurement (or
pixel) location through the data correlation, i.e., implicitly.

Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel ϕ(x, y).
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Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich

72 training dataset; 71 test dataset

Left & right eye regions
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Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Comparison with PCA: Basis Vectors
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Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Comparison with PCA: Kernel Matrix

(a) Covariance (b) Harmonic kernel
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Comparison with PCA: Energy Distribution over
Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small
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Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Clustering Mouse Retinal Ganglion Cells

Objective: To understand how the structural/geometric properties of
mouse retinal ganglion cells (RGCs) relate to the cell types and their
functionality

Why mouse? =⇒ great possibilities for genetic manipulation

Data: 3D images of dendrites/axons of RGCs

State of the Art: Process each image via specialized software to
extract geometric/morphological parameters (totally 14 such
parameters) followed by a conventional clustering algorithm

These parameters include: somal size; dendric field size; total dendrite
length; branch order; mean internal branch length; branch angle;
mean terminal branch length, etc. =⇒ takes half a day per cell with a
lot of human interactions!
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Clustering Mouse Retinal Ganglion Cells . . . 3D Data
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Preliminary Study on Mouse Retinal Ganglion Cells

Use 2D plane projection data instead of full 3D

Compute the smallest k Laplacian eigenvalues using our method (i.e.,
the largest k eigenvalues of K) for each image

Construct a feature vector per image

Possible feature vectors reflecting geometric information:
F1 = (λ1, . . . , λk)T ; F2 = (µ1, . . . , µk)T ; F3 = (λ1/λ2, . . . , λ1/λk)T ;
F4 = (µ1/µ2, . . . , µ1/µk)T .

Do visualization and clustering
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Preliminary Study on Mouse RGCs . . .

(a) Cluster 1 (b) Cluster 6
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Crossplot of the First Two Laplacian Eigenvalues

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Auburn Univ. @ Montgomery 57 / 72



Clustering Results by the Manually Intensive Method
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Plot of (λ2, λ3, λ4) of All the RGCs
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Laplacian Eigenfunctions on a Mouse RGC
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Challenges of Mouse Retinal Ganglion Cells

Interpretation of our eigenvalues are not yet fully understood
compared to the usual Dirichlet-Laplacian case that have been well
studied: the Payne-Pólya-Weinberger inequalities; the Faber-Krahn
inequalities; the Ashbaugh-Benguria results, etc. For Ω ∈ Rd ,

λ
(D)
1 (Ω) ≥

(
|Bd

1 |
|Ω|

)2

λ
(D)
1 (Bd

1 ),
λ

(D)
k+1(Ω)

λ
(D)
k (Ω)

≤
λ

(D)
2 (Bd

1 )

λ
(D)
1 (Bd

1 )
, k = 1, 2, 3.

Note the related work on “Shape DNA” by Reuter et al. (2005), and
classification of tree leaves by Khabou et al. (2007).
Original 3D data should be used instead of projected 2D data.
Heat propagation on the dendrites may give us interesting and useful
information; after all the dendrites are network to disseminate
information via chemical reaction-diffusion mechanism.
Construct actual graphs based on the connectivity and analyze them
directly via spectral graph theory and diffusion maps =⇒ the Cheeger
constant of a graph is related to the time to transmit “information”
among its nodes! (T. Sunada)
Automatic segmentation of the dendrite patterns is needed.saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Auburn Univ. @ Montgomery 61 / 72
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A Possible Fast Algorithm for Computing ϕj ’s

Observation: our kernel function K (x, y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory.

Idea: Accelerate the matrix-vector product Kϕ using the Fast
Multipole Method (FMM).

Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N2), but
can achieve O(N log N) via the randomized SVD algorithm of
Martinsson-Rokhlin-Tygert.)

Construct O(N) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS”
algorithm of Chandrasekaran et al. (2006)).

Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.
(Computational cost: O(N) for each eigenvalue/eigenvector).
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Tree-Structured Matrix via FMM

(a) Hierarchical indexing scheme (b) Tree-Structured Matrix
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First 25 Basis Functions via the FMM-based algorithm
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Splitting into Subproblems for Faster Computation

(a) Whole islands (b) Separated islands
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Eigenfunctions for Separated Islands
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Conclusions

Allow object-oriented image analysis & synthesis
Can get fast-decaying expansion coefficients
Can decouple geometry/domain information and statistics of data
Can extract geometric information of a domain through the
eigenvalues
∃ A variety of applications: interpolation, extrapolation, local feature
computation, solving heat equations on complicated domains . . .
Fast algorithms are the key for higher dimensions/large domains
Connection to lots of interesting mathematics: spectral geometry,
spectral graph theory, isoperimetric inequalities, Toeplitz operators,
PDEs, potential theory, almost-periodic functions, . . .
Many things to be done:

Synthesize the Dirichlet-Laplacian eigenvalues/eigenfunctions from our
eigenvalues/eigenfunctions
How about higher order, i.e., polyharmonic ?
Features derived from heat kernels ?
Improve our fast algorithm
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