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Signal Ensemble Classification Problems

We want to classify ensembles of signals, not individual signals.

Examples include: Underwater object classification using sonar
waveforms; Classification of video clips, . . .

(a) Sonar Waveforms (b) Video Clips of Digit Speaking Lips

Let X :=
⋃M

i=1 X i ⊂ Rd be a collection of M training ensembles.
Each X i consists of mi individual signals, i.e., X i := {xi

1, . . . , x
i
mi
},

and has a unique label among C possible labels. Let m? :=
∑M

i=1 mi .

Let Y :=
⋃N

j=1 Y j ⊂ Rd be a collection of test (i.e., unlabeled)

ensembles where Y j := {yj
1, · · · , y

j
nj}. Our goal is to classify each Y j

to one of the possible C classes given the training ensembles X . This
task is different from classifying each signal yj

k ∈ Y individually.
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Our Proposed Algorithm

Training Stage (X is given)
1 Preset a large enough initial dimension 1 ≤ s0 � min(d ,m?) .
2 Construct a low-dimensional embedding map Ψ : Rd → Rs0 .
3 For i = 1 : M, construct a signature P i using Ψ(X i ) .
4 Determine the appropriate dimension 1 ≤ s ≤ s0 and re-adjust each

signature P i in Step 1.3.

Test Stage (Now Y is fed)
1 Extend the learned map Ψ to the test ensembles Y to embed them in

Rs .
2 Construct a signature Q j for each Y j , j = 1 : N .
3 For j = 1 : N, measure the distance d(P i ,Q j), and find

ij := arg min1≤i≤M d(P i ,Q j) . Assign the label of X ij to Y j . In other
words, apply 1-nearest neighbor classifier with the base distance d(·, ·)
in the reduced embedding space Rs .
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Signatures in the Reduced Embedding Space
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Dimensionality Reduction/Low-Dimensional Embedding

Many techniques, proposals, algorithms exist.

In this talk, we only deal with

Classical Multidimensional Scaling (CMDS) ≡ PCA
Laplacian Eigenmap
Diffusion Map

CMDS/PCA is a linear technique whereas LE/DM are nonlinear.

Notation

Let X be the training data matrix, X := (x1, . . . , xm?) ∈ Rd×m? .

Let X̃ := X (I − 11T/m?), i.e., the centered data matrix (the mean of
the column vectors x̄ is subtracted from each column vector).

Let Ψ : Rd → Rs be a low-dimensional embedding map.

Let Ψ(X ) = (Ψ(x1), . . . ,Ψ(xm?)) ∈ Rs×m?
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Classical (Multidimensional) Scaling and PCA

Define the similarity between xi and xj by the centered correlation

α(xi , xj) := (xi − x̄)T (xj − x̄).

Then, the classical scaling seeks the low-dimensional representation
that preserves the pairwise similarities in X as well as possible by
minimizing

JCS(Ψ) :=
∑
i ,j

(α(xi , xj)−α(Ψ(xi ),Ψ(xj)))2 =
∥∥∥X̃T X̃ −Ψ(X̃ )T Ψ(X̃ )

∥∥∥2

F
.

We can find this map using the SVD of X̃ = UΣV T as

Ψ(X̃ ) = UT
s X̃ = ΣsV

T
s ,

which is exactly the same as using the first s components of PCA!

A drawback: too global and not incorporating local geometry
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Laplacian Eigenmaps (Belkin & Niyogi, 2001–3)

Incorporating local geometric information in Rd for the embedding

Define the proximity weight w(xi , xj), e.g., wε(xi , xj) := e−‖xi−xj‖2/ε2
.

Now, seek Ψ that minimizes the following

JLap(Ψ) :=
∑
i ,j

‖Ψ(xi )−Ψ(xj)‖2wε(xi , xj).

This leads to the following optimization problem:

min
Ψ(X )∈Rs×m?

tr
(

Ψ(X )LΨ(X )T
)

subject to Ψ(X )DΨ(X )T = I ,

where the matrices are defined as

W := (wε(xi , xj)) , D := diag

∑
j

wε(x1, xj), . . . ,
∑

j

wε(xm? , xj),

 .

The matrix L := D −W is called the (unnormalized) graph Laplacian.
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Laplacian Eigenmaps . . .

This leads to the following generalized eigenvalue problem:

LΨ(X )T = DΨ(X )T Λ; L ∈ Rm?×m? , Λ ∈ Rs×s ,

m
LrwΨrw(X )T = Ψrw(X )T Λrw; Lrw := D−1L = I − D−1W .

Ψrw(X ) ∈ Rs×m? is the Laplacian Eigenmap of X .

Another possibility is:

LsymΨsym(X )T = Ψ(X )T
symΛsym; Lsym := D−

1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 .

Both Lrw and Lsym are called the normalized graph Laplacians (rw =
‘random walk’; sym = ‘symmetric’).

Ψrw(X ) = Ψsym(X )D−
1
2 , Λrw = Λsym.

Eigenvalues are sorted in increasing order; Lrw1 = 0.

A drawback: sensitive to sampling density on a manifold.
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Diffusion Maps (Coifman & Lafon 2004–6)

Focus on the normalized weighted adjacency matrix Arw := D−1W .

Interpret Arw as the transition matrix of a random walk on X or the
diffusion operator on X . At

rw = running the random walk t steps.

Perform density invariant normalization on W , i.e., W̃ := D−1WD−1

first. Then, do the row-stochastic normalization, i.e., Ãrw := D̃−1W̃
where D̃ is the degree matrix (diagonal) of W̃ .

Finally perform the eigenanalysis:

ÃrwΨDM(X )T = ΨDM(X )T ΛDM,

where the eigenvalues are sorted in decreasing order; Ãrw1 = 1.

Diffusion map is defined as:

Ψt
DM(X ) := Λt

DMΨDM(X ).

Relationship with the Laplacian eigenmap (if W̃ is used in Lrw):

Ψ1
DM(X ) = Ψrw(X ); ΛDM = I − Λrw.

saito@math.ucdavis.edu (UC Davis) Signal Ensemble Classification SERC2010 15 / 33



Remarks

Can use SVD or symmetric eigenvalue solver for computing these
embedding maps

Choosing a good scale parameter ε for both LE and DM is not easy
=⇒ ε = the mean of the k-nearest neighbor distances. But how to
choose k? =⇒ Cross validation, etc.

For DM, choosing t or when to stop the diffusion is another subtle
question, which is quite dependent on ε and the decay of the
eigenvalues.

Choosing an appropriate value of s is yet another problem =⇒
Elongated K -means algorithm:
G. Sanguinetti, J. Laidler, and N. D. Lawrence,
“Automatic determination of the number of clusters using spectral
algorithms,” Proc. 15th IEEE Workshop on Machine Learning for
Signal Processing, pp55–60, 2005.
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Extension of Maps for Test Data

For PCA, it is quite easy; simply the multiplication of UT
s to Y .

For LE/DM, it is more involved and the following geometric
harmonics multiscale extension algorithm is necessary:
S. Lafon, Y. Keller, R. R. Coifman, “Data fusion and multicue data
matching by diffusion maps,” IEEE Trans. Pattern Anal. Machine
Intell., vol.28, no.11, pp.1784–1797, 2006.
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Earth Mover’s Distance (EMD)

Originated from the Monge-Kantorovich optimal transport problem

Used successfully in image retrieval from large databases, image
registration and warping, etc.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The Earth Mover’s
Distance as a metric for image retrieval,” Intern. J. Comput. Vision,
vol.40, no.2, pp.99–121, 2000.

S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent,
“Optimal mass transport for registration and warping,” Intern. J.
Comput. Vision, vol.60, no.3, pp.225–240, 2004.

More robust (for our classification problems) than the Hausdorff
distance (HD) between two ensembles Ψ(X i ), Ψ(Y j) in the reduced
embedding space, which was used by Lafon-Keller-Coifman.

dH(Ψ(X i ),Ψ(Y j)) := max

(
max

y∈Ψ(Y j )
min

x∈Ψ(X i )
‖x− y‖, max

x∈Ψ(X i )
min

y∈Ψ(Y j )
‖x− y‖

)
.
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Earth Mover’s Distance (EMD) . . .

Let P = {(x1, p1), . . . , (xm, pm)} and Q = {(y1, q1), . . . , (yn, qn)} be two
signatures characterizing two classes or objects of interest. xi , yj ∈ Rs are
cluster centers and pi , qj are populations (or mass) of the corresponding
clusters. Then, the Earth Mover’s Distance (EMD) is defined by

EMD(P,Q) :=

∑m
i=1

∑n
j=1 fijcij∑m

i=1

∑n
j=1 fij

,

where

cij is the cost of moving one unit mass from the ith cluster in P to
the jth cluster in Q. A typical example: cij = 1

2‖xi − yj‖2.

fij ≥ 0: the optimal flow between two distributions that minimizes the
total cost

∑m
i=1

∑n
j=1 fijcij , subject to the following constraints:∑m

i=1 fij ≤ qj , j = 1, . . . , n;∑n
j=1 fij ≤ pi , i = 1, . . . ,m;∑m
i=1

∑n
j=1 fij = min{

∑m
i=1 pi ,

∑n
j=1 qj}.
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Signatures in the Reduced Embedding Space (again)
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Underwater Object Classification

Sonar waveforms in the acoustic scattering experiments were collected
in a fresh water pond at Naval Surface Warfare Center (NSWC),
Panama City, FL.
Three experiments on different days were performed. Each time,
there were two objects in the pond.

1 C1: Buried Al cylinder; S1: Fe Sphere filled with air
2 C2: Proud Al cylinder; S2: Fe Sphere filled with silicone oil
3 C3: Shorter proud Al cylinder; S3 = S2

Source: frequency 20kHz; sinusoidal shape; 0.2msec duration
Received waveforms were sampled at rate 500kHz

(a) Buried (b) Proud (c) Short Proud
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Underwater Object Classification . . .

Our objective is to classify objects according to their material
compositions independent of shapes, sizes, buried or proud.
Each data point is in R17×600; The number of data points in C1, C2,
C3, S1, S2, S3 are 8, 8, 16, 32, 32, 32, respectively.
Pick one of these 6 ensembles as a test ensemble Y = Y 1 whereas
the other 5 ensembles are used as training ensembles X =

⋃5
i=1 X i .

Then do the classification of Y .
Repeat this process 5 more times.

(a) C3 waveforms (a) S3 waveforms
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Underwater Object Classification: Results

Object C1 C2 C3 S1 S2 S3

True Label Al Al Al IA IS IS

EMD Al Al Al IS IS IA
PCA

HD Al Al Al IS IS IA

EMD Al Al Al Al IS IS
LErw

HD Al Al Al Al Al IS

EMD Al Al Al Al IS IS
LEsym

HD Al Al Al Al IS IS

EMD Al Al Al Al IS IS
DM

HD Al Al Al Al IS IS

Al = Aluminum; IA = Iron-Air; IS = Iron-Silicone Oil
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Underwater Object Classification: EMD vs HD

EMD and HD values in the LErw coordinates between S2 and all other
objects

Object C1 C2 C3 S1 S3

EMD 0.0070 0.0064 0.0057 0.0085 0.0053
HD 0.1917 0.2374 0.1237 0.1500 0.1684
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Video Clip Classification: Lip Reading

Lips speaking five digits, ’one’, . . . , ’five’ were captured by a
camcorder with the rate 60 frames/second.

Each video frame is cropped to have 55× 70 pixels.

A single speaker spoke each digit 10 times (i.e., totally 50 video clips).

Each video clip consists of 30 ∼ 63 video frames.

Split the whole data randomly into the training and test ensembles as
X =

⋃25
i=1 X i , Y =

⋃25
j=1 Y j . Then, do the classification.

Repeat this process 99 times more.

Lip-Reading total recognition errors (averaged over 100 trials)

PCA PCA LErw LErw LEsym LEsym DM DM
EMD HD EMD HD EMD HD EMD HD

5.3% 9.4% 36.1% 36.1% 26.0% 27.6% 24.1% 25.2%
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Conclusions & Future Plan

The key for the signal ensemble classification was to use the
appropriate dimensionality reduction techniques with the robust
distance measure like EMD;

The best choice of the dimensionality reduction depends on the data;
this is particularly so for the real data.

Global (PCA) vs Local (LE/DM): Lip-reading video clips involve more
global trajectories while sonar waveforms involve more localized
clusters.

Robustness of EMD was important compared to HD.

Comparison with the other ideas of ours: node connectivity matching
that do not require the eigenvalue/eigenvector computations;

Comparison with explicit feature extraction techniques such as Local
Discriminant Basis
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Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/˜saito/lapeig/ contains

All the talk slides of the special session on “Kernel Methods in Data
Analysis, ” which Yosi and I organized at IEEE Workshop on Statistical
Signal Processing; and
My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”

The following article is available at
http://www.math.ucdavis.edu/˜saito/publications/

L. Lieu and N. Saito: “Signal ensemble classification using
low-dimensional embeddings and Earth Mover’s Distance,” to appear in
Wavelets: Old and New Perspectives (J. Cohen and A. Zayed, eds.),
Birkhuser, 2010.

Thank you very much for your attention!
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