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Motivations

Consider a bounded domain of general (may be quite complicated)
shape Ω ⊂ Rd .

Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to
Γ = ∂Ω.

Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ fast decaying expansion
coefficients relative to a meaningful basis.

Want to extract geometric information about the domain Ω =⇒
shape clustering/classification.
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Motivations . . . Data Analysis on a Complicated Domain
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Eigenfunctions of Laplacian

Our previous attempt was to extend the object to the outside
smoothly and then bound it nicely with a rectangular box followed by
the ordinary Fourier analysis.

Why not analyze (and synthesize) the object using genuine basis
functions tailored to the domain?

After all, sines (and cosines) are the eigenfunctions of the Laplacian
on the rectangular domain with Dirichlet (and Neumann) boundary
condition.

Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.
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Eigenfunctions of Laplacian . . .

Consider an operator L = −∆ in L2(Ω) with appropriate boundary
condition.

Analysis of L is difficult due to unboundedness, etc.

Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.

Thus L−1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.

L has a complete orthonormal basis of L2(Ω), and this allows us to
do eigenfunction expansion in L2(Ω).
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Eigenfunctions of Laplacian . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.

Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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Integral Operators Commuting with Laplacian

The key idea is to find an integral operator commuting with the
Laplacian without imposing the strict boundary condition a priori.

Then, we know that the eigenfunctions of the Laplacian is the same
as those of the integral operator, which is easier to deal with, due to
the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ = λϕ and Kϕ = µϕ.
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Integral Operators Commuting with Laplacian . . .

Let’s replace the Green’s function G (x, y) by the fundamental
solution of the Laplacian:

K (x, y) =


−1

2 |x − y | if d = 1,

− 1
2π log |x− y| if d = 2,

|x−y|2−d

(d−2)ωd
if d > 2,

where ωd
∆
= 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.

The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x, y):

Kf (x)
∆
=

∫
Ω

K (x, y)f (y) dy, f ∈ L2(Ω).

Theorem (NS 2005)

The integral operator K commutes with the Laplacian L = −∆ with the
following non-local boundary condition:∫

Γ
K (x, y)

∂ϕ

∂νy
(y) ds(y) = −1

2
ϕ(x) + pv

∫
Γ

∂K (x, y)

∂νy
ϕ(y)ds(y),

for all x ∈ Γ, where ϕ is an eigenfunction common for both operators.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2009)

The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ =

{
λϕ if x ∈ Ω;

0 if x ∈ Rd \ Ω,

with the boundary condition that ϕ and
∂ϕ

∂ν
are continuous across the

boundary Γ. Moreover, as |x| → ∞, ϕ(x) must be of the following form:

ϕ(x) =

{
const · |x|2−d + O

(
|x|1−d

)
if d 6= 2;

const · ln |x|+ O
(
|x|−1

)
if d = 2.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2005)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x, y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x, y) ∼
∞∑
j=1

µjϕj(x)ϕj(y),

and {ϕj}j forms an orthonormal basis of L2(Ω).
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Connection with Potential Theory

Mark Kac mentioned at the very end of his 1951 paper (Proceedings
of the 2nd Berkeley Symposium on Mathematical Statistics and
Probability) that the same integral equation in 3D is equivalent to the
Laplacian eigenvalue problem. But his boundary condition was not
correct.

In 1967–9, John Troutman studied the eigenvalues of the same
integral operator (i.e., the logarithmic potential) in 2D. He posed this
problem as the Laplacian eigenvalue problem whose eigenfunctions
are harmonic outside of the given domain. He proved that there exists
one negative eigenvalue iff the transfinite diameter (or logarithmic
capacity) of the closed domain Ω̄ exceeds 1.

In 1970, Mark Kac and Tomasz Bojdecki obtained similar results using
probabilistic argument (Kac) and purely analytic method (Bojdecki).
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1D Example

Consider the unit interval Ω = (0, 1).

Then, our integral operator K with the kernel K (x , y) = −|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ = λϕ, x ∈ (0, 1);

ϕ(0) + ϕ(1) = −ϕ′(0) = ϕ′(1).

The kernel K (x, y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).

In this case, we have the following explicit solution.
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1D Example . . .

λ0 ≈ −5.756915, which is a solution of tanh
√
−λ0
2 = 2√

−λ0
,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m − 1)2π2, m = 1, 2, . . .,

ϕ2m−1(x) =
√

2 cos(2m − 1)πx ;

λ2m, m = 1, 2, . . ., which are solutions of tan
√
λ2m
2 = − 2√

λ2m
,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0, 1, . . . are normalization constants.
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First 5 Basis Functions
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1D Example: Comparison

The Laplacian eigenfunctions with the Dirichlet boundary condition:
−ϕ′′ = λϕ, ϕ(0) = ϕ(1) = 0, are sines. The Green’s function in this
case is:

GD(x , y) = min(x , y)− xy .

Those with the Neumann boundary condition, i.e., ϕ′(0) = ϕ′(1) = 0,
are cosines. The Green’s function is:

GN(x , y) = −max(x , y) +
1

2
(x2 + y 2) +

1

3
.

Remark: Gridpoint ⇔ DST-I/DCT-I;
Midpoint⇔ DST-II/DCT-II.
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1D Example: Rayleigh Functions/Trace Formula

Corollary (NS 2008)

Let {λn}∞n=0 be the 1D Laplacian eigenvalues of the non-local boundary
problem with the commuting integral operator whose kernel is
K (x , y) = −|x − y |/2. Then, they satisfy the following trace formula:

∞∑
n=0

1

λn
=

∫ 1

0
K (x , x) dx = 0.

Compare this with the famous Basel problem, which is based on the
Dirichlet boundary condition:

∞∑
n=1

1

π2n2
=

∫ 1

0
GD(x , x) dx =

1

6
⇐⇒

∞∑
n=1

1

n2
=
π2

6
.
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1D Example: Rayleigh Functions/Trace Formula . . .

Theorem (NS 2008)

Let Kp(x , y) be the pth iterated kernel of K (x , y) = −|x − y |/2. Then,

∞∑
n=0

1

λpn
=

∫ 1

0
Kp(x , x) dx =

1

4p

(
S2p +

(−1)p

α2p

)
+

4p − 1

2 · (2p)!
|B2p|,

where α ≈ 1.19967864 satisfies α = cothα, B2p is the Bernoulli number,
and

S2p
∆
=
∞∑

m=1

(
4

λ2m

)p

,

satisfies the following recursion formula:

n+1∑
`=1

(−1)n−`+1 (2 (n − `+ 1)− 1)

(2 (n − `+ 1))!

{
S2` +

(−1)`

α2`

}
=

(−1)n

2(2n)!
.
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2D Example

Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x, y) = − 1

2π log |x− y| gives rise to:

−∆ϕ = λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
Γ

=
∂ϕ

∂r

∣∣∣
Γ

= −∂Hϕ
∂θ

∣∣∣
Γ
,

where H is the Hilbert transform for the circle, i.e.,

Hf (θ)
∆
=

1

2π
pv

∫ π

−π
f (η) cot

(
θ − η

2

)
dη θ ∈ [−π, π].

Let βk,` is the `th zero of the Bessel function of order k ,
Jk(βk,`) = 0. Then,

ϕm,n(r , θ) =

{
Jm(βm−1,n r)

(cos
sin

)
(mθ) if m = 1, 2, . . . , n = 1, 2, . . .,

J0(β0,n r) if m = 0, n = 1, 2, . . .,

λm,n =

{
β2
m−1,n, if m = 1, . . . , n = 1, 2, . . .,

β2
0,n if m = 0, n = 1, 2, . . ..
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First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace
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3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x, y) = 1

4π|x−y| .

Top 9 eigenfunctions cut at the equator viewed from the south:
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Discretization of the Problem

Assume that the whole dataset consists of a collection of data
sampled on a regular grid, and that each sampling cell is a box of size∏d

i=1 ∆xi .

Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are{xi}Ni=1.

Under these assumptions, we can approximate the integral eigenvalue
problem Kϕ = µϕ with a simple quadrature rule with node-weight
pairs (xj ,wj) as follows.

N∑
j=1

wjK (xi , xj)ϕ(xj) = µϕ(xi ), i = 1, . . . ,N, wj =
d∏

i=1

∆xi .

Let Ki ,j
∆
= wjK (xi , xj), ϕi

∆
= ϕ(xi ), and ϕ

∆
= (ϕ1, . . . , ϕN)T ∈ RN .

Then, the above equation can be written in a matrix-vector format
as: Kϕ = µϕ, where K = (Kij) ∈ RN×N . Under our assumptions,
the weight wj does not depend on j , which makes K symmetric.
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Image Approximation; Comparison with Wavelets

(a) What data?

(b) χJ · Barbara
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Image Approximation; Comparison with Wavelets

(a) What data? (b) χJ · Barbara
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First 25 Basis Functions

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SGP 2010 35 / 82



Next 25 Basis Functions
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Reconstruction with Top 100 Coefficients

(a) Reconstruction

(b) Error
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Reconstruction with Top 100 Coefficients

(a) Reconstruction (b) Error
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Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SGP 2010 38 / 82



Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Comparison of Coefficient Decay
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A Real Challenge: Kernel matrix is of 387924× 387924.
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First 25 Basis Functions via the FMM-based algorithm
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Experiments on Domains with Perturbed Boundaries

We will use the following domains for our experiments:

Ω1: The Japanese Islands

Ω2: A smoothed and connected version of Ω1;

Ω3: The same as Ω2 but with a “jaggy” boundary curve

Ω4: The two-component version of Ω2.

As for the data on these domains, we adopted three functions with
different smoothness:

1 A discontinuous function (i.e., a simple step function whose
discontinuity is a straight line along the “spine” or the main axis of
the domain);

2 A pyramid-shaped function, which is continuous and its first order
partial derivatives are of bounded variation;

3 The standard Gaussian function.
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The Domains with Perturbed Boundaries

(a) χΩ1 (b) χΩ2

(c) χΩ3 (d) χΩ4
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Decay Rates of the Expansion Coefficients (Unsorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Observations on the Decay Rates

The decay rates reflect the intrinsic smoothness of the functions living
in the domain, but are not affected by the existence of the boundary
of the domains.

The decay rates are rather insensitive to the smoothness of the
boundary curves. In particular, the plots for Ω2, Ω3, and Ω4 are
virtually the same whereas those for Ω1—the most complicated
domain among these four—seem slightly worse than the others. Yet
all behave better than O(k−1).

The decay rates are rather insensitive to the number of the separated
subdomains. Again, it will be also of interest to investigate the
behavior the conventional Laplacian eigenfunctions in this respect.

Although the coefficient plots oscillate around the linear lines (in the
log-log scale), the decay rates O(k−α), regardless of the domain
shapes, behave as follows. For the discontinuous functions, α < 1.
For the pyramid-shape function, 1 < α < 1.5. For the Gaussian
function, α ≥ 1.5.
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Decay Rates of the Expansion Coefficients (Sorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The blue, red, and green curves correspond to the discontinuous,
pyramid-shape, and Gaussian functions, respectively. It is obvious that these
curves show no oscillations and their decay rates are faster than those of the
unsorted coefficients. Moreover, the decay rates can be read off easily from the
plots. The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Conjecture on the Coefficient Decay Rate

Conjecture (NS 2007)

Let Ω be a C 2-domain of general shape and let f ∈ C
(
Ω
)

with
∂f

∂xj
∈ BV

(
Ω
)

for j = 1, . . . , d. Let {ck = 〈f , φk〉}k∈N be the expansion

coefficients of f with respect to our Laplacian eigenbasis on this domain.
Then, |ck | decays with rate O(k−α) with 1 < α < 2 as k →∞. Thus, the
approximation error using the first m terms measured in the L2-norm, i.e.,
‖f −

∑m
k=1 ckφk‖L2(Ω) should have a decay rate of O(m−α+0.5) as

m→∞.
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Image Extrapolation

Recall the definition of the eigenvalue problem:

ϕ(x) =
1

µ

∫
Ω

K (x, y)ϕ(y)dy, where x can be any point in Rd .

For large µ (i.e., coarse scale/low frequency), extrapolation naturally
extends to large area.
For small µ (i.e., fine scale/high frequency), extrapolation quickly
attenuates away from Ω.

Figure: Extrapolation of χHonshu· Barbara to the three islands.
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Hippocampal Shape Analysis

Presenting the work of Faisal Beg and his group at Simon Fraser
Univ. using our technique
Want to distinguish people with mild dementia of the Alzheimer type
(DAT) from cognitively normal (CN) people
Hippocampus plays important roles in long-term memory and spatial
navigation

Figure: From Wikipedia
saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions SGP 2010 53 / 82

file:///h/saito/report/LocImgAnal/SGP10/Hippocampus.gif


Hippocampal Shape Analysis . . .

Dataset: Left hippocampus segmented from 3D MRI images

Compute the smallest 999 Laplacian eigenvalues (i.e., the largest 999
eigenvalues of the integral operator K) for each left hippocampus

Construct a feature vector for each left hippocampus:

F
∆
=

(
λ1

λ2
, . . . ,

λ1

λn+1

)T

=

(
µ2

µ1
, . . . ,

µn+1

µ1

)T

∈ Rn.

This feature vector was used by Khabou, Hermi, and Rhouma (2007)
for 2D shape classification (e.g., shapes of tree leaves).

Reduce the feature space dimension via PCA to from n = 998 to n′

Classified by the linear SVM (support vector machine)
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Hippocampal Image Analysis . . .
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Spectral Geometry 101

The Laplacian eigenfunctions defined on the domain Ω provides the
orthonormal basis of L2(Ω).

The Laplacian eigenvalues encode geometric information of the
domain Ω =⇒ “Can we hear the shape of a drum?” (Mark Kac,
1966).

Temporarily, consider the Laplacian eigenvalue problem on a planar
domain Ω ∈ R2 with the Dirichlet boundary condition:{

−∆u = λu in Ω

u = 0 on ∂Ω.

Let 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · → ∞ be the sequence of
eigenvalues of the above Dirichlet-Laplace eigenvalue problem.

Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

∞∑
k=1

e−λk t =
|Ω|
4πt
− |∂Ω|

8
√
πt

+ o(t−1/2) as t ↓ 0.
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Universal (or Payne-Pólya-Weinberger) Inequalities

For m = 1, 2, . . .

λm+1 − λm ≤ 2 · 1

m

m∑
j=1

λj .

λm+1

λm
≤ 3.

m∑
j=1

λj
λm+1 − λj

≥ m

2
(Hile-Protter).

m∑
j=1

(λm+1 − λj)2 ≤ 2
m∑
j=1

λj(λm+1 − λj) (Yang).

λm+1 ≤ 3 · 1

m

m∑
j=1

λj .
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Isoperimetric Inequalities

λ1 ≥
π2j2

0,1

|Ω|2
(Faber-Krahn)

λ2

λ1
≤

j2
1,1

j2
0,1

≈ 2.5387 (Ashbaugh-Benguria)

jk,1 is the first zero of the Bessel function of order k , i.e.,
Jk(jk,1) = 0. j0,1 ≈ 2.4048, j1,1 ≈ 3.8317, and |Ω| is the area of Ω. In
both cases, the equality is attained iff Ω is a disk in R2.
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Other Properties

Domain monotonicity property:

Ω1 ⊂ Ω2 =⇒ λk(Ω1) ≥ λk(Ω2), k ∈ N.

Scaling property:

λk(αΩ) =
λk(Ω)

α2
, α > 0, k ∈ N.

This implies:
λk(αΩ)

λm(αΩ)
=
λk(Ω)

λm(Ω)
, k, m ∈ N.

=⇒ the ratios of Laplacian eigenvalues are scale invariant.
Laplacian eigenvalues are translation and rotation invariant.
See also “Shape DNA” by Reuter et al. (2005), and classification of
tree leaves by Khabou et al. (2007).
Some properties and inequalities listed above should hold not only for
the Dirichlet Laplacian eigenvalues but also for our Laplacian
eigenvalues. Note, however, that the domain monotonicity does not
hold for the Neumann Laplacian eigenvalues.
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Hippocampal Shape Analysis: ϕ2

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240
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Hippocampal Shape Analysis: ϕ3

(i) N = 15135 (j) N = 15438 (k) N = 14938 (l) N = 15256

(m) N = 14201 (n) N = 15630 (o) N = 12073 (p) N = 12240
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Hippocampal Shape Analysis . . .

Dataset consists of the segmented left hippocampuses of 18 DAT
subjects and of 26 CN subjects

Method Accuracy Specificity Sensitivity n n′

MomInv 68.1% 69.2% 66.6% 12 1
TensorInv 75.0% 76.9% 72.2% ≥ 1.9E 5 17
LapEig 77.2% 84.6% 66.6% 998 14
GeodesicInv 86.3% 77.7% 92.3% ≥ 1.3E 6 27

accuracy
∆
=

|TP|+ |TN|
|people examined|

=
|people correctly diagnosed|

|people examined|

specificity
∆
=

|TN|
|TN|+ |FP|

=
|people correctly diagnosed as healthy|

|healthy people examined|

sensitivity
∆
=

|TP|
|TP|+ |FN|

=
|people correctly diagnosed as mild AD|
|people with mild AD examined|
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Comparison with PCA

Consider a stochastic process living on a domain Ω.

PCA/Karhunen-Loève Transform is often used.

PCA/KLT incorporate geometric information of the measurement (or
pixel) location through the data correlation, i.e., implicitly.

Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K (x, y).
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Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich

72 training dataset; 71 test dataset

Left & right eye regions
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Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9 (b) Laplacian Eigenfunctions 1:9
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Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Comparison with PCA: Kernel Matrix

(a) Covariance (b) Harmonic kernel
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Comparison with PCA: Energy Distribution over
Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small
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Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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A Possible Fast Algorithm for Computing ϕj ’s

Observation: our kernel function K (x, y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory.

Idea: Accelerate the matrix-vector product Kϕ using the Fast
Multipole Method (FMM).

Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N2), but
can achieve O(N log N) via the randomized SVD algorithm of
Woolfe-Liberty-Rokhlin-Tygert (2008)).

Construct O(N) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS”
algorithm of Chandrasekaran et al. (2006)).

Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.
(Computational cost: O(N) for each eigenvalue/eigenvector).
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Tree-Structured Matrix via FMM

(a) Hierarchical indexing scheme (b) Tree-Structured Matrix
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First 25 Basis Functions via the FMM-based algorithm
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Splitting into Subproblems for Faster Computation

(a) Whole islands (b) Separated islands
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Eigenfunctions for Separated Islands
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Conclusions

Allow object-oriented image analysis & synthesis
Can get fast-decaying expansion coefficients
Can decouple geometry/domain information and statistics of data
Can extract geometric information of a domain through the
eigenvalues
∃ A variety of applications: interpolation, extrapolation, local feature
computation, solving heat equations on complicated domains . . .
Fast algorithms are the key for higher dimensions/large domains
Connection to lots of interesting mathematics: spectral geometry,
spectral graph theory, isoperimetric inequalities, Toeplitz operators,
PDEs, potential theory, almost-periodic functions, . . .
Many things to be done:

Asymptotic theory for various spectral functions, Z (t) =
∑

e−λk t ,
ζ(t) =

∑
1
λt
k
, N(z) =

∑
λk≤z 1, C (z) =

∑
λk≤z

1
λk

, etc.

How about higher order, i.e., polyharmonic ?
Features derived from heat kernels ?
Improve our fast algorithm
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The following article is available at
http://www.math.ucdavis.edu/˜saito/publications/

N. Saito: “Data analysis and representation using eigenfunctions of
Laplacian on a general domain,” Applied & Computational Harmonic
Analysis, vol. 25, no. 1, pp. 68–97, 2008.

Thank you very much for your attention!
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