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Motivations

Multiscale image analysis and Neurophysiology

Edge detection
Edge characterization
Shift invariance

David Marr’s conjecture: Multiscale edge information can completely
represent an input image.

Relevance of wavelets on the above issues
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Introduction to Marr’s Theory

David Marr (1945–1980) proposed the following strategy/processes
for visual perception

Raw Primal Sketch ∼ Edge detection, characterization ∼ Retina, V1
Full Primal Sketch ∼ Grouping, edge integration ∼ V1, V2
2 1

2D Sketch ∼ Recognition of visible surfaces ∼ V2?, V4?
3D Model Representations ∼ Recognition of 3D object shapes ∼ IT?

Our primary focus today is a part of Raw Primal Sketch, i.e., edge
detection and characterization, and how to represent an image using
multiscale edge information.

Truth is much more complicated (and interesting) due to color and
motion, but we will focus on still images of intensity (grayscale) today.
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Basic Neurophysiology of Visual Systems

Figure: V1 area and visual passways (From D. Hubel: Eye, Brain, and Vision)
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Basic Neurophysiology of Visual Systems . . .

Figure: Structure of retina (From D. Hubel: Eye, Brain, and Vision)
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Basic Neurophysiology of Visual Systems . . .

Receptive Field of a sensory neuron
∆
= a spatial region in which the

presence of a stimulus will alter the firing of that neuron.

Spatial organization of receptive fields of retinal ganglion cells
(Kuffler, 1953)

circularly symmetric
a central excitatory region
an inhibitory surround

This implies that they can detect edges.
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Receptive Fields

Figure: Receptive field responses of ganglion cells (From V. Bruce et al.: Visual

Perception)
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Receptive Fields

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure: Realization of on-center off-surround receptive field (green) by a
Difference of Gaussians (DOG) function (Enroth-Cugell & Robson, 1966).
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The Marr-Hildreth Theory of Zero-Crossings

Marr’s idea: Multiscale edges can represent an input image

Marr and Hildreth approximated the receptive fields as Laplacian of
Gaussian (LoG), which in turn can be closely approximated by
Difference of Gaussians (DOG).

They are regularized 2nd derivative operator.

Zero-crossings of the convolution of these filters with the input image
encode the location of edges at appropriate scales.

Slope (or gradient) at each zero-crossing encodes edge strength (≈
sharpness) at appropriate scales.

How to use the edge information to recover or represent the original
image?
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Edge Detection and Zero-Crossings

Figure: Responses of 1st and 2nd derivative operators to various features (From
V. Bruce et al.: Visual Perception)
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Laplacian of Gaussian Filtering
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Zero-Crossings of LoG filtered images
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Zero-Crossings of LoG filtered images (Thresholded)
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Wavelets in V1?

Figure: Columnar organization of V1 cells of cats and monkeys (From:
R. L. De Valois & K. K. De Valois: Spatial Vision)
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Forming Scale and Orientation Selectivity in V1

Figure: Various summations of ganglion receptive fields (From: B. A. Wandell:
Foundations of Vision)
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Why Not Use Different Wavelets as a Multiscale Edge

Detector?

Multiscale LoGs in fact form a continuous wavelet transform.

But rather slow computationally.

Can we use faster popular discrete wavelets?

Can we view them as multiscale edge detectors and receptive fields?

Yes. But we need to know a little bit about the wavelet basics!

I will concentrate on the 1D case in this talk from now on. For 2D,
it’s possible to do via tensor product.

You are more than welcome to work on this area with me if you are
interested. The project with my former intern has not been completed
yet for 2D.
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What Are Wavelets?

An orthonormal basis of L2(R) generated by dilations (scalings) and
translations (shifts) of a single function

Provide an intermediate representation of signals between space
domain and frequency domain (space-scale representation)

A computationally efficient algorithm (O(N)) exists for expanding a
discrete signal of length N into such a wavelet basis

Useful for signal processing, numerical analysis, statistics . . .
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Familiar Examples

The Haar functions

ψHaar(x) =





1 if 0 ≤ x ≤ 1
2

−1 if 1
2
≤ x ≤ 1

0 otherwise.

The Shannon (or Littlewood-Paley) wavelets: Dilations and
translations of the perfect band-pass filter

ψ∞(x) = 2 sinc(2x) − sinc(x) =
sin 2πx − sinπx

πx
.
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Multiresolution Analysis

A natural framework to understand wavelets developed by S. Mallat
& Y. Meyer (1986)

Successive approximations of L2(R) with multiple resolutions

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · ·
⋂

j∈Z
Vj = {0}, ⋃

j∈Z
Vj = L2(R)

f (x) ∈ Vj ⇐⇒ f (2x) ∈ Vj−1, ∀j ∈ Z

f (x) ∈ Vj ⇐⇒ f (x − 2jk) ∈ Vj , ∀k ∈ Z

∃1 ϕ(x) ∈ V0 (scaling function or father wavelet), such that

{ϕj ,k(x)}k∈Z, where ϕj ,k(x)
∆
= 2−j/2ϕ(2−jx − k), form an

orthonormal basis of Vj
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Multiresolution Analysis . . .

V0

V1

V2

V3

W1
W2

W3

0 pi frequency

V3
V2

V1
V0

W3 W2 W1V3

pi/2

Multiresolution Analysis by Sinc Wavelets

The Concept of Multiresolution Analysis
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Multiresolution Analysis . . .

Since V0 ⊂ V−1, there exist coefficients {hk} ∈ `2(Z) such that

ϕ(x) =
√

2
∑

k

hkϕ(2x − k),

where

hk = 〈ϕ,ϕ1,k 〉 =
√

2

∫
ϕ(x)ϕ(2x − k)dx .

From the orthonormality of {ϕ0,k}, the coefficients {hk} must satisfy

∑

k

hkhk+2l = δ0,l
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Multiresolution Analysis . . .

Let us now consider the orthogonal complement Wj of Vj in Vj−1.

Vj−1 = Vj ⊕ Wj .

L2(R) =
⊕

j∈Z
Wj .

∃1 ψ(x) ∈ W0 (basic wavelet or mother wavelet), such that

{ψj ,k(x)}(j ,k)∈Z2 , where ψj ,k(x)
∆
= 2−j/2ψ(2−jx − k), form an

orthonormal basis of L2(R).

ψ(x) =
√

2
∑

k

gkϕ(2x − k), gk = (−1)kh1−k .
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Familiar Examples

If h0 = h1 = 1/
√

2, then

ϕ(x) = χ[0,1](x)

= χ[0,1](2x) + χ[0,1](2x − 1)

= χ[0, 1
2
](x) + χ[ 1

2
,1](x).

ψ(x) = ψHaar(x)

= χ[0, 1
2
](x) − χ[ 1

2
,1](x).

If hk = sinc(k/2)/
√

2, k ∈ Z, then

ϕ(x) = sinc(x),

ψ(x) = ψ∞(x) = 2 sinc(2x) − sinc(x).
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Multiresolution Analysis . . .

In the Fourier domain,

ϕ̂(ξ) = m0(ξ/2)ϕ̂(ξ/2),

ψ̂(ξ) = m1(ξ/2)ϕ̂(ξ/2),

where

m0(ξ) =
1√
2

∑

k

hke
ikξ ,

m1(ξ) =
1√
2

∑

k

gke
ikξ = e

i(ξ+π)m0(ξ + π).

The filters H = {hk} and G = {gk} are called quadrature mirror
filters (QMF) since they satisfy

|m0(ξ)|2 + |m1(ξ)|2 = 1.
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Multiresolution Analysis . . .

From these properties, we have

|ϕ̂(ξ)|2 = |ϕ̂(ξ/2)|2 + |ψ̂(ξ/2)|2,

ϕ̂(ξ) =

∞∏

j=1

m0(ξ/2
j ),

ψ̂(ξ) = m1(ξ/2)

∞∏

j=2

m0(ξ/2
j ).
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Compactly Supported Wavelets of Daubechies

Once the coefficients {hk} are chosen, the father and mother
wavelets are completely determined

{hk} of finite length =⇒ compactly supported father and mother
wavelets

In 1987, I. Daubechies found a way to determine {hk} of finite
length, L

Compact support:

|supp ϕ| = |supp ψ| = L − 1

Regularity: ψ ∈ C γ(M−1), γ ≈ 1/5

Vanishing moments (L = 2M):

∫
xmψ(x)dx = 0, for m = 0, 1, . . . ,M − 1
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Problems of Orthonormal Wavelet Basis

Provide nonredundant compact representation =⇒ Very useful for
signal compression, in particular, piecewise smooth data.

However, it does not provide shift invariant representation. The
relation between the wavelet coefficients of the original and those of
the shifted version is complicated unlike the usual Fourier coefficients.

Except for L = 2 (Haar), ϕ and ψ are neither symmetric nor
antisymmetric, thus some artifacts become visible if the input signal is
severely compressed.

First we tackle the shift-invariance problem.
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Orthonormal Shell Representation

A shift-invariant representation using the orthonormal wavelets
Redundant but contains all orthonormal wavelet coefficients of all
circular shifts of the original signal
Computational cost is O(N log2 N) where N = # of input samples
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Figure: Filled circles: wavelet coefficients; Filled & open circles: orthonormal shell
coefficients
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Orthonormal Shell Representation . . .
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Figure: ONS representation of two spikes.
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Orthonormal Shell

An orthonormal shell is a set of functions
{
ψ̃j ,k(x)

}
1≤j≤J, 0≤k≤N−1

and {ϕ̃J,k (x)}0≤k≤N−1 ,

where

ϕ̃j ,k(x)
∆
= 2−j/2ϕ(2−j (x − k)), ψ̃j ,k (x)

∆
= 2−j/2ψ(2−j (x − k))

The orthonormal shell coefficients of a function f ∈ V0,
f =

∑N−1
k=0 s0

kϕ0,k , are {d j
k}1≤j≤J, 0≤k≤N−1 and {sJ

k }0≤k≤N−1, where

s
j
k =

∫
f (x)ϕ̃j ,k (x)dx , d

j
k =

∫
f (x)ψ̃j ,k (x)dx

saito@math.ucdavis.edu (UC Davis) Multiscale Edges, Vision, and Wavelets UCD Math. Bio. Seminar 35 / 68



Orthonormal Shell Representation . . .
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Figure: ONS representation of a real signal.
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Difficulties of Orthonormal Shell

Asymmetry of the orthonormal wavelets → Difficulty in feature
matching from scale to scale.

Fractal-like shapes of the orthonormal wavelets → Too many
zero-crossings/extrema.
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Autocorrelation Functions of Wavelets

Φ(x)
∆
=

∫ +∞

−∞
ϕ(y)ϕ(y − x)dy

Ψ(x)
∆
=

∫ +∞

−∞
ψ(y)ψ(y − x)dy

Symmetric and smoother than the corresponding ϕ(x) and ψ(x)

Convolution with Ψ(x) essentially behaves as a differential operator
(d/dx)L ⇐= Ψ̂(ξ) ∼ O(ξL)

Φ(x) induces the symmetric iterative interpolation scheme
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Autocorrelation Functions of Father Wavelets
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Figure: Φ vs ϕ in space and frequency domain.
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Autocorrelation Functions of Mother Wavelets
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Figure: Ψ vs ψ in space and frequency domain.
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Autocorrelation Functions of Wavelets . . .

In Fourier domain:

Φ̂(ξ) = |ϕ̂(ξ)|2 and Ψ̂(ξ) = |ψ̂(ξ)|2.

Values at integer points:

Φ(k) = δ0k and Ψ(k) = δ0k .

Difference of two autocorrelation functions:

Φ̂(ξ) + Ψ̂(ξ) = Φ̂(ξ/2),

or equivalently,
Ψ(x) = 2Φ(2x) − Φ(x).
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Comparison with LoG and DOG functions

Ψ(x) = 2Φ(2x) − Φ(x).

vs

d
2

dx2
G (x ;σ) ≈ G (x ; aσ) − G (x ;σ)

= aG (ax ;σ) − G (x ;σ),

where

G (x ;σ) =
1√
2πσ

e
−x2/2σ2

,

and a = 1.6 as Marr suggested.
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Autocorrelation Functions of Wavelets . . .

Two-scale difference equations:

Φ(x) = Φ(2x) +
1

2

L/2∑

l=1

a2l−1 (Φ(2x − 2l + 1) + Φ(2x + 2l − 1)) ,

Ψ(x) = Φ(2x) − 1

2

L/2∑

l=1

a2l−1 (Φ(2x − 2l + 1) + Φ(2x + 2l − 1)) ,

where {ak} are the autocorrelation coefficients of the filter H,

ak = 2

L−1−k∑

l=0

hlhl+k for k = 1, . . . , L − 1,

a2k = 0 for k = 1, . . . , L/2 − 1.

saito@math.ucdavis.edu (UC Davis) Multiscale Edges, Vision, and Wavelets UCD Math. Bio. Seminar 44 / 68



Autocorrelation Functions of Wavelets . . .

Compact supports:

supp Φ(x) = supp Ψ(x) = [−L + 1, L − 1].

Vanishing moments:

∫ +∞

−∞
xmΨ(x)dx = 0, for 0 ≤ m ≤ L − 1,

∫ +∞

−∞
xmΦ(x)dx = 0, for 1 ≤ m ≤ L − 1,

∫ +∞

−∞
Φ(x)dx = 1.
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Autocorrelation Shell Representation

A non-orthogonal shift-invariant representation using dilations and
translations of Φ(x) and Ψ(x)

Contains coefficients of all circular shifts of the original signal

Convertible to the orthonormal shell representation on each scale
separately

Zero-crossings of the difference signals correspond to multiscale edges

Computational cost is still O(N log2 N)
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Autocorrelation Shell Representation . . .
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Figure: ACS representation of two spikes.
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Autocorrelation Shell

An autocorrelation shell is a set of functions

{Ψj ,k(x)}1≤j≤J, 0≤k≤N−1 and {ΦJ,k(x)}0≤k≤N−1 ,

where

Φj ,k(x)
∆
= 2−j/2Φ(2−j(x − k)),Ψj ,k(x)

∆
= 2−j/2Ψ(2−j (x − k))

The autocorrelation shell coefficients of a function f ∈ V0,
f =

∑N−1
k=0 s0

kϕ0,k , are {D j
k
}1≤j≤J, 0≤k≤N−1 and {SJ

k }0≤k≤N−1, where

S
j
k =

∫
f j
s (x)2−j/2ϕ̃j ,k(x)dx , D

j
k =

∫
f

j
d (x)2−j/2ψ̃j ,k(x)dx ,

f j
s (x)

∆
=

N−1∑

`=0

s
j
`ϕ(x − `), f

j
d (x)

∆
=

N−1∑

`=0

d
j
`ϕ(x − `),

s
j
`, d

j
` are the orthonormal shell coefficients.
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Autocorrelation Shell . . .

An important relation between the original samples {s 0
k} and the

autocorrelation shell coefficients is:

Proposition

N−1∑

k=0

S
j
kΦ0,k =

N−1∑

k=0

s0
kΦj ,k

N−1∑

k=0

D
j
k
Φ0,k =

N−1∑

k=0

s0
kΨj ,k .
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Autocorrelation Shell Representation . . .
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Figure: ACS representation of the real signal.
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A Fast Decomposition Algorithm

Rewriting the two-scale difference equations:

1√
2
Φ(x/2) =

L−1∑

k=−L+1

pkΦ(x − k),
1√
2
Ψ(x/2) =

L−1∑

k=−L+1

qkΦ(x − k),

where

pk =





2−1/2 for k = 0,

2−3/2a|k| for k = ±1,±3, . . . ,±(L − 1),

0 for k = ±2,±4, . . . ,±(L − 2),

qk =

{
2−1/2 for k = 0,

−pk otherwise.
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A Fast Decomposition Algorithm

We view these coefficients as filters P = {pk}−L+1≤k≤L−1 and
Q = {qk}−L+1≤k≤L−1.

pk = p
−k and qk = q

−k .
Only L/2 + 1 distinct non-zero coefficients.

Using these filters P and Q, we compute

S
j
k =

L−1∑

l=−L+1

plS
j−1
k+2j−1l

,

D
j
k =

L−1∑

l=−L+1

qlS
j−1
k+2j−1l

.
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Familiar Examples

The Haar wavelet:

{pk} =
1√
2

{
1

2
, 1,

1

2

}
, {qk} =

1√
2

{
−1

2
, 1,−1

2

}
.

The Daubechies wavelet with L = 2M = 4:

{pk} =
1√
2

{
− 1

16
, 0,

9

16
, 1,

9

16
, 0,− 1

16

}
,

{qk} =
1√
2

{
1

16
, 0,− 9

16
, 1,− 9

16
, 0,

1

16

}
.

The Shannon wavelet: for k ∈ Z,

pk =
1√
2

sinc(k/2), qk =
1√
2

(2 sinc(k) − sinc(k/2)) .
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A Fast Reconstruction Algorithm

Using Φ̂(ξ) + Ψ̂(ξ) = Φ̂(ξ/2), we obtain a simple reconstruction
formula,

S
j−1
k =

1√
2

(
S

j
k + D

j
k

)
,

for j = 1, . . . , J, k = 0, . . . ,N − 1

Given the autocorrelation shell coefficients {D j
k}1≤j≤J, 0≤k≤N−1 and

{SJ
k }0≤k≤N−1,

s0
k = 2−J/2SJ

k +
J∑

j=1

2−j/2D
j
k
,

for k = 0, . . . ,N − 1.
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An Iterative Interpolation Scheme

Φ(x) induces the symmetric iterative interpolation scheme of
S.Dubuc.

This interpolation scheme fills the gap between the following two
extreme cases:

The Haar father wavelet → linear interpolation

ΦHaar(x) =





1 + x for −1 ≤ x ≤ 0,
1 − x for 0 ≤ x ≤ 1,
0 otherwise.

The Shannon father wavelet → band-limited interpolation

Φ∞(x) = ϕ∞(x) = sinc(x).
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An Iterative Interpolation Scheme . . .

x0−1 +1

j

0

−1

−2

11a__
2

a 3__
2

1a__
2

a 3__
2

Figure: Dubuc iterative interpolation with L = 4.
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Edge Detection via Iterative Interpolation Scheme . . .

Essentially, Dubuc’s iterative interpolation scheme upsamples the
discrete data, i.e. goes up from coarser to finer scales by filling new
points smoothly between the sample points without changing the
original sample values.

As a result, we can evaluate Φ(x), Φ′(x), Ψ(x), and Ψ′(x) at any
given point x ∈ R within the prescribed numerical accuracy.

Can iteratively zoom in the interval until it reaches [x − ε, x + ε]. The
derivative is merely a convolution of the values of Φ in that interval
with some discrete filter coefficients.
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Reconstruction of Signals from Zero-Crossings

Marr’s conjecture

Previous attempts

Curtis & Oppenheim (’87): Multiple level crossings, Fourier
coefficients, no multiscale
Hummel & Moniot (’89): Scale-space, heat equation, stability problem,
empirical use of slope information
Mallat (’91): Dyadic wavelet transform, wavelet maxima, POCS
(projection onto convex sets) for reconstruction

Can we reconstruct the original signal from zero-crossings (and slopes
at these zero-crossings, if necessary) of the autocorrelation shell
representation of that signal?
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Advantages using ACS

Zero-crossings of the ACS representation are related to multiscale
edges of the original signal.

We have an efficient iterative algorithm to pinpoint these
zero-crossings ( via the Dubuc’s iterative interpolation ).

Proposition allows us to set up a system of linear algebraic equations
to reconstruct the original signal.

Can explicitly show that the slope information at each zero-crossing is
necessary.
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Proposed Method (See Saito & Beylkin ’93 for the details)

1 Compute zero-crossing locations and slopes at these locations in the
ACS representation using the symmetric iterative interpolation
scheme.

2 Set up a system of linear algebraic equations (often sparse), where
the unknown vector is the original signal itself and the entries of the
matrix are computed from the values of Φ(x),Φ′(x) at the integer
translates of the zero-crossing locations.

3 Solve the linear system to find the original signal.

Note that one can introduce heuristic constraints such as the distance
between the adjacent zero-crossings at the jth scale does not exceed
2j+1(L − 1), which may stabilize the linear system solver.

saito@math.ucdavis.edu (UC Davis) Multiscale Edges, Vision, and Wavelets UCD Math. Bio. Seminar 63 / 68



1D Examples

The 1D profile of the image of the size 512.
In this case, the size of the matrix A is 1852 by 512. The relative L2

error of the reconstructed signal compared with the original signal is
5.674436 × 10−13. The accuracy threshold ε was set to 10−14. In this
example, the constraints did not make any difference since the
zero-crossings are “dense”.

A unit impulse {δ31,k}63
k=0.

In this case, the size of the matrix A is 56 × 64. This example needs
constraints. The relative L2 error with the constraints is
7.417360 × 10−15 whereas the error of the solution by the generalized
inverse without the constraints is 3.247662 × 10−4.
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Conclusions

The autocorrelation wavelets behave like edge detectors with various
scales

Can characterize the type of edges (singularities) from the decay of
the ACS coefficients across scales

The autocorrelation wavelets are symmetric, sufficiently smooth, and
induce a symmetric iterative interpolation scheme

The autocorrelation shell is a shift-invariant representation containing
the coefficients of all circulant shifts of the original signal with the
cost O(N log2 N)

The original signal is also reconstructed by solving a system of linear
algebraic equations derived from the zero-crossings (and slopes)
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