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@ Motivations
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@ Multiscale image analysis and Neurophysiology
o Edge detection
o Edge characterization
o Shift invariance
@ David Marr's conjecture: Multiscale edge information can completely
represent an input image.

@ Relevance of wavelets on the above issues
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9 Marr’s Theory and Neurophysiology
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Introduction to Marr's Theory

@ David Marr (1945-1980) proposed the following strategy/processes
for visual perception

Raw Primal Sketch ~ Edge detection, characterization ~ Retina, V1

Full Primal Sketch ~ Grouping, edge integration ~ V1, V2

2%D Sketch ~ Recognition of visible surfaces ~ V27, V47?7

3D Model Representations ~ Recognition of 3D object shapes ~ IT?

¢ ¢ ¢ ¢

@ Our primary focus today is a part of Raw Primal Sketch, i.e., edge
detection and characterization, and how to represent an image using
multiscale edge information.

@ Truth is much more complicated (and interesting) due to color and
motion, but we will focus on still images of intensity (grayscale) today.
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Basic Neurophysiology of Visual Systems
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Figure: V1 area and visual passways (From D. Hubel: Eye, Brain, and Vision)
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Basic Neurophysiology of Visual Systems ...
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Figure: Structure of retina (From D. Hubel: Eye, Brain, and Vision)
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Basic Neurophysiology of Visual Systems ...

@ Receptive Field of a sensory neuron 2, spatial region in which the
presence of a stimulus will alter the firing of that neuron.

@ Spatial organization of receptive fields of retinal ganglion cells
(Kuffler, 1953)

@ circularly symmetric
@ a central excitatory region
@ an inhibitory surround

@ This implies that they can detect edges.
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Receptive Fields
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its field or to the offset of a T
spot of light in the surround
area. A centre-off cell (b) LIGHT LIGHT
responds in the opposite ON OFF
fashion.

Figure: Receptive field responses of ganglion cells (From V. Bruce et al.: Visual
Perception)
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Receptive Fields
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Figure: Realization of on-center off-surround receptive field (green) by a
Difference of Gaussians (DOG) function (Enroth-Cugell & Robson, 1966).
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The Marr-Hildreth Theory of Zero-Crossings

@ Marr's idea: Multiscale edges can represent an input image

@ Marr and Hildreth approximated the receptive fields as Laplacian of
Gaussian (LoG), which in turn can be closely approximated by
Difference of Gaussians (DOG).

@ They are regularized 2nd derivative operator.

@ Zero-crossings of the convolution of these filters with the input image
encode the location of edges at appropriate scales.

@ Slope (or gradient) at each zero-crossing encodes edge strength (&
sharpness) at appropriate scales.

@ How to use the edge information to recover or represent the original
image?
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Edge Detection and Zero-Crossings

1st derivative filter response
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Measuring image gradients and derivatives. (A) Top trace is the stimulus luminance profile, representing a thin bright line, a blurred edge, and a blurred bar. The trace below is the
response profile of a 1t derivalive (gradient) fiter. Note how there is a peak response (gradient maximum) at the edge location, but a peak and trough around the line and bar
locations. (B) Similar layout, but the filtr is a 2nd derivative operator, as used by the Marr and Hildreth (1980) and Watt and Morgan (1985) models of feature representation. Note
how the zero-crossing lines up with the edge location (dotted line). The response to a thin line (left part of each panel) reveals the profile of each filter's receptive field—two-lobed
() and three-lobed (B). These plots ilustrate a key problem for early spatial vision: how is the information from spatial fiers used to derive a description of the locations and
characteristics of features present in the image?

Figure: Responses of 1st and 2nd derivative operators to various features (From
V. Bruce et al.: Visual Perception)
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Laplacian of Gaussian Filtering
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Zero-Crossings of LoG filtered images
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Zero-Crossings of LoG filtered images (Thresholded)
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Wavelets in V17
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FIG. 423 Schematic model of the columnar organization of cat striate cortex. Within FIG. 4.25 Schematic model of the columnar organization of primate striate cortex. The
each ocular dominance region arc orthogonally arranged columns of cells tuned to differ- various two-dimensional spatial frequencies are postulated 1o be in a polar arrangement,
ent spatial frequencies and different orientations such that all spatial frequency/orienta- with spatial frequency increasing from the center (coincident with the cyt-ox blob for that
tion combinations occur within each module. half module) out and orientation being represented at various angles.

Figure: Columnar organization of V1 cells of cats and monkeys (From:
R. L. De Valois & K. K. De Valois: Spatial Vision)
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Forming Scale and Orientation Selectivity in V1

6.9 ORIENTATION-
SELECTIVE RECEPTIVE FIELDS
can be created by summing
the responses of neurons

with nonoriented, circularly
symmetric receptive fields.
The receptive fields of three
hypothetical neurons are
shown. Each hypothetical
receptive field has adjacent
excitatory and inhibitory
regions. A comparison of (A)
and (C) illustrates that the
degree of orientation selectivity
can vary depending on the
number of neurons combined
along the main axis.

Figure: Various summations of ganglion receptive fields (From: B. A. Wandell:
Foundations of Vision)
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Why Not Use Different Wavelets as a Multiscale Edge

Detector?

Multiscale LoGs in fact form a continuous wavelet transform.

But rather slow computationally.

Can we use faster popular discrete wavelets?

Can we view them as multiscale edge detectors and receptive fields?

Yes. But we need to know a little bit about the wavelet basics!

e © 6 ¢ ¢ ¢

| will concentrate on the 1D case in this talk from now on. For 2D,
it's possible to do via tensor product.

@ You are more than welcome to work on this area with me if you are
interested. The project with my former intern has not been completed
yet for 2D.
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Outline

© Introduction to Wavelets
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What Are Wavelets?

@ An orthonormal basis of L2(R) generated by dilations (scalings) and
translations (shifts) of a single function

@ Provide an intermediate representation of signals between space
domain and frequency domain (space-scale representation)

@ A computationally efficient algorithm (O(N)) exists for expanding a
discrete signal of length N into such a wavelet basis

@ Useful for signal processing, numerical analysis, statistics ...
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Familiar Examples

@ The Haar functions
1 ifo<x<

0 otherwise.

@ The Shannon (or Littlewood-Paley) wavelets: Dilations and
translations of the perfect band-pass filter

Yoo(X) = 2 sinc(2x) — sinc(x) = sin 27x — sin ™

™
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Multiresolution Analysis

A natural framework to understand wavelets developed by S. Mallat
& Y. Meyer (1986)

@ Successive approximations of L?(IR) with multiple resolutions
) - CVo, VI CVgCV_1CV_,C---

° ﬂjez Vi = {0}, U_[EZV = L2(R)
°
°

f(x)eVj<=f(2x) € Vj_1, Vjel
f(x) €V <= f(x —2k)eV;, VkeZ
@ J1 ¢(x) € Vg (scaling function or father wavelet), such that

{0j.k(x)}kez, where @j i (x) 4 2—1/2¢(2_fx — k), form an
orthonormal basis of V;
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Multiresolution Analysis . ..

The Concept of Multiresolution Analysis

Vo
vi
V2
V3
|-
w3 w2

= - s 000000 -

0 pi/2 pi frequency

Multiresolution Analysis by Sinc Wavelets
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Multiresolution Analysis . ..

@ Since Vo C V_y, there exist coefficients {hy} € ¢?(Z) such that

= \/EZ hk@(zx - k)7
k

where

he = (e, o1,k) \/_/ Yp(2x — k) dx.

@ From the orthonormality of {¢g x}, the coefficients {hi} must satisfy

> hichigor = do
P
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Multiresolution Analysis . ..

Let us now consider the orthogonal complement W; of V; in V;_;.
o Vi1 =V,eW;.
° L*(R) = Bjcz W
@ J1 ¢(x) € Wy (basic wavelet or mother wavelet), such that
{wj,k(X)}(j,k)eZZv where 1); (x) 2 2‘1/2¢(2_jx — k), form an
orthonormal basis of L2(R).

(x) = V2 ap(2x — k), gk = (1)
k

UCD Math. Bio. Seminar 26 /
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Familiar Examples

o Ifhg=h = 1/\/§ then

o(x) = X[o,1](X)
= X[0,11(2x) + xjo,3(2x — 1)

¢(X) = wHaar(X)
= X[o,%](X) - X[%,l](x)'
o If hy = sinc(k/2)/V/2, k € Z, then
©(x) = sinc(x),

P(x) = oo(x) = 2 sinc(2x) — sinc(x).
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Multiresolution Analysis . . .

@ In the Fourier domain,
P(&) = mo(€/2)9(£/2),
B(8) = m(£/2)¢(¢/2),

where i

mo(€) = = 3 hiek,
V25

_ 1

V2

@ The filters H = {hi} and G = {gk} are called quadrature mirror
filters (QMF) since they satisfy

Imo(&)1? + [m1(¢)]* = 1.

m(€) = —= > gre = e mg(€+ 7).
k
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Multiresolution Analysis . ..

@ From these properties, we have

B(6)17 = 16(£/2)1 + [d(£/2)I%,

B(¢) = H mo(¢/2)),

B(€) = m(¢/2) [ mo(€/2).

Jj=2
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Compactly Supported Wavelets of Daubechies

@ Once the coefficients {h} are chosen, the father and mother
wavelets are completely determined

o {hy} of finite length = compactly supported father and mother
wavelets

@ In 1987, |. Daubechies found a way to determine {hy} of finite
length, L

o Compact support:
supp | = [supp ¥| = L —1

@ Regularity: 1y € CY(M-D 4 x~1/5
Vanishing moments (L = 2M):

/xm¢(x)dx:0, form=0,1,... M—1
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Problems of Orthonormal Wavelet Basis

@ Provide nonredundant compact representation = Very useful for
signal compression, in particular, piecewise smooth data.

@ However, it does not provide shift invariant representation. The
relation between the wavelet coefficients of the original and those of
the shifted version is complicated unlike the usual Fourier coefficients.

@ Except for L =2 (Haar), ¢ and 1) are neither symmetric nor
antisymmetric, thus some artifacts become visible if the input signal is
severely compressed.

@ First we tackle the shift-invariance problem.
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@ Orthonormal Shell Representation

saito@math.ucdavis.edu (UC Davis) Multiscale Edges, Vision, and Wavelets UCD Math. Bio. Seminar 32 /68



Orthonormal Shell Representation

@ A shift-invariant representation using the orthonormal wavelets

@ Redundant but contains all orthonormal wavelet coefficients of all
circular shifts of the original signal

@ Computational cost is O(N log, N) where N = # of input samples

s Q/Of/.QQQQQQQQQQQQ

hhh

*O/././.OQOQOQOQO

%}.%OOO (ONONE)
hy hy”™ h,
s? (CHONONONONON NONORONONONONC)

Figure: Filled circles: wavelet coefficients; Filled & open circles: orthonormal shell
coefficients

sl

s2
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normal Shell Representation . ..
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Figure: ONS representation of two spikes.
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Orthonormal Shell

@ An orthonormal shell is a set of functions

{l/)j,k(x)}lg/gj, ockenoy 2 1PN ogken-1

where
5ik(x) & 2792027 (x — k), Gy k(x) & 2792927 (x — k)

@ The orthonormal shell coefficients of a function f € Vg,
N—1 i
f=3"k"o Sewok, are {dihi<j<y o<k<n—1 and {s{}o<k<n-1, where

o= / (0B a(x) dx,  di — / F() 4 () dx
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Orthonormal Shell Representation

Orthonormal Shell Average Coefficients

Figure: ONS representation of a real signal.
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Difficulties of Orthonormal Shell

@ Asymmetry of the orthonormal wavelets — Difficulty in feature
matching from scale to scale.

@ Fractal-like shapes of the orthonormal wavelets — Too many
zero-crossings/extrema.
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© Autocorrelation Functions of Wavelets
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Autocorrelation Functions of Wavelets

o(x) £ / +oo o(y)ply —x)dy

— 00
A [T
V(x) = Py —x)dy

—00
@ Symmetric and smoother than the corresponding ¢(x) and (x)
@ Convolution with W(x) essentially behaves as a differential operator

(d/dx)* = (&) ~ O(¢")

@ ®(x) induces the symmetric iterative interpolation scheme
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Autocorrelation Functions of Father Wavelets
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Figure: ® vs ¢ in space and frequency domain.
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Autocorrelation Functions of Mother Wavelets
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Figure: W vs 1) in space and frequency domain.
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Autocorrelation Functions of Wavelets . ..

@ In Fourier domain:
&) = ¢(6)* and W(¢) = [P(¢)*
@ Values at integer points:
®(k) =dox and W(k) = dpk-
@ Difference of two autocorrelation functions:
(&) + V(&) = 9(¢/2),

or equivalently,
V(x) = 2d(2x) — d(x).
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Comparison with LoG and DOG functions

V(x) = 20(2x) — d(x).
2
%G(X;O—) ~ G(x;ac) — G(x;0)
= aG(ax;0) — G(x;0),

where
G(X; U) — Le—ﬂ/?ﬂ’

and a = 1.6 as Marr suggested.
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Autocorrelation Functions of Wavelets . ..

@ Two-scale difference equations:
L L2
O(x) = (2x) + 5 ¥ a1 (P(2x — 2/ +1) + D(2x + 2/ — 1)),
=1
L/2
W(x) = O(20) = 5 D a1 (P(2x — 21+ 1) + &(2x 2/ - 1)),
I=1

where {a,} are the autocorrelation coefficients of the filter H,

L—-1—k
=2 Y hhge for k=1,....L-1,
1=0

aszO for kZl,...,L/2—1.
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Autocorrelation Functions of Wavelets . ..

@ Compact supports:
supp ®(x) =supp ¥(x) =[-L+1,L—1].

@ Vanishing moments:

+o0
/ x™Y(x)dx =0, for 0<m<L-1,
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© Autocorrelation Shell Representation
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Autocorrelation Shell Representation

@ A non-orthogonal shift-invariant representation using dilations and
translations of ®(x) and W(x)

o Contains coefficients of all circular shifts of the original signal

o Convertible to the orthonormal shell representation on each scale
separately

@ Zero-crossings of the difference signals correspond to multiscale edges

e Computational cost is still O(N log, N)
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Autocorrelation Shell Representation . ..
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Figure: ACS representation of two spikes.
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Autocorrelation Shell

@ An autocorrelation shell is a set of functions

{wj,k(x)hggj, 0<k<N-1 and {q)J,k(X)}ogng_la

where
;1 (x) £ 2792027 (x — k), W k(x) £ 2792027 (x — k))

@ The autocorrelatlon shell coefficients of a function f € Vg,

f= o 5200k, are {D1}1<j<y o<k<n—1 and {S7Yo<k<n_1, where
S — / ()22 k(x)dx, D — / F ()22 4 (x) dx
R NS
I(x) =Y shp(x—0), A=Y dex 1),
=0 =0

sé, dé are the orthonormal shell coefficients.
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Autocorrelation Shell . ..

An important relation between the original samples {s?} and the
autocorrelation shell coefficients is:

Proposition
N—1 N—1
' 0
> Slt0= Y- 404
k=0 k=0
N—1

N—-1
j 0
Didg ) = Z A
k=0 k=0
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Autocorrelation Shell Representation . ..

Autocorrelation Shell Average Coefficients

LN S |

Figure: ACS representation of the real signal.
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A Fast Decomposition Algorithm

Rewriting the two-scale difference equations:

) -1 ) -1
%q’(X/Q) = k_;ﬂ Pc®(x — k), EW(X/Q) = k_;ﬂ kP (x — k),
where

2-1/2 for k =0,
p = 2732a, for k=+1,43,..., (L —1),
0 for k = 42, +4,...,+(L —2),

{2—1/2 for k =0,
qk = .
—px  otherwise.
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A Fast Decomposition Algorithm

@ We view these coefficients as filters P = {px}_;+1<k<1—1 and
Q ={qk}—1+1<k<i—1.
o pk = p—k and g = q—«.
@ Only L/2 4 1 distinct non-zero coefficients.

@ Using these filters P and Q, we compute

L-1

j
Sk = Z p’5k+2l 1
I=—L+1

L-1

D, = Z /5k+21 1

J=—L+1
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Familiar Examples

@ The Haar wavelet:

(P} = % {%1%} {ak) = % {—%,1,_%}.

@ The Daubechies wavelet with L =2M = 4:
1 1 9 9 1
=—<¢——,0—=,1,—.,0,——
{pk} \/§{ 167 716’ 7167 ) 16}’

1 1 9 9 1
——lio-21-2o2l
{qk} \/5{16” 16 16’ 716}

@ The Shannon wavelet: for k € Z,

Pk = % sinc(k/2), qx = % (2sinc(k) — sinc(k/2)) .
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A Fast Reconstruction Algorithm

o Using ®(&) + W(€) = d(£/2), we obtain a simple reconstruction

formula,
1

V2
forj=1,...,J, k=0,...,N—1

@ Given the autocorrelation shell coefficients {D{;}lS,-SJ, o<k<n-—1 and
{S{}o<ken-1,

Jj—1 _
S, =

(s1+00)

J
sp=2"725)+Y 272D,

j=1
fork=0,...,N—1.

saito@math.ucdavis.edu (UC Davis) Multiscale Edges, Vision, and Wavelets UCD Math. Bio. Seminar 55 / 68



Outline

@ !terative Interpolation and Edge Detection
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An lterative Interpolation Scheme

@ ®(x) induces the symmetric iterative interpolation scheme of
S.Dubuc.

@ This interpolation scheme fills the gap between the following two
extreme cases:

@ The Haar father wavelet — linear interpolation

1+ x for —1<x<0,
Ppaar(x) =9 1—x for0<x <1,
0 otherwise.

@ The Shannon father wavelet — band-limited interpolation

Do (X) = Poo(x) = sinc(x).
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An lterative Interpolation Scheme . ..

Figure: Dubuc iterative interpolation with L = 4.
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Edge Detection via Iterative Interpolation Scheme . ..

@ Essentially, Dubuc's iterative interpolation scheme upsamples the
discrete data, i.e. goes up from coarser to finer scales by filling new
points smoothly between the sample points without changing the
original sample values.

@ As a result, we can evaluate ®(x), ®’(x), W(x), and V'(x) at any
given point x € R within the prescribed numerical accuracy.

o Can iteratively zoom in the interval until it reaches [x —¢,x +¢€]. The
derivative is merely a convolution of the values of ® in that interval
with some discrete filter coefficients.
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© Signal Reconstruction from Zero-Crossings
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Reconstruction of Signals from Zero-Crossings

@ Marr's conjecture

@ Previous attempts

o Curtis & Oppenheim ('87): Multiple level crossings, Fourier
coefficients, no multiscale

@ Hummel & Moniot ('89): Scale-space, heat equation, stability problem,
empirical use of slope information

o Mallat ('91): Dyadic wavelet transform, wavelet maxima, POCS
(projection onto convex sets) for reconstruction

@ Can we reconstruct the original signal from zero-crossings (and slopes

at these zero-crossings, if necessary) of the autocorrelation shell
representation of that signal?
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Advantages using A

@ Zero-crossings of the ACS representation are related to multiscale
edges of the original signal.

@ We have an efficient iterative algorithm to pinpoint these
zero-crossings ( via the Dubuc'’s iterative interpolation ).

@ Proposition allows us to set up a system of linear algebraic equations
to reconstruct the original signal.

o Can explicitly show that the slope information at each zero-crossing is
necessary.
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Proposed Method (See Saito & Beylkin '93 for the details)

© Compute zero-crossing locations and slopes at these locations in the
ACS representation using the symmetric iterative interpolation
scheme.

© Set up a system of linear algebraic equations (often sparse), where
the unknown vector is the original signal itself and the entries of the
matrix are computed from the values of ®(x), d’(x) at the integer
translates of the zero-crossing locations.

© Solve the linear system to find the original signal.
Note that one can introduce heuristic constraints such as the distance

between the adjacent zero-crossings at the jth scale does not exceed
2+1(L — 1), which may stabilize the linear system solver.

saito@math.ucdavis.edu (UC Davis) Multiscale Edges, Vision, and Wavelets UCD Math. Bio. Seminar 63 / 68



1D Examples

® The 1D profile of the image of the size 512.
In this case, the size of the matrix A is 1852 by 512. The relative L?
error of the reconstructed signal compared with the original signal is
5.674436 x 10713, The accuracy threshold ¢ was set to 10714, In this
example, the constraints did not make any difference since the
zero-crossings are “dense”.

@ A unit impulse {5317;(}23:0.
In this case, the size of the matrix A is 56 x 64. This example needs
constraints. The relative L? error with the constraints is
7.417360 x 107> whereas the error of the solution by the generalized
inverse without the constraints is 3.247662 x 10~4.
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© Conclusions
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Conclusions

@ The autocorrelation wavelets behave like edge detectors with various
scales

@ Can characterize the type of edges (singularities) from the decay of
the ACS coefficients across scales

@ The autocorrelation wavelets are symmetric, sufficiently smooth, and
induce a symmetric iterative interpolation scheme

@ The autocorrelation shell is a shift-invariant representation containing
the coefficients of all circulant shifts of the original signal with the
cost O(N log, N)

@ The original signal is also reconstructed by solving a system of linear
algebraic equations derived from the zero-crossings (and slopes)
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