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Ed., Chap. 10 & 11, John Wiley & Sons, 2009.
R. Courant & D. Hilbert: Methods of Mathematical Physics, Vol. I,
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D. S. Grebenkov & B.-T. Nguyen: “Geometrical structure of Laplacian
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Motivations

Motivations

Consider a bounded domain of general (may be quite complicated)
shape Ω⊂Rd .
Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to ∂Ω.
Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ fast decaying expansion
coefficients relative to a meaningful basis.
Want to extract geometric information about the domain Ω =⇒ shape
clustering/classification.

Figure: Ω⊂Rd with ν being a normal vector on ∂Ω.
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Motivations

Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) Anomalies
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Motivations

Data Analysis on a Complicated Domain
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Motivations

3D Hippocampus Shape Analysis
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Motivations

Enter Laplacian Eigenfunctions!

Consider a domain Ω⊂Rd of general shape.

Let L :=−∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.
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Motivations

Enter Laplacian Eigenfunctions . . .

The nontrivial solution u =ϕ of such a boundary value problem (BVP)
is called the Laplacian eigenfunction corresponding to the eigenvalue λ.
We know that in the case of the Dirichlet BC
0 <λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0=λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S.
Laplace
(1749–
1827)

(b) Lejeune
Dirichlet
(1805–1859)

(c) Carl Neu-
mann (1832–
1925)

(d) Gustave
Robin (1855–
1897)
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Motivations

Laplacian Eigenfunctions . . .Why?

Why not analyze (and synthesize) an object of interest defined or
measured on a specific domain Ω using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, torus, intervals, etc.?
After all, sines (and cosines) are the eigenfunctions of the Laplacian
on the rectangular domain with Dirichlet (and Neumann) boundary
condition.
Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.
Laplacian eigenfunctions (LEs) allow us to perform spectral analysis of
data measured at more general domains or even on graphs and
networks =⇒ Generalization of Fourier analysis!
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Motivations

Laplacian Eigenfunctions . . .Why?

LEs have more physical meaning (i.e., vibration modes, heat
conduction, . . . ) than other popular basis functions such as wavelets
and wavelet packets.
LEs may particularly be useful for inverse problems and imaging:
Suppose the domain shape Ω is fixed yet the material contents inside
that domain, say u(x), x ∈Ω, change over time, i.e., u(x , t ), x ∈Ω,
t ∈ [0,T ]. Suppose one want to detect whether there is any change in
the material contents in Ω over time, i.e., estimate ut (x , t ) via
imaging. (More about this later.)
LEs may also be necessary for many shape optimization problems:
e.g., among all possible 2D shapes having unit area, what is the shape
that minimizes its fifth smallest Dirichlet-Laplacian eigenvalues?
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Motivations

Shape Optimization (Courtesy of B. Osting)

Computational results for single eigenvalues

Oudet (2004)TITLE WILL BE SET BY THE PUBLISHER

No Optimal union of discs Computed shapes

10

46.125 46.125

9

64.293 64.293

8

78.4782.462

7

88.9692.2506

107.47110.42

5

119.9127.88

4

133.52138.37

3

143.45154.62

Fig. 5. Best-known shapes

Fig. 6. λ1 (left) and λ2 (right)

[6] M. G. Crandall and P. L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Tran. AMS 277 (1983),
1-43.

[7] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die
kreisförmige den tiefsten Grundton gibt, Sitz. Ber. Bayer. Akad. Wiss. (1923), 169-172.

[8] S. Finzi Vita, Constrained shape optimization for Dirichlets problems : Discretization via relaxation, Adv. in
Math. Sci. and Appl. 9 (1999), 581-596.

[9] A. Henrot, Minimization problems of eigenvalues of the laplacian, to appear in Journal of Evol. Eq.

[10] A. Henrot, E. Oudet, Le stade ne minimise pas λ2 parmi les ouverts convexes du plan, C. R. Acad. Sci. Paris
Sér. I Math., 332 (2001), 417-422.
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I The level set method is used to
represent the domains

I Relaxed formulation used to
compute eigenvalues

I The k-th eigenvalue of the
minimizer is multiple

Antunes + Freitas (2012)

i Ω multiplicity λ∗
i Oudet’s result

5 2 78.20 78.47

6 3 88.52 88.96

7 3 106.14 107.47

8 3 118.90 119.9

9 3 132.68 133.52

10 4 142.72 143.45

11 4 159.39 -

12 4 172.85 -

13 4 186.97 -

14 4 198.96 -

15 5 209.63 -

Table 2: Dirichlet minimizers with the optimal values for λ∗
i and the corresponding multiplicity.

do this, we find that the results obtained do not differ in a significant way and, in particular, the numerical optimizer

for λ13 remains without any symmetries.

6 Symmetries, multiplicities and TRIANGULAR domains

An analysis of the optimizers obtained suggests several remarks and directions for future study, both numerically and

analytically. One first issue is related to symmetry. It is part of the folklore of this subject that optimizers should

have some sort of symmetry. Although this seems to be the case in most situations, we found one example, λ13,

for which there seems to be no symmetry involved. Due to the high multiplicies involved and to the complexity of

the optimization procedure we can’t, of course, ensure that there does not exist another domain - which does not

necessarily have to be close to this one - for which λ13 is lower than the one given here. We have considered the

optimization of λ13 among domains which are symmetric by reflection with respect to some line. Instead of the

expansion (12), we have considered

r(t) ≈ r̃(t) =
M∑

j=0

aj cos(j t) (17)

and then optimized the cooefficients aj , j = 0, ..., M to minimize λ13|Ω|. Our symmetric numerical optimizer is

plotted in Figure 5 together with the optimizer obtained without symmetry constraint. For this symmetric domain,

we obtained λ13 = 187.92 which, due to the high accuracy of the MFS, we believe to be significantly larger than 186.97

13

I Eigenvalues computed via meshless method

I Domains parameterized using Fourier
coefficients

I k = 13 minimizer is not symmetric

7/ 21
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Motivations

Laplacian Eigenfunctions . . . Some Facts

Analysis of L is difficult due to its unboundedness, etc.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Thus L −1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
L has a complete orthonormal basis of L2(Ω), and this allows us to do
eigenfunction expansion in L2(Ω).
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Motivations

Laplacian Eigenfunctions . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.
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History–Spectral Geometry 1D Wave Equation

Laplacian Eigenfunctions in 1D — The Wave Equation
Around mid 18 C, d’Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.

Consider a perfectly elastic and flexible string of length `.
ρ(x): a mass density; T (x): the tension of the string at x ∈ [0,`].
If u(x, t ) is the vertical displacement of the string at location x ∈ [0,`]
and time t ≥ 0, then the string vibrates according to the 1D wave

equation (a.k.a. the string equation): ρ(x)
∂2u

∂ t 2 = ∂

∂x

(
T (x)

∂u

∂x

)

(a) Jean
d’Alembert
(1717–
1783)

(b) Leonhard
Euler (1707–
1783)

(c) Daniel
Bernoulli
(1700–1782)
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History–Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions

From now on, for simplicity, we assume the uniform density and
constant tension, i.e., ρ(x) ≡ ρ, T (x) ≡ T .
Under this assumption, the above wave equation simplifies to:

ut t = c2uxx c ≡
√

T /ρ.

The 1D wave equation above has infinitely many solutions.
Need to specify a boundary condition (BC) and an initial condition
(IC) to obtain the desired solution.
One possibility: both ends of the string are held fixed all the time =⇒
the Dirichlet BC: u(0, t ) = u(`, t ) = 0, ∀t ≥ 0.
As for the IC, let u(x,0) = f (x) (initial position); ut (x,0) = g (x) (initial
velocity), ∀x ∈ [0,`]. What we have then is:





ut t = c2uxx for x ∈ (0,`) and t > 0;
u(0, t ) = u(`, t ) = 0 for t ≥ 0;
u(x,0) = f (x), ut (x,0) = g (x) for x ∈ [0,`].

(1)
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History–Spectral Geometry 1D Wave Equation

Behavior of the String u(x, t )

Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, t ) = X (x)T (t ).
Plugging X (x)T (t ) into the (1), we get:

X T ′′ = c2X ′′T =⇒ X ′′

X
= T ′′

c2T
= k,

where k must be a constant.
This leads to the following ODEs:

X ′′−k X = 0 with X (0) = X (`) = 0, (2)

T ′′− c2kT = 0 (3)

The characteristic equation of (2), i.e., r 2 −k = 0, must be analyzed
carefully.
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History–Spectral Geometry 1D Wave Equation

Solving ODEs
Case I: k > 0 =⇒ r =±

p
k; hence

X (x) = Ae
p

kx +Be−
p

kx or A cosh(
p

kx)+B sinh(
p

kx).

Applying the BC X (0) = X (`) = 0 yields A = B = 0, thus the
case of k > 0 is not feasible.

Case II: k = 0 =⇒ X ′′ = 0 =⇒ X (x) = Ax +B , which again leads to
X (x) ≡ 0.

Case III: k < 0. Set k =−ξ2 and ξ> 0. Then the characteristic
equation becomes r 2 +ξ2 = 0, i.e., r =±iξ. Therefore we get

X (x) = A cos(ξx)+B sin(ξx)

By the BC X (0) = X (`) = 0, we get:
{

X (0) = 0 =⇒ A = 0
X (`) = B sin(ξ`) = 0 =⇒ ξ= nπ

` , ∀n ∈N
Note n = 0 leads to X (x) ≡ 0 in this case, so it should not be
included.
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History–Spectral Geometry 1D Wave Equation

Forming the Solution

Hence we have X (x) = B sin( nπ
` x), and for convenience, by setting

B =
p

2/`, let us define

Xn(x) =ϕn(x) :=
√

2

`
sin

(nπ

`
x
)

,

so that ‖ϕn‖L2[0,`] = 1. Note that {ϕn}n∈N form an orthonormal basis
for L2[0,`].
Similarly, by T ′′ =−ξ2c2T we obtain the family of solutions

Tn(t ) = an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)

.

Now, for each n ∈N, the function

un(x, t ) = Tn(t ) ·ϕn(x) =
{

an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)}√

2

`
sin

(nπ

`
x
)

satisfies (1).
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History–Spectral Geometry 1D Wave Equation

Forming the Solution . . .

Hence, by the Superposition Principle,

u(x, t ) =
∞∑

n=1
un(x, t ) =

∞∑
n=1

{
an cos

(nπc

`
t
)
+bn sin

(nπc

`
t
)}
ϕn(x) (4)

is a general solution with yet undetermined coefficients an and bn .
Next, we specify the coefficients an and bn by matching (4) with the
ICs in (1). Thus we get

u(x,0) = f (x) =
∞∑

n=1
an

√
2

`
sin

(nπ

`
x
)
=

∞∑
n=1

anϕn(x)

Then

an = 〈
f ,ϕn

〉=
√

2

`

∫ `

0
f (x)sin

(nπ

`
x
)

dx,

which is a Fourier sine series expansion of f .
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History–Spectral Geometry 1D Wave Equation

Forming the Solution . . .

Similarly, ut (x,0) = g (x) =
∞∑

n=1

nπc

`
bn

√
2

`
sin

(nπ

`
x
)

.

Note that
nπc

`
bn = 〈

g ,ϕn
〉=⇒ bn = `

nπc

〈
g ,ϕn

〉
.

Finally, we obtain the particular solution:

u(x, t ) =
∞∑

n=1

{〈
f ,ϕn

〉
cos

(nπc

`
t
)
+ `

nπc

〈
g ,ϕn

〉
sin

(nπc

`
t
)}
ϕn(x),

which satisfies (1) completely including both BC & IC.

Figure: Jean Baptiste Joseph Fourier (1768–1830)
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History–Spectral Geometry 1D Wave Equation

Remarks

Need to check if our solution makes sense physically. Notice that

c2 = T

ρ
=⇒ the sound frequency =

nπ

`

√
T

ρ
.

Hence, ` is short, T is high, and ρ is small (thin), then such a string
generates a high frequency tone.
On the other hand, if ` is long, T is low, and ρ is large (thick), then it
generates a low frequency tone.
Note that the Neumann BC imposes

ux (0, t ) = ux (`, t ) = 0 ∀t > 0.

This leads to the Fourier cosine series expansions of f and g . Note
that the Neumann problem allows the solution u0(x, t ) = a0 = const.
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History–Spectral Geometry 1D Wave Equation

Remarks . . .

Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

−X ′′ = ξ2X with X (0) = X (`) = 0. (5)

Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Ω= (0,`).
More importantly, we obtained two objects, namely:

Eigenvalues: λD
n =

(nπ

`

)2
n ∈N;

Eigenfunctions: ϕD
n (x) =

√
2

`
sin

(√
λD

n x

)
n ∈N.

In the case of the Neumann-Laplacian, we got

Eigenvalues: λN
n =

(nπ

`

)2
n ∈N0;

Eigenfunctions: ϕN
n (x) =

√
2

`
cos

(√
λN

n x

)
n ∈N0.
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History–Spectral Geometry 1D Wave Equation

Remarks . . .

We see that in either BCs, {λn}∞n=1 contains geometric information of
the domain Ω= (0,`).
For instance, the size of the first eigenvalue, λ1 = (π/`)2 tells us the
volume of Ω (i.e., the length ` of Ω in 1D).
Under our assumption of constant tension and constant density,

small λ1 ⇐⇒ long `
large λ1 ⇐⇒ short `

Furthermore, the set {ϕn}∞n=1 forms an orthonormal basis for L2(Ω), so
the eigenfunctions allows us to analyze functions living on Ω.
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History–Spectral Geometry Spectral Geometry 101

Spectral Geometry 101

The Laplacian eigenfunctions defined on the domain Ω provides the
orthonormal basis of L2(Ω).
The Laplacian eigenvalues encode geometric information of the
domain Ω=⇒ “Can we hear the shape of a drum?” (Mark Kac, 1966).
Temporarily, consider the Laplacian eigenvalue problem on a planar
domain Ω ∈R2 with the Dirichlet boundary condition:

{
−∆u =λu in Ω
u = 0 on ∂Ω.

Let 0 <λ1 ≤λ2 ≤λ3 ≤ ·· · ≤λk ≤ ·· ·→∞ be the sequence of
eigenvalues of the above Dirichlet-Laplace eigenvalue problem.
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History–Spectral Geometry Spectral Geometry 101

Spectral Geometry 101 . . .

Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

∞∑

k=1
e−λk t = |Ω|

4πt
− |∂Ω|

8
p
πt

+o(t−1/2) as t ↓ 0.

(a) Hermann
Weyl (1885–
1955)

(b) Sub-
baramiah Mi-
nakshisundaram
(1913–1968)

(c) Åke
Pleijel
(1913–1989)

(d) Mark Kac
(1914–1984)
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History–Spectral Geometry Spectral Geometry 101

Universal (or Payne-Pólya-Weinberger) Inequalities (m ∈N)
λm+1 −λm ≤ 2 · 1

m

m∑

j=1
λ j ; λm+1 ≤ 3 · 1

m

m∑

j=1
λ j ;

λm+1

λm
≤ 3.

m∑

j=1

λ j

λm+1 −λ j
≥ m

2
(Hile-Protter).

m∑

j=1
(λm+1 −λ j )2 ≤ 2

m∑

j=1
λ j (λm+1 −λ j ) (Yang).

(a) L. E. Payne
(1923–2011)

(b) George
Pólya
(1887–
1985)

(c) Hans
Weinberger
(1928– )
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History–Spectral Geometry Spectral Geometry 101

Isoperimetric Inequalities

λ1 ≥
π2 j 2

0,1

|Ω|2 (Rayleigh-Faber-Krahn)

λ2

λ1
≤

j 2
1,1

j 2
0,1

≈ 2.5387 (Ashbaugh-Benguria)

jk,1 is the first zero of the Bessel function of order k, i.e., Jk ( jk,1) = 0.
j0,1 ≈ 2.4048, j1,1 ≈ 3.8317, and |Ω| is the area of Ω. In both cases, the
equality is attained iff Ω is a disk in R2.

(a) Lord
Rayleigh
(1842–1919)

(b) Georg Faber
(1877–1966)

(c)
Edgar
Krahn
(1894–
1961)

(d) Mark Ash-
baugh (1953– )

(e) Rafael
Benguria
(1951– )
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History–Spectral Geometry Spectral Geometry 101

Remarks

Excellent references on these inequalities are:
R. D. Benguria, H. Linde, & B. Loewe: “Isoperimetric inequalities for
eigenvalues of the Laplacian and the Schrödinger operator,” Bull.
Math. Sci., vol. 2, pp. 1–56, 2012.
A. Henrot: Extremum Problems for Eigenvalues of Elliptic Operators,
Birkhäuser Verlag, Basel, 2006.
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Other Properties

Domain monotonicity property: Ω1 ⊂Ω2 =⇒λk (Ω1) ≥λk (Ω2), k ∈N.

Scaling property: λk (αΩ) = λk (Ω)

α2 , α> 0, k ∈N.

This implies:
λk (αΩ)

λm(αΩ)
= λk (Ω)

λm(Ω)
, k, m ∈N.

=⇒ the ratios of Laplacian eigenvalues are scale invariant.
Laplacian eigenvalues are translation and rotation invariant.
Using these eigenvalues and eigenvalue ratios for shape recognition and
classification has been quite popular recently as I will describe later.
Some properties and inequalities listed above should hold not only for
the Dirichlet Laplacian eigenvalues but also for our Laplacian
eigenvalues. Note, however, that the domain monotonicity does not
hold for the Neumann Laplacian eigenvalues.
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History–Spectral Geometry Spectral Geometry 101

An Counterexample to the Domain Monotonicity

Consider a 2D rectangle of sides a and b with a > b. Then, let
Ω′ :={(x, y) |0 < x < a, 0 < y < b}, and Ω⊂Ω′ be the inscribed thin rectangle
of sides

√
α2 +β2 ×

√
(a −α)2 + (b −β)2:

α

β

β

α

Ω′

Ω

︷
︸︸

︷

b

︷︸︸︷

a

Figure: The Neumann BC generates an counterexample (From A. Henrot, 2006)
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An Counterexample to the Domain Monotonicity . . .

Can easily compute the Neumann eigenvalues and eigenfunctions for a
rectangle Ω′:

λN
n =λN

`,m =π2
[(

`
a

)2
+ (m

b

)2
]

,

ϕN
n (x, y) =ϕN

`,m(x, y) = c0 cos
(
π`x

a

)
cos

(mπy
b

)
. n,`,m = 0,1,2, . . .

where c0 :=2/
p

ab.
Clearly, the smallest eigenvalue is: λN

0 =λN
0,0 = 0, ϕN

0 (x, y) ≡ c0.
How about the next smallest one? Since a > b,

λN
1 =λN

1,0 =
(π

a

)2
, ϕN

1 (x, y) =ϕN
1,0(x, y) = c0 cos

(π
a

x
)

.
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History–Spectral Geometry Spectral Geometry 101

An Counterexample to the Domain Monotonicity . . .

For λN
2 , we have several possibilities, depending on the relationship

between a and b.
Here are just two examples:
(i) If 2

a > 1
b , i.e., b < a < 2b, then

λN
2 =λN

0,1 =
(π

b

)2
, ϕN

2 (x, y) =ϕN
0,1(x, y) = c0 cos

(π
b

y
)

.

(ii) If 2
a < 1

b , i.e., a > 2b, then

λN
2 =λN

2,0 =
(

2π

a

)2

, ϕN
2 (x, y) =ϕN

2,0(x, y) = c0 cos

(
2π

a
x

)
.

The point is that λN
1 of Ω′ only depends on the longer side of the

rectangle, in this case a.
Now the longer side of Ω is equal to

√
(a −α)2 + (b −β)2. By choosing

appropriate α> 0, β> 0 we can have
√

(a −α)2 + (b −β)2 > a. In other
words, we can have λN

1 (Ω) <λN
1 (Ω′), even if Ω⊂Ω′.
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Computational Procedures

Outline

1 Lecture Outline

2 Motivations

3 History of Laplacian Eigenvalue Problems – Spectral Geometry

4 Some Computational Procedures for Laplacian Eigenvalue Problems

5 Laplacian Eigenfunctions via Commuting Integral Operator

6 Applications

7 Laplacians on Graphs & Networks

8 Summary & References
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Computational Procedures

Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)

Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009
Method of Fundamental Solutions (MFS)

Trefftz 1926, . . . , Karageorghis 2001, Alves/Antunes 2005, . . .

Diagonalization of Integral Operators Commuting with Laplacian (NS,
2008)
. . .
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Computational Procedures Method of Particular Solutions (MPS)

Outline

1 Lecture Outline

2 Motivations

3 History of Laplacian Eigenvalue Problems – Spectral Geometry

4 Some Computational Procedures for Laplacian Eigenvalue Problems
Method of Particular Solutions (MPS)
Method of Fundamental Solutions (MFS)

5 Laplacian Eigenfunctions via Commuting Integral Operator

6 Applications

7 Laplacians on Graphs & Networks

8 Summary & References
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Computational Procedures Method of Particular Solutions (MPS)

Method of Particular Solutions (MPS)
Initiated by Fox, Henrich, Moler (1967)

Figure: The MATLAB® Logo!

Below, I will explain the basics of MPS using the slides created by
Prof. Alex Barnett of Dartmouth College.
For the details, see:

T. Betcke & L. N. Trefethen: “Reviving the method of particular
solutions,” SIAM Review, vol. 47, no. 3, pp. 469–491, 2005.
A. H. Barnett & T. Betcke: “Quantum mushroom billiards,” Chaos, no.
4, 043125, 13 pp., 2007.

The MATLAB-based software package is available at:
http://code.google.com/p/mpspack
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solutions,” SIAM Review, vol. 47, no. 3, pp. 469–491, 2005.
A. H. Barnett & T. Betcke: “Quantum mushroom billiards,” Chaos, no.
4, 043125, 13 pp., 2007.

The MATLAB-based software package is available at:
http://code.google.com/p/mpspack
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Computational Procedures Method of Particular Solutions (MPS)

Numerical test

eigenfunctionsφj for j =

1, 10, 102, 103, 104, 105

background:

random plane waves,

a model for modes

(Berry ’77)

tested 30000φj ’s: strong

evidence for QUE (B ’06)

How compute manyφj

efficiently toj ∼ 106,
103 wavelengths across?
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Computational Procedures Method of Particular Solutions (MPS)

High freq. mushroom eigenfunctions

• j ≈ 5× 104, 20 sec per mode (bdry data only; longer for interior) – p. 12
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Computational Procedures Method of Particular Solutions (MPS)

Two classes of numerical methods for eigenmodes
A) Volume discretization

finite differencing

finite element (hp-FEM)

• localbasis representation
e.g. polynomials in elements

• basis satisfies BCs, not the PDE
• basis sizeN ≥ O(kd)

“pollution” (Babuska–Sauter)

• k2
j ≈ sparse matrix eigenvalues

B) Boundary discretization

boundary integral equations (BIE)

method of particular solutions (MPS)

• globalbasis representation
e.g. layer potentials, plane waves

• basis satisfies PDE−∆u = k2u

• basis sizeN = O(kd−1)
e.g. factor103 smaller

• dense nonlinear eigenval. prob.
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Two classes of numerical methods for eigenmodes
A) Volume discretization

finite differencing

finite element (hp-FEM)

• localbasis representation
e.g. polynomials in elements

• basis satisfies BCs, not the PDE
• basis sizeN ≥ O(kd)

“pollution” (Babuska–Sauter)

• k2
j ≈ sparse matrix eigenvalues

B) Boundary discretization

boundary integral equations (BIE)

method of particular solutions (MPS)

• globalbasis representation
e.g. layer potentials, plane waves

• basis satisfies PDE−∆u = k2u

• basis sizeN = O(kd−1)
e.g. factor103 smaller

• dense nonlinear eigenval. prob.

j < 104, rel. err.10−3 (Heuveline) j > 106, err.10−14 (Tureci, B–Hassell)
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Computational Procedures Method of Particular Solutions (MPS)

Two classes of numerical methods for eigenmodes
A) Volume discretization

finite differencing

finite element (hp-FEM)

• localbasis representation
e.g. polynomials in elements

• basis satisfies BCs, not the PDE
• basis sizeN ≥ O(kd)

“pollution” (Babuska–Sauter)

• k2
j ≈ sparse matrix eigenvalues

B) Boundary discretization

boundary integral equations (BIE)

method of particular solutions (MPS)

• globalbasis representation
e.g. layer potentials, plane waves

• basis satisfies PDE−∆u = k2u

• basis sizeN = O(kd−1)
e.g. factor103 smaller

• dense nonlinear eigenval. prob.

j < 104, rel. err.10−3 (Heuveline) j > 106, err.10−14 (Tureci, B–Hassell)

⇒ boundary methods much more powerful, but nonlinearity an issue
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Computational Procedures Method of Particular Solutions (MPS)

II. Numerics: global basis methods

Want nontriv. solns to (∆ + E)u = 0 in Ω Helmholtz

u = 0 on ∂Ω

– p. 13
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Computational Procedures Method of Particular Solutions (MPS)

II. Numerics: global basis methods

Want nontriv. solns to (∆ + E)u = 0 in Ω Helmholtz

u = 0 on ∂Ω

Guess energy E, trial func. u(x) ≈ ∑N
l=1 αlξl(x), (∆ + E)ξl = 0 in Ω

– p. 13

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 51 / 253



Computational Procedures Method of Particular Solutions (MPS)

II. Numerics: global basis methods

Want nontriv. solns to (∆ + E)u = 0 in Ω Helmholtz

u = 0 on ∂Ω

Guess energy E, trial func. u(x) ≈ ∑N
l=1 αlξl(x), (∆ + E)ξl = 0 in Ω

Need basis {ξl} to well approximate eigenfunctions, e.g. . .

n
i

Plane waves sin(knl · x), k2=E
Fourier-Bessel Jl(kr) sin(lθ)

Thm: Ω analytic ⇒ exponential convergence (Eisenstat ’74)

i.e. best error in u = O(c−N)

c = conformal dist. from ∂Ω to nearest singularity in analytic continuation of u

– p. 13
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Computational Procedures Method of Particular Solutions (MPS)

II. Numerics: global basis methods

Want nontriv. solns to (∆ + E)u = 0 in Ω Helmholtz

u = 0 on ∂Ω

Guess energy E, trial func. u(x) ≈ ∑N
l=1 αlξl(x), (∆ + E)ξl = 0 in Ω

Need basis {ξl} to well approximate eigenfunctions, e.g. . .

n
i

Plane waves sin(knl · x), k2=E
Fourier-Bessel Jl(kr) sin(lθ)

Thm: Ω analytic ⇒ exponential convergence (Eisenstat ’74)

i.e. best error in u = O(c−N)

c = conformal dist. from ∂Ω to nearest singularity in analytic continuation of u

• Practice: usually fail! (coeff ‖α‖2 ≫ 1016 to achieve theorem)

Develop better bases for when singularities nearby or at corners . . .

– p. 13
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Computational Procedures Method of Particular Solutions (MPS)

More flexible global basis sets

D ~ λ

yi charge point

Fundamental solutions (MFS):

H
(1)
0 (k|x − yl|), with {yl} outside Ω

For Ω analytic and MFS lie on closed curve Γ:

Γ shields singularities in anal. cont. of u ⇔ ‖α‖2=O(1)

(B-Betcke JCP ’08)

Practice: excellent, including non-reentrant corners

– p. 14
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More flexible global basis sets

D ~ λ

yi charge point

Fundamental solutions (MFS):

H
(1)
0 (k|x − yl|), with {yl} outside Ω

For Ω analytic and MFS lie on closed curve Γ:

Γ shields singularities in anal. cont. of u ⇔ ‖α‖2=O(1)

(B-Betcke JCP ’08)

Practice: excellent, including non-reentrant corners

Corner-adapted Fourier-Bessel:

Jβl(kr) sin(βlθ)
for singular corner θ = π/β, β non-integer

Practice: exp. conv. for multiple corners (Betcke ’05)

mushroom w/ scaling method (B-Betcke ’07)

– p. 14
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Computational Procedures Method of Particular Solutions (MPS)

More flexible global basis sets

D ~ λ

yi charge point

Fundamental solutions (MFS):

H
(1)
0 (k|x − yl|), with {yl} outside Ω

For Ω analytic and MFS lie on closed curve Γ:

Γ shields singularities in anal. cont. of u ⇔ ‖α‖2=O(1)

(B-Betcke JCP ’08)

Practice: excellent, including non-reentrant corners

Corner-adapted Fourier-Bessel:

Jβl(kr) sin(βlθ)
for singular corner θ = π/β, β non-integer

Practice: exp. conv. for multiple corners (Betcke ’05)

mushroom w/ scaling method (B-Betcke ’07)

All such global methods much better than FEM at large k: N = O(k)
• price to pay for high accuracy is understanding analyticity of u

– p. 14
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Computational Procedures Method of Particular Solutions (MPS)

History of global basis approximation

global bases a.k.a Method of particular solutions (MPS)

Schryer, Eisenstat (’70s)
Still (’80s)

NUMERICAL ANALYSIS: high accuracy

Complex approximation theory
Plane wave method

(Heller ’80s)

QUANTUM PHYSICS: high freq

Plane wave FEM

Trefethen Driscoll

(Monk, Melenk, Moiola)

GSVD (Betcke ’06)

B−Betcke (’07), B−Hassell (’10)

Barnett−Cohen−Heller (’00)

Scaling method
(Vergini−Saraceno ’94)

Vekua (’60s) MPS (Fox−Henrici−Moler ’67)

Recent weaving together of ideas from physics and numerical math. . .

– p. 15
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Computational Procedures Method of Particular Solutions (MPS)

Finding eigenpairs Ej, φj with the MPS

If u approximates φj then
∫
∂Ω

|u|2ds small (Fox et al. ’67, Heller ’84)

Small compared to what?

– p. 16
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Computational Procedures Method of Particular Solutions (MPS)

Finding eigenpairs Ej, φj with the MPS

If u approximates φj then
∫
∂Ω

|u|2ds small (Fox et al. ’67, Heller ’84)

Small compared to what? want interior norm
∫
Ω
|u|2dx = 1, so . . .

tension t[u] :=

(∫
∂Ω

|u|2ds∫
Ω
|u|2dx

)1/2

=

(
α∗Fα

α∗Gα

)1/2

(Betcke, Barnett, . . . )

տ inner prod. matrices of bases

– p. 16
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Computational Procedures Method of Particular Solutions (MPS)

Finding eigenpairs Ej, φj with the MPS

If u approximates φj then
∫
∂Ω

|u|2ds small (Fox et al. ’67, Heller ’84)

Small compared to what? want interior norm
∫
Ω
|u|2dx = 1, so . . .

tension t[u] :=

(∫
∂Ω

|u|2ds∫
Ω
|u|2dx

)1/2

=

(
α∗Fα

α∗Gα

)1/2

(Betcke, Barnett, . . . )

տ inner prod. matrices of bases

Best tension at each E, tm(E) := minα t[u] = λ1(F,G)
min. generalized eigenvalue

– p. 16
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Computational Procedures Method of Particular Solutions (MPS)

Finding eigenpairs Ej, φj with the MPS

If u approximates φj then
∫
∂Ω

|u|2ds small (Fox et al. ’67, Heller ’84)

Small compared to what? want interior norm
∫
Ω
|u|2dx = 1, so . . .

tension t[u] :=

(∫
∂Ω

|u|2ds∫
Ω
|u|2dx

)1/2

=

(
α∗Fα

α∗Gα

)1/2

(Betcke, Barnett, . . . )

տ inner prod. matrices of bases

Best tension at each E, tm(E) := minα t[u] = λ1(F,G)
min. generalized eigenvalue

2500 2505 2510 2515 2520 2525 2530
0

0.02

0.04

0.06

E

t(
E

)

673 674 675

Ω analytic, j ≈ 700

– p. 16
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Computational Procedures Method of Particular Solutions (MPS)

Finding eigenpairs Ej, φj with the MPS

If u approximates φj then
∫
∂Ω

|u|2ds small (Fox et al. ’67, Heller ’84)

Small compared to what? want interior norm
∫
Ω
|u|2dx = 1, so . . .

tension t[u] :=

(∫
∂Ω

|u|2ds∫
Ω
|u|2dx

)1/2

=

(
α∗Fα

α∗Gα

)1/2

(Betcke, Barnett, . . . )

տ inner prod. matrices of bases

Best tension at each E, tm(E) := minα t[u] = λ1(F,G)
min. generalized eigenvalue

2500 2505 2510 2515 2520 2525 2530
0

0.02

0.04

0.06

E

t(
E

)

673 674 675

Ω analytic, j ≈ 700

• iterative search along E axis: ∼ 10 func. evals to find each min

• then eigenvector gives basis coeffs of approx. φj How accurate?
– p. 16
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Computational Procedures Method of Particular Solutions (MPS)

Numerical analysis: bounding errors

Say find small t[u] at some E: how close is true Ej?

seek upper bound on dist(E, spec) := minj |Ej − E| E

jEdist

t[u]

tension

– p. 17
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Computational Procedures Method of Particular Solutions (MPS)

Numerical analysis: bounding errors

Say find small t[u] at some E: how close is true Ej?

seek upper bound on dist(E, spec) := minj |Ej − E| E

jEdist

t[u]

tension

Thm (Moler-Payne ’68): dist(E, spec) ≤ CMP E t[u]

Noticed slopes of tension steeper than this at high E: can we beat MP?

– p. 17
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Computational Procedures Method of Particular Solutions (MPS)

Numerical analysis: bounding errors

Say find small t[u] at some E: how close is true Ej?

seek upper bound on dist(E, spec) := minj |Ej − E| E

jEdist

t[u]

tension

Thm (Moler-Payne ’68): dist(E, spec) ≤ CMP E t[u]

Noticed slopes of tension steeper than this at high E: can we beat MP?

Thm (B ’09, B-Hassell ’10): dist(E, spec) ≤ CΩE
1/2 t[u]

e.g E = 106 gives 103 better than MP: 3 extra digits for free!

best possible power of E; similar improvement for L2-error of φj

– p. 17
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Computational Procedures Method of Particular Solutions (MPS)

Numerical analysis: bounding errors

Say find small t[u] at some E: how close is true Ej?

seek upper bound on dist(E, spec) := minj |Ej − E| E

jEdist

t[u]

tension

Thm (Moler-Payne ’68): dist(E, spec) ≤ CMP E t[u]

Noticed slopes of tension steeper than this at high E: can we beat MP?

Thm (B ’09, B-Hassell ’10): dist(E, spec) ≤ CΩE
1/2 t[u]

e.g E = 106 gives 103 better than MP: 3 extra digits for free!

best possible power of E; similar improvement for L2-error of φj

Proof: ∃ E-dep. bdry op. A s.t.
∫

Ω
uv dx =

∫
∂Ω
u(s)(Av)(s)ds

t[u]−2 ≤ ‖A(E)‖2 which can bound via new quasi-orthogonality thm:

“all bdry funcs ψj := n · ∇φj in semiclassical window are nearly orthog”∥∥∥∥
∑

|Ej−E|≤E1/2

ψj〈ψj, ·〉
∥∥∥∥

2

≤ CΩE
norm of each term is O(E),

Weyl says O(E(d−1)/2) such terms

– p. 17
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Computational Procedures Method of Particular Solutions (MPS)

Example

Ω analytic

MFS (point charges) basis

N = 500

skip other details

t[u] = 2.2 × 10−12 at

E = 10005.0213579739

Thm gives ±3 in last digit

i.e. 14 digits accuracy

j ≈ 2552

c)

– p. 18
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Computational Procedures Method of Fundamental Solutions (MFS)

Outline

1 Lecture Outline

2 Motivations

3 History of Laplacian Eigenvalue Problems – Spectral Geometry

4 Some Computational Procedures for Laplacian Eigenvalue Problems
Method of Particular Solutions (MPS)
Method of Fundamental Solutions (MFS)

5 Laplacian Eigenfunctions via Commuting Integral Operator

6 Applications

7 Laplacians on Graphs & Networks

8 Summary & References
saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 68 / 253



Computational Procedures Method of Fundamental Solutions (MFS)

Method of Fundamental Solutions (MFS)

Is highly efficient and accurate for computing Laplacian eigenvalues
and eigenfunctions
Can deal with singularities such as corners and cracks in a domain
Is one of the meshfree methods; i.e., no meshing/gridding.
Below, I will explain the basics of MFS using the slides created by Dr.
Pedro Antunes of Univ. of Lisbon, Portugal.
For the details, see:

C. J. S. Alves and P. R. S. Antunes: “The Method of Fundamental
Solutions applied to the calculation of eigenfrequencies and eigenmodes
of 2D simply connected shapes,” Computers, Materials & Continua,
vol. 2, no. 4, pp. 251–266, 2005.
P. R. S. Antunes: “Numerical calculation of eigensolutions of 3D shapes
using the Method of Fundamental Solutions,” Numerical Methods for
Partial Differential Equations, vol. 27, no. 6, pp. 1525–1550, 2011.
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Computational Procedures Method of Fundamental Solutions (MFS)

•  The Method of Fundamental Solution (MFS) 

Fundamental solution: 

• Consider the approximation 

• The coefficients are calculated such that              fits the boundary conditions 

γ  an admissible curve 
Ω 
∂Ω 

γ!
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Computational Procedures Method of Fundamental Solutions (MFS)

•  Theoretical results 

Ω!
∂Ω!

γ!
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Computational Procedures Method of Fundamental Solutions (MFS)

Ω 

∂Ω 

• Consider N points                               collocation points      (almost equally spaced) 

xi 

yi 

•  Algorithm for the source points (2D) 

• Define N points                       source points 
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Computational Procedures Method of Fundamental Solutions (MFS)

• Search for local minima using a direct search method 

•  Algorithm for the eigenfrequency calculation 

• Build the matrices 

• Consider                                        and look for the minima 

Circle Square 
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Computational Procedures Method of Fundamental Solutions (MFS)

- non null solution, 
- null at boundary points 

The extra point  x0  is not on a nodal line 

•  Algorithm for the eigenfunction calculation 

• Define extra points    

• To calculate αj solve the system 

• Given the approximate eigenvalue λ, define 

Ω 

∂Ω x0 

y0 
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Computational Procedures Method of Fundamental Solutions (MFS)

•  Error bounds (Dirichlet case) 

 Let           be an approximation for the pair 
(eigenvalue,eigenfunction) which satisfies the problem 

 

     (with small     ) 

 
Then there exists an eigenvalue λ and eigenfunction u  
such that 
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Computational Procedures Method of Fundamental Solutions (MFS)

N=dimension of  the matrix 

N abs. error (λ1) N abs. error (λ2) 
 

N abs. error (λ3) 
 

30 5.72×10-6 30 1.36×10-6 30 1.81×10-5 
40 8.42×10-8 40 1.67×10-7 40 2.17×10-7 
50 7.76×10-8 50 1.11×10-8 50 6.94×10-8 
60 1.46×10-9 60 1.44×10-9 60 3.17×10-9 

N abs. error (λ1) N abs. error (λ2) 
 

N abs. error (λ3) 
 

30 2.31×10-6 30 4.94×10-6 30 5.21×10-6 

40 5.91×10-8 40 1.21×10-8 40 1.26×10-7 

50 1.64×10-9 50 3.01×10-10 50 3.27×10-9 

60 8.23×10-11 60 9.31×10-12 60 9.35×10-11 

N abs. error (λ5) N abs. error (λ5) 
 

N abs. error (λ5) 
 

20 2.11×10-4 30 1.46×10-5 40 1.23×10-6 

50 3.06×10-7 60 2.52×10-8 70 5.05×10-9 

80 3.19×10-9 90 6.19×10-10 100 1.87×10-10 

•  Numerical tests (Dirichlet case) – 2D 
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Computational Procedures Method of Fundamental Solutions (MFS)

N abs. error (λ1) N abs. error (λ2) 
 

N abs. error (λ3) 
 

112 1.25×10-8 112 9.21×10-7 112 8.57×10-6 

158 8.61×10-12 158 1.97×10-9 158 6.53×10-8 

212 2.18×10-14 212 1.61×10-13 212 9.46×10-11 

N abs. error (λ1) N abs. error (λ2) 
 

N abs. error (λ3) 
 

218 6.13×10-10 218 9.27×10-7 218 1.55×10-6 

296 3.11×10-10 296 7.31×10-8 296 7.09×10-8 

386 9.15×10-12 386 5.25×10-9 386 1.95×10-10 

N abs. error (λ5) N abs. error (λ5) 
 

N abs. error (λ5) 
 

226 1.36×10-5 304 5.87×10-6 374 7.21×10-8 

•  Numerical tests (Dirichlet case) – 3D 
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Computational Procedures Method of Fundamental Solutions (MFS)

Point-sources  
on the boundary of a  

circular domain 

Point-sources on an  
“expansion” of ∂Ω!

With the choice proposed 

•  Numerical tests (on the location of point sources) 
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Computational Procedures Method of Fundamental Solutions (MFS)

nodal domains plot eigenfunction 

•  Numerical Simulations 
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Computational Procedures Method of Fundamental Solutions (MFS)

3D plots of eigenfunctions associated to three eigenvalues 

•  Numerical simulations – non trivial domains 3D 
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Computational Procedures Method of Fundamental Solutions (MFS)

MFS Extensions

The classical MFS is not accurate for corner/crack singularities
However, splitting a solution into a regular part and a singular part
combining MFS with the Method of Particular Solutions
(Betcke/Trefethen), one can obtain highly accurate solutions.
Reference: P. R. S. Antunes and S. S. Valtchev: “A meshfree
numerical method for acoustic wave propagation problems in planar
domains with corners and cracks,” J. Comput. Appl. Math., vol. 234,
pp. 2646–2662, 2010.
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Computational Procedures Method of Fundamental Solutions (MFS)

A Potential Problem of MFS for Imaging/Inverse Problems

MFS requires specific boundary condition to begin with (Dirichlet,
Neumann, or Robin).
In imaging and/or inverse problems, what is the natural boundary
condition to use for a local region of interest (ROI)?
The Dirichlet boundary condition u|∂Ω = 0 is certainly not natural; the
material value at the boundary shouldn’t be 0.
Furthermore, it may suffer from the Gibbs phenomenon (just like in
truncated Fourier series).
The Neumann boundary condition may be a bit better than the

Dirichlet case:
∂u

∂ν

∣∣∣∣
∂Ω

= 0.

Is it really natural to represent an ROI within a larger domain? Cannot
expect the values (intensity) across the boundary ∂Ω are flat.
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Computational Procedures Method of Fundamental Solutions (MFS)

Photograph of Geological Specimen
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Computational Procedures Method of Fundamental Solutions (MFS)

Boundary Values of an ROI
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Commuting Integral Operator

Outline
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2 Motivations

3 History of Laplacian Eigenvalue Problems – Spectral Geometry
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Commuting Integral Operator Integral Operators Commuting with Laplacian
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Commuting Integral Operator Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

Analysis of the Laplacian L =−∆ is difficult due to its
unboundedness, etc.
Computing the eigenfunctions of L by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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Commuting Integral Operator Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian

The key idea to avoid difficulties associated with the Laplacian L is to
find an integral operator K commuting with L without imposing the
strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 88 / 253



Commuting Integral Operator Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian

The key idea to avoid difficulties associated with the Laplacian L is to
find an integral operator K commuting with L without imposing the
strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 88 / 253



Commuting Integral Operator Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian

The key idea to avoid difficulties associated with the Laplacian L is to
find an integral operator K commuting with L without imposing the
strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 88 / 253



Commuting Integral Operator Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

The inverse of L with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel is
called the Green’s function G(x , y).
Since it is not easy to obtain G(x , y) in general, let’s replace G(x , y) by
the fundamental solution of the Laplacian:

K (x , y) =





−1
2 |x − y | if d = 1,

− 1
2π log |x − y | if d = 2,

|x−y |2−d

(d−2)ωd
if d > 2,

where ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.
The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Commuting Integral Operator Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x , y):

K f (x) :=
∫

Ω
K (x , y) f (y)dy , f ∈ L2(Ω).

Theorem (NS 2005, 2008)

The integral operator K commutes with the Laplacian L =−∆ with the
following non-local boundary condition:

∫

∂Ω
K (x , y)

∂ϕ

∂νy
(y)ds(y) =−1

2
ϕ(x) + pv

∫

∂Ω

∂K (x , y)

∂νy
ϕ(y)ds(y),

for all x ∈ ∂Ω, where ϕ is an eigenfunction common for both operators.
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Commuting Integral Operator Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Corollary (NS 2009)

The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ=
{
λϕ if x ∈Ω;

0 if x ∈Rd \Ω,

with the boundary condition that ϕ and
∂ϕ

∂ν
are continuous across the

boundary ∂Ω. Moreover, as |x |→∞, ϕ(x) must be of the following form:

ϕ(x) =
{

const · |x |2−d +O
(|x |1−d

)
if d 6= 2;

const · ln |x |+O
(|x |−1

)
if d = 2.
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Commuting Integral Operator Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Corollary (NS 2005, 2008)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x , y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x , y) ∼
∞∑

j=1
µ jϕ j (x)ϕ j (y),

and {ϕ j } j forms an orthonormal basis of L2(Ω).
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Commuting Integral Operator Simple Examples

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

ϕ(0)+ϕ(1) =−ϕ′(0) =ϕ′(1).

The kernel K (x , y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 94 / 253



Commuting Integral Operator Simple Examples

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

ϕ(0)+ϕ(1) =−ϕ′(0) =ϕ′(1).

The kernel K (x , y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 94 / 253



Commuting Integral Operator Simple Examples

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

ϕ(0)+ϕ(1) =−ϕ′(0) =ϕ′(1).

The kernel K (x , y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 94 / 253



Commuting Integral Operator Simple Examples

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

ϕ(0)+ϕ(1) =−ϕ′(0) =ϕ′(1).

The kernel K (x , y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 94 / 253



Commuting Integral Operator Simple Examples

1D Example . . .

λ0 ≈−5.756915, which is a solution of tanh
p

−λ0

2 = 2p
−λ0

,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m −1)2π2, m = 1,2, . . .,

ϕ2m−1(x) =
p

2cos(2m −1)πx;

λ2m , m = 1,2, . . ., which are solutions of tan
p
λ2m

2 =− 2p
λ2m

,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0,1, . . . are normalization constants.
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Commuting Integral Operator Simple Examples

First 5 Basis Functions
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Commuting Integral Operator Simple Examples

1D Example: Comparison

The Laplacian eigenfunctions with the Dirichlet boundary condition:
−ϕ′′ =λϕ, ϕ(0) =ϕ(1) = 0, are sines. The Green’s function in this case
is:

GD (x, y) = min(x, y)−x y.

Those with the Neumann boundary condition, i.e., ϕ′(0) =ϕ′(1) = 0,
are cosines. The Green’s function is:

GN (x, y) =−max(x, y)+ 1

2
(x2 + y2)+ 1

3
.

Remark: Gridpoint ⇔ DST-I/DCT-I;
Midpoint⇔ DST-II/DCT-II.
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Commuting Integral Operator Simple Examples

1D Example: Rayleigh Functions/Trace Formula

Corollary (NS 2008)

Let {λn}∞n=0 be the 1D Laplacian eigenvalues of the non-local boundary
problem with the commuting integral operator whose kernel is
K (x, y) =−|x − y |/2. Then, they satisfy the following trace formula:

∞∑
n=0

1

λn
=

∫ 1

0
K (x, x)dx = 0.

Compare this with the famous Basel problem, which is based on the
Dirichlet boundary condition:

∞∑
n=1

1

π2n2 =
∫ 1

0
GD (x, x)dx = 1

6
⇐⇒

∞∑
n=1

1

n2 = π2

6
.
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Commuting Integral Operator Simple Examples

1D Example: Rayleigh Functions/Trace Formula . . .

Theorem (NS 2008)

Let Kp (x, y) be the pth iterated kernel of K (x, y) =−|x − y |/2. Then,

∞∑
n=0

1

λ
p
n

=
∫ 1

0
Kp (x, x)dx = 1

4p

(
S2p + (−1)p

α2p

)
+ 4p −1

2 · (2p)!
|B2p |,

where α≈ 1.19967864 satisfies α= cothα, B2p is the Bernoulli number, and

S2p :=
∞∑

m=1

(
4

λ2m

)p

,

satisfies the following recursion formula:

n+1∑

`=1

(−1)n−`+1 (2(n −`+1)−1)

(2(n −`+1))!

{
S2`+

(−1)`

α2`

}
= (−1)n

2(2n)!
.
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Commuting Integral Operator Simple Examples

2D Example

Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x , y) =− 1

2π log |x − y | gives rise to:

−∆ϕ=λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
∂Ω

= ∂ϕ

∂r

∣∣∣
∂Ω

=−∂Hϕ

∂θ

∣∣∣
∂Ω

,

where H is the Hilbert transform for the circle, i.e.,

H f (θ) := 1

2π
pv

∫ π

−π
f (η)cot

(
θ−η

2

)
dη θ ∈ [−π,π].

Let βk,` is the `th zero of the Bessel function of order k, Jk (βk,`) = 0.
Then,

ϕm,n(r,θ) =
{

Jm(βm−1,n r )
(cos

sin

)
(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0(β0,n r ) if m = 0, n = 1,2, . . .,

λm,n =
{
β2

m−1,n , if m = 1, . . . , n = 1,2, . . .,

β2
0,n if m = 0, n = 1,2, . . ..

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 100 / 253



Commuting Integral Operator Simple Examples

2D Example

Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x , y) =− 1

2π log |x − y | gives rise to:

−∆ϕ=λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
∂Ω

= ∂ϕ

∂r

∣∣∣
∂Ω

=−∂Hϕ

∂θ

∣∣∣
∂Ω

,

where H is the Hilbert transform for the circle, i.e.,

H f (θ) := 1

2π
pv

∫ π

−π
f (η)cot

(
θ−η

2

)
dη θ ∈ [−π,π].

Let βk,` is the `th zero of the Bessel function of order k, Jk (βk,`) = 0.
Then,

ϕm,n(r,θ) =
{

Jm(βm−1,n r )
(cos

sin

)
(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0(β0,n r ) if m = 0, n = 1,2, . . .,

λm,n =
{
β2

m−1,n , if m = 1, . . . , n = 1,2, . . .,

β2
0,n if m = 0, n = 1,2, . . ..

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 100 / 253



Commuting Integral Operator Simple Examples

First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace
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Commuting Integral Operator Simple Examples

3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x , y) = 1

4π|x−y | .
Top 9 eigenfunctions cut at the equator viewed from the south:
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Commuting Integral Operator Historical Remarks

Outline

1 Lecture Outline

2 Motivations

3 History of Laplacian Eigenvalue Problems – Spectral Geometry

4 Some Computational Procedures for Laplacian Eigenvalue Problems

5 Laplacian Eigenfunctions via Commuting Integral Operator
Integral Operators Commuting with Laplacian
Simple Examples
Historical Remarks
Discretization of the Problem
Fast Algorithms for Computing Eigenfunctions

6 Applications

7 Laplacians on Graphs & Networks

8 Summary & References
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Commuting Integral Operator Historical Remarks

Connection with Potential Theory

Mark Kac mentioned at the very end of his 1951 paper (Proceedings
of the 2nd Berkeley Symposium on Mathematical Statistics and
Probability) that the same integral equation in 3D is equivalent to the
Laplacian eigenvalue problem. But his BC was incorrect.
In 1967–9, John Troutman studied the eigenvalues of the same
integral operator (i.e., the logarithmic potential) in 2D. He posed this
problem as the Laplacian eigenvalue problem whose eigenfunctions are
harmonic outside of the given domain. He proved that there exists one
negative eigenvalue iff the transfinite diameter (or logarithmic
capacity) of the closed domain Ω exceeds 1.
In 1970, Mark Kac and Tomasz Bojdecki obtained similar results using
probabilistic argument (Kac) and purely analytic method (Bojdecki).
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Commuting Integral Operator Historical Remarks

Connection with Potential Theory . . .

Since then, there have been some sporadic related works, but the use of
the eigenfunctions of such potential operators has not been systematically
pursued as far as we know.

(a) Mark Kac
(1914–1984)

(b) John
Troutman
(193?– )

(c) Tomasz Bo-
jdecki (?)
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Commuting Integral Operator Historical Remarks

Connection with Volterra Operators

The 1959 paper of Victor B. Lidskĭı “Conditions for completeness of a
system of root subspaces for non-selfadjoint operators with discrete
spectra,” Amer. Math. Soc. Transl. Ser. 2, vol. 34, pp. 241–281, 1963,
discusses the iterated Volterra integral operator:

A f (x) :=
∫ 1

x
f (y)dy, f ∈ L2(0,1) =⇒ A2 f (x) =

∫ 1

x
(x − y) f (y)dy

which was decomposed into the real and imaginary parts:

(A2)R f := 1

2
(A2 + A2∗) =−1

2

∫ 1

0
|x − y | f (y)dy ;

(A2)I f := 1

2i
(A2 − A2∗) = 1

2i

∫ 1

0
(x − y) f (y)dy.
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Commuting Integral Operator Historical Remarks

Connection with Volterra Operators . . .

The famous book of Gohberg-Krĕın (Introduction to the Theory of
Linear Nonselfadjoint Operators, AMS, 1969) also discusses the same
operators.
Do the higher dimensional cases have also similar correspondence?

(a) Victor
Lidskĭı
(1924–
2008)

(b) Mark
Krein (1907–
1989)

(c) Israel Go-
hberg (1928–
2009)
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Commuting Integral Operator Historical Remarks

Connection with von Neumann–Krĕın Extension Theory

John von Neumann (1929) and Mark Krĕın (1947) considered a
self-adjoint extension of symmetric operators.
Let T :=− d2

d x2 , D(T ) :=H 2
0 (0,1) ⊂ H 2(0,1), where

H 2
0 (0,1) :={

f ∈ H 2(0,1) | f (0) = f (1) = f ′(0) = f ′(1) = 0
}
and

H 2(0,1) :={
f ∈C 1[0,1] | f ′ ∈ AC [0,1], f ′′ ∈ L2(0,1)

}
. T is a positive

symmetric operator on D(T ), but not self-adjoint because
D(T ∗) = H 2(0,1)%D(T ).
von Neumann-Krĕın extension of T is the smallest (or soft)
self-adjoint extension T0 =− d2

d x2 ,
D(T0) = {

f ∈ H 2(0,1) | f ′(0) = f ′(1) = f (1)− f (0)
}=D(T ∗

0 ).
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Commuting Integral Operator Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

Compare it with our boundary condition: − f ′(0) = f ′(1) = f (0)+ f (1).
Also, compare it with the Friedrichs extension of T , which is the
largest (or hard) self-adjoint extension: T∞ =− d2

d x2 ,
D(T∞) = {

f ∈ H 2(0,1) | f (0) = f (1) = 0
}=D(T ∗

∞) ⇐⇒ Dirichlet BC!

(a) John
von Neu-
mann
(1903–
1957)

(b) Mark
Krein (1907–
1989)

(c) Kurt
Friedrichs
(1901–
1982)
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Commuting Integral Operator Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

Our Basis Krĕın-Laplacian Basis

λ0 -5.756915. . . ; tanh
√
−λ0/2 = 2/

√
−λ0 0

ϕ0 cosh
√
−λ0(x −1/2) 1

λ2m−1 ((2m −1)π)2 tan
√
λ2m−1/2 =

√
λ2m−1/2

ϕ2m−1 sin(2m −1)π(x −1/2) sin
√
λ2m−1(x −1/2)

λ2m tan
√
λ2m/2 =−2/

√
λ2m (2mπ)2

ϕ2m cos
√
λ2m(x −1/2) cos2mπ(x −1/2)

Note that the above eigenfunctions are not normalized to have ‖ ·‖2 = 1.
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Commuting Integral Operator Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

(a) Our Basis (b) Krĕın-Laplacian Basis
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Commuting Integral Operator Historical Remarks

Connection with von Neumann–Krĕın Extension Theory . . .

In higher dimensions, the von Neumann-Krĕın extension of the
Laplacian T =−∆, D(T ) = H 2

0 (Ω), on Ω⊂Rd turns out to be: T0 =−∆,
D(T0) =

{
f ∈ H 2(Ω)

∣∣∣ ∂ f

∂ν
(x) = ∂H( f )

∂ν
(x), x ∈ ∂Ω

}
where H( f ) is a

harmonic function in Ω with the boundary condition: H( f ) = f on ∂Ω;
See e.g., A. Alonso & B. Simon: “The Birman-Krĕın-Vishik theory of
self-adjoint extensions of semibounded operators,” J. Operator Theory,
vol. 4, pp. 251–270, 1980.
This is closely related to our Polyharmonic Local Sine Transform
(PHLST): N. Saito & J.-F. Remy: “The polyharmonic local sine
transform: A new tool for local image analysis and synthesis without
edge effect,” Appl. Comput. Harm. Anal., vol. 20, pp. 41–73, 2006.
After all, the von Neumann-Krĕın extensions do not deal with the
exterior of the domain Ω while our approach based on the commuting
integral operators allow us to extend our eigenfunctions very naturally
to the exterior of Ω.
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See e.g., A. Alonso & B. Simon: “The Birman-Krĕın-Vishik theory of
self-adjoint extensions of semibounded operators,” J. Operator Theory,
vol. 4, pp. 251–270, 1980.
This is closely related to our Polyharmonic Local Sine Transform
(PHLST): N. Saito & J.-F. Remy: “The polyharmonic local sine
transform: A new tool for local image analysis and synthesis without
edge effect,” Appl. Comput. Harm. Anal., vol. 20, pp. 41–73, 2006.
After all, the von Neumann-Krĕın extensions do not deal with the
exterior of the domain Ω while our approach based on the commuting
integral operators allow us to extend our eigenfunctions very naturally
to the exterior of Ω.
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Commuting Integral Operator Discretization of the Problem

Discretization of the Problem

Assume that the whole dataset consists of a collection of data sampled
on a regular grid, and that each sampling cell is a box of size

∏d
i=1∆xi .

Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are {x i }N

i=1.
Under these assumptions, we can approximate the integral eigenvalue
problem K ϕ=µϕ with a simple quadrature rule with node-weight
pairs (x j , w j ) as follows.

N∑

j=1
w j K (x i , x j )ϕ(x j ) =µϕ(x i ), i = 1, . . . , N , w j =

d∏

i=1
∆xi .

Let Ki , j :=w j K (x i , x j ), ϕi :=ϕ(x i ), and ϕ :=(ϕ1, . . . ,ϕN )T ∈RN . Then,
the above equation can be written in a matrix-vector format as:
Kϕ=µϕ, where K = (Ki j ) ∈RN×N . Under our assumptions, the
weight w j does not depend on j , which makes K symmetric.
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Commuting Integral Operator Fast Algorithms for Computing Eigenfunctions
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Commuting Integral Operator Fast Algorithms for Computing Eigenfunctions

A Possible Fast Algorithm for Computing ϕ j ’s

Observation: our kernel function K (x , y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory.
Idea: Accelerate the matrix-vector product Kϕ using the Fast
Multipole Method (FMM).
Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N 2), but
can achieve O(N log N ) via the randomized SVD algorithm of
Woolfe-Liberty-Rokhlin-Tygert (2008)).
Construct O(N ) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS”
algorithm of Chandrasekaran et al. (2006)).
Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.
(Computational cost: O(N ) for each eigenvalue/eigenvector).
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Commuting Integral Operator Fast Algorithms for Computing Eigenfunctions

Tree-Structured Matrix via FMM

(a) Hierarchical indexing scheme (b) Tree-Structured Matrix
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Commuting Integral Operator Fast Algorithms for Computing Eigenfunctions

First 25 Basis Functions via the FMM-based algorithm
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Commuting Integral Operator Fast Algorithms for Computing Eigenfunctions

Splitting into Subproblems for Faster Computation

(a) Whole islands (b) Separated islands
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Commuting Integral Operator Fast Algorithms for Computing Eigenfunctions

Eigenfunctions for Separated Islands
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Applications

Applications

Suppose images (or vector-valued measurements) are recorded on the
domain Ω of general shape in Rd ; d = 2 or 3.
Interactive image analysis, discrimination, interpretation:

Medical image analysis: e.g., hippocampal shape analysis for early
Alzheimer’s
Biometry: e.g., identification and characterization of eyes, faces, etc.

Geophysical data assimilation:
Incorporating ocean current data measured by high frequency radar
into a numerical model;
Interpolation, extrapolation, prediction of vector-valued meteorology
data (temperature, pressure, wind speed, etc.) measured at the
weather station in the 3D terrain.
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Applications Image Approximation I: Comparison with Wavelets

Image Approximation; Comparison with Wavelets

(a) What data?

(b) χJ · Barbara
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Applications Image Approximation I: Comparison with Wavelets

First 25 Basis Functions
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Applications Image Approximation I: Comparison with Wavelets

Next 25 Basis Functions
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Applications Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 Coefficients

(a) Reconstruction

(b) Error
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Applications Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 Coefficients

(a) Reconstruction (b) Error
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Applications Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Applications Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Applications Image Approximation I: Comparison with Wavelets

Comparison of Coefficient Decay
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Applications Image Approximation I: Comparison with Wavelets

A Real Challenge: Kernel matrix is of 387924×387924.
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Applications Image Approximation I: Comparison with Wavelets

First 25 Basis Functions via the FMM-based algorithm
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Applications Image Approximation II: Perturbed Boundaries

Experiments on Domains with Perturbed Boundaries

We will use the following domains for our experiments:
Ω1: The Japanese Islands
Ω2: A smoothed and connected version of Ω1;
Ω3: The same as Ω2 but with a “jaggy” boundary curve
Ω4: The two-component version of Ω2.

As for the data on these domains, we adopted three functions with
different smoothness:

1 A discontinuous function (i.e., a simple step function whose
discontinuity is a straight line along the “spine” or the main axis of the
domain);

2 A pyramid-shaped function, which is continuous and its first order
partial derivatives are of bounded variation;

3 The standard Gaussian function.
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Applications Image Approximation II: Perturbed Boundaries

The Domains with Perturbed Boundaries

(a) χΩ1 (b) χΩ2

(c) χΩ3 (d) χΩ4
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Applications Image Approximation II: Perturbed Boundaries

Decay Rates of the Expansion Coefficients (Unsorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Applications Image Approximation II: Perturbed Boundaries

Observations on the Decay Rates

The decay rates reflect the intrinsic smoothness of the functions living
in the domain, but are not affected by the existence of the boundary
of the domains.
The decay rates are rather insensitive to the smoothness of the
boundary curves. In particular, the plots for Ω2, Ω3, and Ω4 are
virtually the same whereas those for Ω1—the most complicated
domain among these four—seem slightly worse than the others. Yet
all behave better than O(k−1).
The decay rates are rather insensitive to the number of the separated
subdomains. Again, it will be also of interest to investigate the
behavior the conventional Laplacian eigenfunctions in this respect.
Although the coefficient plots oscillate around the linear lines (in the
log-log scale), the decay rates O(k−α), regardless of the domain
shapes, behave as follows. For the discontinuous functions, α< 1. For
the pyramid-shape function, 1 <α< 1.5. For the Gaussian function,
α≥ 1.5.
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Applications Image Approximation II: Perturbed Boundaries

Decay Rates of the Expansion Coefficients (Sorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The blue, red, and green curves correspond to the discontinuous,
pyramid-shape, and Gaussian functions, respectively. It is obvious that these
curves show no oscillations and their decay rates are faster than those of the
unsorted coefficients. Moreover, the decay rates can be read off easily from the
plots. The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Applications Image Approximation II: Perturbed Boundaries

Conjecture on the Coefficient Decay Rate

Conjecture (NS 2007)

Let Ω be a C 2-domain of general shape and let f ∈C
(
Ω

)
with

∂ f

∂x j
∈ BV

(
Ω

)
for j = 1, . . . ,d . Let

{
ck = 〈

f ,ϕk
〉}

k∈N be the expansion

coefficients of f with respect to our Laplacian eigenbasis on this domain.
Then, |ck | decays with rate O(k−α) with 1 <α< 2 as k →∞. Thus, the
approximation error using the first m terms measured in the L2-norm, i.e.,∥∥ f −∑m

k=1 ckϕk
∥∥

L2(Ω)
should have a decay rate of O

(
m−α+0.5

)
as m →∞.
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Applications Hippocampal Shape Analysis

Hippocampal Shape Analysis

Presenting the work of Faisal Beg and his group at Simon Fraser Univ.
using our technique
Want to distinguish people with mild dementia of the Alzheimer type
(DAT) from cognitively normal (CN) people
Hippocampus plays important roles in long-term memory and spatial
navigation

Figure: From Wikipediasaito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 141 / 253
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Applications Hippocampal Shape Analysis

Hippocampal Shape Analysis . . .

Dataset: Left hippocampus segmented from 3D MRI images
Compute the smallest 999 Laplacian eigenvalues (i.e., the largest 999
eigenvalues of the integral operator K ) for each left hippocampus
Construct a feature vector for each left hippocampus:

F :=
(
λ1

λ2
, . . . ,

λ1

λn+1

)T
=

(
µ2

µ1
, . . . ,

µn+1

µ1

)T
∈Rn .

This feature vector was used by Khabou, Hermi, and Rhouma (2007)
for 2D shape classification (e.g., shapes of tree leaves).
Reduce the feature space dimension via PCA to from n = 998 to n′

Classified by the linear SVM (support vector machine)
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Applications Hippocampal Shape Analysis

First Three Eigenfunctions of Three Patients
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Applications Hippocampal Shape Analysis

The Second Eigenfunction ϕ2

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240
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Applications Hippocampal Shape Analysis

The Third Eigenfunction ϕ3

(i) N = 15135 (j) N = 15438 (k) N = 14938 (l) N = 15256

(m) N = 14201 (n) N = 15630 (o) N = 12073 (p) N = 12240
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Applications Hippocampal Shape Analysis

Classification Results

Dataset consists of the segmented left hippocampuses of 18 DAT subjects
and of 26 CN subjects:

Method Accuracy Specificity Sensitivity n n′

MomInv 68.1% 69.2% 66.6% 12 1
TensorInv 75.0% 76.9% 72.2% ≥ 1.9E5 17
LapEig 77.2% 84.6% 66.6% 998 14
GeodesicInv 86.3% 77.7% 92.3% ≥ 1.3E6 27

accuracy := |T P |+ |T N |
|people examined| =

|people correctly diagnosed|
|people examined|

specificity := |T N |
|T N |+ |F P | =

|people correctly diagnosed as healthy|
|healthy people examined|

sensitivity := |T P |
|T P |+ |F N | =

|people correctly diagnosed as mild AD|
|people with mild AD examined|
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA

Consider a stochastic process living on a domain Ω.
PCA/Karhunen-Loève Transform is often used.
PCA/KLT implicitly incorporate geometric information of the
measurement (or pixel) location through data correlation.
Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K (x , y).
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich
72 training dataset; 71 test dataset
Left & right eye regions
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Kernel Matrix

(a) Covariance (b) Harmonic kernel
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Energy Distribution over Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small
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Applications Statistical Image Analysis; Comparison with PCA

Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Sparsity

(a) Training set

(b) Test set
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Coefficient Decay

(a) Training set

(b) Test set
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Applications Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Coefficient Decay

(a) Training set (b) Test set
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Applications Solving the Heat Equation on a Complicated Domain

Solving the Heat Equation on a Complicated Domain

It is well known that the semigroup et∆ can be diagonalized using the
Laplacian eigenbasis, i.e., for any initial heat distribution
u0(x) ∈ L2(Ω), we have the heat distribution at time t formally as

u(x , t ) = et∆u0 =
∞∑

j=1
e−tλ j

〈
u0,ϕ j

〉
ϕ j (x),

which is based on the expansion of the heat kernel (Green’s function
for the heat equation) pt (x , y) via the Laplacian eigenfunctions as
follows:

pt (x , y) =
∞∑

j=1
e−λ j tϕ j (x)ϕ j (y) (t , x , y) ∈ (0,∞)×Ω×Ω.
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Applications Solving the Heat Equation on a Complicated Domain

Discretization of the Problem

Due to the discretization of the problem, we can write et∆ in the
matrix-vector notation as

Φe−tΛΦT =Φ diag
(
e−tλ1 , . . . ,e−tλN

)
ΦT =

N∑

j=1
e−λ j tϕ jϕ

T

j ,

where Φ= (
ϕ1, . . . ,ϕN

)
is the Laplacian eigenbasis matrix of size

N ×N , and Λ is the diagonal matrix consisting of the eigenvalues of
the Laplacian, which are the inverse of the eigenvalues of the kernel
matrix, i.e., Λk,k =λk = 1/µk .
Given an initial heat distribution over the domain, u0 ∈RN , we can
compute the heat distribution at time t as

u(t ) =Φe−tΛΦTu0.
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Applications Solving the Heat Equation on a Complicated Domain

Simulation Experiments
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Applications Solving the Heat Equation on a Complicated Domain

Remarks on the Boundary Condition

It is well known that the eigenvalues of the Laplacian with the
Dirichlet (or Neumann) BC are positive (or non-negative, respectively)
while the Robin BC could have a negative eigenvalue.
Using our commuting integral operator approach, it is difficult to
precisely specify the BC because our formulation satisfies neither the
Dirichlet nor the Neumann nor the Robin conditions.
Our empirical observation so far has led to the following conjecture:

Conjecture (NS 2007)

The eigenvalues of the Laplacian satisfying our BC and defined over a
bounded domain Ω ∈Rd are all positive possibly with a finite number of
negative ones.
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Applications Patient-Specific Basis

What Are Patient-Specific Basis Functions?

Proposed first by D. W. Winters et al.: “Three-dimensional microwave
breast imaging: Dispersive dielectric properties estimation using
patient-specific basis functions,” IEEE Trans. Medical Imaging, vol.
28, no. 7, pp. 969–981, 2009.
Objective: Speed up the imaging process of a Region Of Interest
(ROI) in microwave breast imaging.
Idea: Represent an ROI by a linear combination of a small number of
the flexible basis functions adapted to individual patients =⇒ more
computationally efficient than voxel-based representations.
First I will explain their method using a 1D model for simplicity (their
actual 3D model is simply a tensor product of the 1D model), and give
my own interpretation: their method is essentially equivalent to
computing the Karhunen-Loève Transform assuming the
autocorrelation function over I is Gaussian.
Then, I will discuss the potential problems of this approach.
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Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .
Let Ω be an ROI, which is a subset of I :=[0,1].
Suppose we discretize I into N cells (or bins) whose centers are
xk = (k −1/2)/N , k = 1, . . . , N .
Let σ= 0.75∗|I |/N , and consider a set of shifted Gaussian functions,

gk (x |σ) := 1p
2πσ2

exp

(
− (x −xk )2

2σ2

)
x ∈ I .

Construct a matrix G ∈RN×N where kth column vector is
g k = (

gk (x1 |σ), gk (x2 |σ), · · · , gk (xN |σ)
)T.

Suppose Ω= {xk0 , xk0+1, . . . , xk1 } ⊂ I , |Ω| = k1 −k0 +1, and let us define
the normalized discrete characteristic function χΩ ∈RN :

χΩ(k) :=
{

1p|Ω| if k0 ≤ k ≤ k1;

0 otherwise.

Keep χΩ as the basis vector for the DC component, and consider the
truncated matrix GΩ :=[

χΩ .∗g 1 |χΩ .∗g 2 | · · · |χΩ .∗g N

] ∈RN×N .
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Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .

Then, consider the orthogonal complement to the 1D subspace
span{χΩ} in RN :

G̃Ω = (
I −χΩχT

Ω

)
GΩ.

The Singular Value Decomposition (SVD) of G̃Ω is computed, i.e.,
G̃Ω =UΣV T.
Finally, Winters et al. suggest that a small number, say `(¿ N ), of
column vectors of U to represent an object on Ω approximately.
Suppose the original imaging system equation be written as Ax = b
where A ∈Rm×N is a imaging system matrix, x ∈RN is the object
values over I , and b ∈Rm is the measured data.
Let U` ∈RN×` :=[

χΩ, U (:,1 : `−1)
]
. (Note UT

`
U` = I`.) Then,

Winters et al. suggest approximating x using the ` basis vectors (i.e.,
column vectors) of U`, i.e., x ≈U`x̃` and solving for x̃` ∈R`:

AU`x̃` = b, x ≈U`x̃`.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 167 / 253



Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .

Then, consider the orthogonal complement to the 1D subspace
span{χΩ} in RN :

G̃Ω = (
I −χΩχT

Ω

)
GΩ.

The Singular Value Decomposition (SVD) of G̃Ω is computed, i.e.,
G̃Ω =UΣV T.
Finally, Winters et al. suggest that a small number, say `(¿ N ), of
column vectors of U to represent an object on Ω approximately.
Suppose the original imaging system equation be written as Ax = b
where A ∈Rm×N is a imaging system matrix, x ∈RN is the object
values over I , and b ∈Rm is the measured data.
Let U` ∈RN×` :=[

χΩ, U (:,1 : `−1)
]
. (Note UT

`
U` = I`.) Then,

Winters et al. suggest approximating x using the ` basis vectors (i.e.,
column vectors) of U`, i.e., x ≈U`x̃` and solving for x̃` ∈R`:

AU`x̃` = b, x ≈U`x̃`.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 167 / 253



Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .

Then, consider the orthogonal complement to the 1D subspace
span{χΩ} in RN :

G̃Ω = (
I −χΩχT

Ω

)
GΩ.

The Singular Value Decomposition (SVD) of G̃Ω is computed, i.e.,
G̃Ω =UΣV T.
Finally, Winters et al. suggest that a small number, say `(¿ N ), of
column vectors of U to represent an object on Ω approximately.
Suppose the original imaging system equation be written as Ax = b
where A ∈Rm×N is a imaging system matrix, x ∈RN is the object
values over I , and b ∈Rm is the measured data.
Let U` ∈RN×` :=[

χΩ, U (:,1 : `−1)
]
. (Note UT

`
U` = I`.) Then,

Winters et al. suggest approximating x using the ` basis vectors (i.e.,
column vectors) of U`, i.e., x ≈U`x̃` and solving for x̃` ∈R`:

AU`x̃` = b, x ≈U`x̃`.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 167 / 253



Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .

Then, consider the orthogonal complement to the 1D subspace
span{χΩ} in RN :

G̃Ω = (
I −χΩχT

Ω

)
GΩ.

The Singular Value Decomposition (SVD) of G̃Ω is computed, i.e.,
G̃Ω =UΣV T.
Finally, Winters et al. suggest that a small number, say `(¿ N ), of
column vectors of U to represent an object on Ω approximately.
Suppose the original imaging system equation be written as Ax = b
where A ∈Rm×N is a imaging system matrix, x ∈RN is the object
values over I , and b ∈Rm is the measured data.
Let U` ∈RN×` :=[

χΩ, U (:,1 : `−1)
]
. (Note UT

`
U` = I`.) Then,

Winters et al. suggest approximating x using the ` basis vectors (i.e.,
column vectors) of U`, i.e., x ≈U`x̃` and solving for x̃` ∈R`:

AU`x̃` = b, x ≈U`x̃`.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 167 / 253



Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .

Then, consider the orthogonal complement to the 1D subspace
span{χΩ} in RN :

G̃Ω = (
I −χΩχT

Ω

)
GΩ.

The Singular Value Decomposition (SVD) of G̃Ω is computed, i.e.,
G̃Ω =UΣV T.
Finally, Winters et al. suggest that a small number, say `(¿ N ), of
column vectors of U to represent an object on Ω approximately.
Suppose the original imaging system equation be written as Ax = b
where A ∈Rm×N is a imaging system matrix, x ∈RN is the object
values over I , and b ∈Rm is the measured data.
Let U` ∈RN×` :=[

χΩ, U (:,1 : `−1)
]
. (Note UT

`
U` = I`.) Then,

Winters et al. suggest approximating x using the ` basis vectors (i.e.,
column vectors) of U`, i.e., x ≈U`x̃` and solving for x̃` ∈R`:

AU`x̃` = b, x ≈U`x̃`.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 167 / 253



Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .My Interpretation
The accuracy and efficiency of the above procedure strongly depends
on the quality of the `-term approximation x ≈U`x̃`, i.e., ` is a
tradeoff parameter.
Going back to the SVD of G̃Ω, U is the solution to the eigenvalue
problem of G̃ΩG̃T

ΩU =UΣ2.
This means that the columns of U form the basis of the KLT
assuming that the underlying autocovariance matrix is G̃ΩG̃T

Ω.
The corresponding autocorrelation matrix is GΩGT

Ω, and this implies
that we can view the whole process as an analysis of the following
stochastic process in RN : Pick uniformly randomly xk ∈Ω and
generate a shifted and truncated Gaussian vector χΩ .∗g k .
Since each realization is a shifted version of a single vector followed by
truncation, we can show that the corresponding KLT/PCA basis are
essentially the Discrete Fourier Sine basis supported on Ω. More
precisely, they are adjusted versions of DST basis orthogonal to the
constant DC component χΩ.
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(b) Discrete Sine Basis

(c) PSB (No Const. DC) (d) Laplacian Eigenfunctions
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Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .My Interpretation
PSB (Patient-Specific Basis)

Pro: The constant DC component vector χΩ is included.
Con 1: Features near from the boundary of Ω may not be

represented well with a small number of ` due to the
Dirichlet BC implicitly imposed by χΩ.

Con 2: In reality, building a basis for a complicated 3D shape
based on the tensor products may not be easy, and the
boundary effects may become more pronounced.

LE-CI (Laplacian Eigenfunctions via Commuting Integral Operator)
Pro 1: Features near from the boundary may be more efficiently

represented thanks to the more natural BC.
Pro 2: Building a basis for even a complicated 3D shape is easy;

we only need pairwise distances between voxel centers.
Con: χΩ is not included. However, if we wish, we can include

χΩ by projecting the kernel matrix K onto the orthogonal
complement to spanχΩ before diagonalizing K .
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Applications Patient-Specific Basis

Patient-Specific Basis Functions . . .My Interpretation
Domain-adapted tensor-product DCT might be perhaps most
computationally efficient without too much boundary effects although
‘Con 2’ of PSB remains.

(a) Discrete Cosine Basis (b) Laplacian Eigenfunctions

DCT (Type II) is also used for the JPEG image compression standard.
DCT (Type II) is also the KLT basis for the limiting case of a 1st order
Markov process, i.e., the correlation between adjacent pixels ρ ↑ 1.
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Laplacians on Graphs & Networks

Introductory Remarks

For much more details of this part of lecture, please check my course
website on “Harmonic Analysis on Graphs & Networks”:
http://www.math.ucdavis.edu/˜saito/courses/HarmGraph/
Good general references on the graph Laplacian eigenvalues are:

R. B. Bapat: Graphs and Matrices, Universitext, Springer, 2010.
A. E. Brouwer & W. H. Haemers: Spectra of Graphs, Springer, 2012.
F. R. K. Chung: Spectral Graph Theory, Amer. Math. Soc., 1997.
D. Cvetković, P. Rowlinson, & S. Simić: An Introduction to the Theory
of Graph Spectra, Vol. 75, London Mathematical Society Student
Texts, Cambridge Univ. Press, 2010.

As for the graph Laplacian eigenfunctions, there are not too many
books (although there may be many papers); one of the good books is

T. Bıyıkoğlu, J. Leydold, & P. F. Stadler, Laplacian Eigenvectors of
Graphs, Lecture Notes in Mathematics, vol. 1915, Springer, 2007.
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Laplacians on Graphs & Networks Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)
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Laplacians on Graphs & Networks Motivations: Why Graphs?

Motivations: Why Graphs?

Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels’ for data sampled on the regular lattices.
Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.
Moreover, constructing a graph from a usual signal or image and
analyzing it can also be very useful! E.g., Nonlocal means image
denoising of Buades-Coll-Morel.
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Laplacians on Graphs & Networks Motivations: Why Graphs?

An Example of Sensor Networks

Figure: Volcano monitoring sensor network architecture of Harvard Sensor
Networks Lab
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Laplacians on Graphs & Networks Motivations: Why Graphs?

An Example of Social Networks

Figure: Through the courtesy of Prof. Fan Chung, UC San Diego
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Laplacians on Graphs & Networks Motivations: Why Graphs?

An Example of Biological Networks

Figure: From E. Bullmore and O. Sporns, Nature Reviews Neuroscience, vol. 10,
pp.186–198, Mar. 2009.
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Laplacians on Graphs & Networks Motivations: Why Graphs?

Another Biological Example: Retinal Ganglion Cells
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Laplacians on Graphs & Networks Motivations: Why Graphs?

Retinal Ganglion Cells (D. Hubel: Eye, Brain, & Vision, ’95)
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Laplacians on Graphs & Networks Motivations: Why Graphs?

A Typical Neuron (from Wikipedia)
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Laplacians on Graphs & Networks Motivations: Why Graphs?

Mouse’s RGC as a Graph
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Laplacians on Graphs & Networks Motivations: Why Graphs?

Clustering using Features Derived by Neurolucida®
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Laplacians on Graphs & Networks Motivations: Why Graphs?

Representing a Regular Image as a Graph

often turns out to be quite useful for various purposes. In particular,
Nonlocal Means Denoising Algorithm of Buades-Coll-Morel is quite
impressive.

Construct a graph each of whose vertices represents k ×k patch of a
given image (k may be 3,5, . . ., etc.) So each vertex represents a point
in Rk2

.
Connect every pair of vertices with the weight
Wi j = exp(−‖patchi −patch j‖2/ε2) with appropriately chosen scale
parameter ε> 0.
Compute the weighted average of the center pixel of each patch using
the normalized weights Wi j /

∑
`Wi`. More precisely, the average of

the center of the i th patch, c i =
∑

j Wi j c j /
∑
`Wi`.

See also an interesting work by Daitch-Kelner-Spielman: “Fitting a
Graph to Vector Data,” Proc. 26th Intern. Conf. Machine Learning,
2009.
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Laplacians on Graphs & Networks Motivations: Why Graphs?

From: A. Buades, B. Coll, and J.-M. Morel, SIAM Review,
vol. 52, no. 1, pp. 113–147, 2010.

Noisy Image; Total Variation Denoising; Neighborhood Filter

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGE DENOISING METHODS 139

Fig. 13 Denoising experience on a periodic image. From left to right and from top to bottom: noisy
image (standard deviation 35), Gauss filtering, total variation, neighborhood filter, Wiener
filter (ideal filter), TIHWT, DCT empirical Wiener filtering, and NL-means.

Fig. 14 Denoising experience on a natural image. From left to right and from top to bottom: noisy
image (standard deviation 35), total variation, neighborhood filter, translation invariant
hard thresholding (TIHWT), empirical Wiener, and NL-means.

with the images presented in this paper. This error table seems to corroborate the
observations made for the other criteria. One sees, for example, how the frequency
domain filters have a lower mean square error than the local smoothing filters. One
also sees that in the presence of periodic or textural structures the empirical Wiener
filter based on a DCT transform performs better than the wavelet thresholding. Note
that, in the presence of periodic or stochastic patterns, NL-means is significantly more
precise than the other algorithms. Of course, the errors presented in this table cannot
be computed in a real denoising problem. Let us remark, however, that a small error
does not guarantee a good visual quality of the restored image.

Trans. Inv. Wavelets; Empirical Wiener; Nonlocal Means
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Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

Basic Definitions
A graph G consists of a set of vertices (or nodes) V and a set of edges
E connecting some pairs of vertices in V . We write G = (V ,E).
An edge connecting a vertex x ∈V and itself is called a loop.
For x, y ∈V , if ∃ more than one edge connecting x and y , they are
called multiple edges.
A graph having loops or multiple edges is called a multiple graph (or
multigraph); otherwise it is called a simple graph.

A multiple graph A simple graph

In this lecture, we shall only deal with simple graphs. So, when we say
a graph, we mean a simple graph.
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If two distinct vertices x, y ∈V are connected by an edge e, then x, y
are called the endpoints (or ends) of e, and x, y are said to be
adjacent, and we write x ∼ y . We also say an edge e is incident with x
and y , and e joins x and y .
The number of edges that are incident with x (i.e., have x as their
endpoint) = the degree (or valency) of x and write d(x) or dx .
If the number of vertices |V | <∞, then G is called a finite graph;
otherwise an infinite graph.
If each edge in E has a direction, G is called a directed graph or
digraph, and such E is written as E .

x

y

e

e = [x, y]
x

y

ē

ē = [y, x]

If e = [x, y], then x and y are called a tail and a head, respectively.
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Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

If an edge e does not have a direction, we write e = (x, y).
If each edge e = (x, y) of G has a weight (normally positive), written as
we = wx y , then G is called a weighted graph. G is said to be
unweighted if we = const. for each e ∈ E , and normally we is set to 1.
For a given x, y ∈V , a sequence of vertices in V c = (v1, v2, . . . , vk , vk+1)
is called a path connecting x and y if v1 = x, vk+1 = y , and
v1 ∼ v2 ∼ ·· · ∼ vk ∼ vk+1. We say the length (or cost) `(c) of a path c
is the sum of its corresponding edge weights, i.e., `(c) :=∑k

j=1 wv j ,v j+1 .

For any two vertices in V , if ∃ a path connecting them, then such a
graph G is said to be connected. In the case of a digraph, it is said to
be strongly connected.
d(x, y) := inf

c∈{paths between x, y}
`(c) is called the graph distance between x

and y .
diam(G) := sup

x,y∈V
d(x, y) is called the diameter of G. Note that

diam(G) <∞⇐⇒ G is finite.
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Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

We say two graphs are isomorphic if ∃ a one-to-one correspondence
between the vertex sets such that if two vertices are joined by an edge
in one graph, the corresponding vertices are also joined by an edge in
the other graph.

isomorphic≈
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The complete graph Kn on n vertices is a simple graph that has all
possible

(n
2

)
edges.

K3 K4 K5

If all the vertices of a graph has the same degree, the graph is called
regular. Hence, Kn is regular.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 192 / 253



Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

The complete graph Kn on n vertices is a simple graph that has all
possible

(n
2

)
edges.

K3 K4 K5

If all the vertices of a graph has the same degree, the graph is called
regular. Hence, Kn is regular.

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 192 / 253



Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

A polygon is a finite connected graph that is regular of degree 2. Pn =
a polygon with n vertices.

P3 = K3 P4 P5

The complete bipartite graph Kn,m has n +m vertices a1, . . . , an ,
b1, . . . ,bm , and all nm pairs (ai ,b j ) as edges. An example: K2,3:

a1

a2

b1

b2

b3
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Matrices Associated with a Graph

The adjacency matrix A = A(G) = (ai j ) ∈Rn×n , n = |V |, for an
unweighted graph G consists of the following entries:

ai j :=
{

1 if vi ∼ v j ;

0 otherwise.

Another typical way to define its entries is based on the similarity of
information at vi and v j :

ai j :=exp(−dist(vi , v j )2/ε2)

where dist is an appropriate distance measure (i.e., metric) defined in
V , and ε> 0 is an appropriate scale parameter. This leads to a
weighted graph. We will discuss later more about the weighted
graphs, how to determine weights, and how to construct a graph from
given datasets in general.
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Matrices Associated with a Graph . . .

The degree matrix D = D(G) = diag(d1, . . . ,dn) ∈Rn×n is a diagonal
matrix whose entries are:

di :=d(vi ) = dvi =
n∑

j=1
ai j .

Note that the above definition works for both unweighted and
weighted graphs.
The transition matrix P = P (G) = (pi j ) ∈Rn×n consists of the following
entries:

pi j :=ai j /di if di 6= 0.

pi j represents the probability of a random walk from vi to v j in one
step:

∑
j pi j = 1, i.e., P is row stochastic.

AT = A, PT 6= P , P = D−1 A .
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Matrices Associated with a Graph . . .

Let G be an undirected graph. Then, we can define several Laplacian
matrices of G:

L(G) :=D − A Unnormalized

Lrw(G) :=In −D−1 A = In −P = D−1L Normalized

Lsym(G) :=In −D− 1
2 AD− 1

2 = D− 1
2 LD− 1

2 Symmetrically-Normalized

The signless Laplacian is defined as follows, but we will not deal with
this in this lecture: Q(G) :=D+A.
Graph Laplacians can also be defined for directed graphs; see, e.g.,
Fan Chung: “Laplacians and the Cheeger inequality for directed
graphs,” Ann. Comb., vol. 9, no. 1, pp. 1–19, 2005.
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Functions Defined on a Graph

C (V ) :={all functions defined on V }

C0(V ) :={ f ∈C (V ) |supp f is a finite subset of V }

supp f :={u ∈V | f (u) 6= 0}

L2(V ) :=
{

f ∈C (V )
∣∣∣‖ f ‖ :=

√〈
f , f

〉<∞
}

〈
f , g

〉
:=

∑

u∈V
d(u) f (u)g (u).

Lemma
〈

P f , g
〉= 〈

f ,P g
〉 ∀ f , g ∈L2(V );

‖P f ‖ ≤ ‖ f ‖ ∀ f ∈L2(V ).
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Functions Defined on a Graph . . .
Let f ∈L2(V ). Then

L f (vi ) = di f (vi )−
n∑

j=1
ai j f (v j ) =

n∑

j=1
ai j

(
f (vi )− f (v j )

)
.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

Lrw f (vi ) = f (vi )−
n∑

j=1
pi j f (v j ) = 1

di

n∑

j=1
ai j

(
f (vi )− f (v j )

)
.

Lsym f (vi ) = f (vi )− 1√
di

n∑

j=1

ai j√
d j

f (v j ) = 1√
di

n∑

j=1
ai j




f (vi )√
di

− f (v j )
√

d j


 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive semi-definite
matrices).
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n∑

j=1
pi j f (v j ) = 1

di

n∑

j=1
ai j

(
f (vi )− f (v j )

)
.

Lsym f (vi ) = f (vi )− 1√
di

n∑

j=1

ai j√
d j

f (v j ) = 1√
di

n∑

j=1
ai j




f (vi )√
di

− f (v j )
√

d j


 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive semi-definite
matrices).

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 198 / 253



Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

Functions Defined on a Graph . . .
Let f ∈L2(V ). Then

L f (vi ) = di f (vi )−
n∑

j=1
ai j f (v j ) =

n∑

j=1
ai j

(
f (vi )− f (v j )

)
.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

Lrw f (vi ) = f (vi )−
n∑

j=1
pi j f (v j ) = 1

di

n∑

j=1
ai j

(
f (vi )− f (v j )

)
.

Lsym f (vi ) = f (vi )− 1√
di

n∑

j=1

ai j√
d j

f (v j ) = 1√
di

n∑

j=1
ai j




f (vi )√
di

− f (v j )
√

d j


 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive semi-definite
matrices).

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 198 / 253



Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

Functions Defined on a Graph . . .

A function f ∈C (V ) is called harmonic if

L f = 0, Lrw f = 0, or Lsym f = 0.

A function f ∈C (V ) is called superharmonic at x ∈V if

L f (x) ≥ 0, Lrw f (x) ≥ 0, or Lsym f (x) ≥ 0.

These corresponds to:

f (vi ) ≥ 1

di

n∑

j=1
ai j f (v j ), f (vi ) ≥

n∑

j=1
pi j f (v j ), or f (vi ) ≥

n∑

j=1

ai j
√

di

√
d j

f (v j ).

One can also generalize various analytic concepts such as Green’s
functions, Green’s identity, analytic functions, Cauchy-Riemann
equations, . . . , to the graph setting!
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Derivatives and Green’s Identity

Let C (E ) :={ϕ defined on E |ϕ(ē) =−ϕ(e),e ∈ E }. For f ∈C (V ), define the
derivative d f ∈C (E ) of f as

d f (e) = d f ([x, y]) := f (y)− f (x).

Theorem (The discrete version of Green’s first identity, Dodziuk 1984)

∀ f1, f2 ∈C0(V ),
〈

d f1,d f2
〉= 〈

Lrw f1, f2
〉=

∑

u∈V
L f1(u) f2(u).

Corollary
L, Lrw, and Lsym are nonnegative operators, e.g.,

〈
Lrw f , f

〉=
∑

u∈V
L f (u) f (u) = 〈

d f ,d f
〉≥ 0.
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The Minimum Principle

Theorem (The discrete version of the minimum principle)

Let f ∈C (V ) be superharmonic at x ∈V . If f (x) ≤ miny∼x f (y), then
f (z) = f (x), ∀z ∼ x.

Proof. From the superharmonicity of f at x ∈V , we have

1

dx

∑
y∼x

ax y f (y) ≤ f (x).

On the other hand, from the condition of this theorem, we have

1

dx

∑
y∼x

ax y f (y) ≥ 1

dx

∑
y∼x

ax y f (x) = f (x).

Hence, we must have
1

dx

∑
y∼x

ax y f (y) = f (x). But this can happen only if
f (z) = f (x), ∀z ∼ x. ä
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Laplacians on Graphs & Networks Basics of Graph Theory: Graph Laplacians

Why Graph Laplacians?
We already know that the Laplacian eigenvalues and eigenfunctions
are extremely useful for general domains in Rd .
The graph Laplacian eigenvalues reflect various intrinsic geometric and
topological information about the graph including connectivity or the
number of separated components; diameter; mean distance, . . .
Fan Chung: Spectral Graph Theory, Amer. Math. Soc., 1997, says:
“This monograph is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.”
Due to the time limitation, I will not be able to discuss the details on
how the graph Laplacian eigenvalues reveal the geometric and
topological information of the graph. For the details, please check the
above book, the books listed in the beginning of this section, and

R. Merris: “Laplacian matrices of graphs: a survey,” Linear Algebra
Appl., vol. 197/198, pp. 143–176, 1994.
N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using
eigenvalues of graph Laplacians,” Japan SIAM Lett. vol. 1 pp. 13–16,
2009 (Invited paper).
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Why Graph Laplacians? . . .

The graph Laplacian eigenfunctions form an orthonormal basis on a
graph =⇒

can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering
Less studied than graph Laplacian eigenvalues
In this lecture, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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A Simple Yet Important Example: A Path Graph




1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1




︸ ︷︷ ︸
L(G)

=




1
2

2

. . .
2

1




︸ ︷︷ ︸
D(G)

−




0 1
1 0 1

1 0 1

. . .
. . .

. . .
1 0 1

1 0




︸ ︷︷ ︸
A(G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See G. Strang, “The
discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0,1, . . . ,n −1.
φk (`) = cos

(
πk

(
`+ 1

2

)
/n

)
, k,`= 0,1, . . . ,n −1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. However, in general, the
notion of frequency is not well defined.
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Outline

1 Lecture Outline

2 Motivations

3 History of Laplacian Eigenvalue Problems – Spectral Geometry
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6 Applications
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A Brief Review of Graph Laplacian Eigenvalues

In this review part, we only consider undirected and unweighted graphs
and their unnormalized Laplacians L(G) = D(G)− A(G). Let |V (G)| = n,
|E(G)| = m.
It is a good exercise to see how the statements change for the
normalized or symmetrically-normalized graph Laplacians.
Can show that L(G) is positive semi-definite.
Hence, we can sort the eigenvalues of L(G) as
0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G) and denote the set of these
eigenvalue by Λ(G).
mG (λ) := the multiplicity of λ.
Let I ⊂R be an interval of the real line. Then define
mG (I ) :=#{λk (G) ∈ I }.
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normalized or symmetrically-normalized graph Laplacians.
Can show that L(G) is positive semi-definite.
Hence, we can sort the eigenvalues of L(G) as
0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G) and denote the set of these
eigenvalue by Λ(G).
mG (λ) := the multiplicity of λ.
Let I ⊂R be an interval of the real line. Then define
mG (I ) :=#{λk (G) ∈ I }.
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A Brief Review of Graph Laplacian Eigenvalues . . .

Graph Laplacian matrices of the same graph are permutation-similar.
In fact, graphs G1 and G2 are isomorphic iff there exists a permutation
matrix P such that

L(G2) = PTL(G1)P.

rankL(G) = n −mG (0) where mG (0) turns out to be the number of
connected components of G. Easy to check that L(G) becomes mG (0)
diagonal blocks, and the eigenspace corresponding to the zero
eigenvalues is spanned by the indicator vectors of each connected
component.
In particular, λ1 6= 0, i.e., mG (0) = 1 iff G is connected.
This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) :=λ1(G), viewing it as a quantitative measure of connectivity.
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A Brief Review of Graph Laplacian Eigenvalues . . .

Denote the complement of G (in Kn) by Gc .

The Petersen graph and its complement in K10 (from Wikipedia)

Then, we have
L(G)+L(Gc ) = L(Kn) = nIn − Jn ,

where Jn is the n ×n matrix whose entries are all 1.
We also have:

Λ(Gc ) = {0,n −λn−1(G),n −λn−2(G), . . . ,n −λ1(G)}.
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A Brief Review of Graph Laplacian Eigenvalues . . .

From the above, we can see that

λmax(G) =λn−1(G) ≤ n,

and mG (n) = mGc (0)−1.
On the other hand, Grone and Merris showed in 1994

λmax(G) =λn−1(G) ≥ max
1≤ j≤n

d j +1.

Let G be a connected graph and suppose L(G) has exactly k distinct
eigenvalues. Then

diam(G) ≤ k −1.
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Laplacians on Graphs & Networks Graph Laplacian Eigenfunctions

Basic Properties of GL Eigenfunctions

If G = (V ,E), |V | = n, is connected, then λ0 = 0, a(G) =λ1 > 0.
We already know that the eigenfunction corresponding to λ0 = 0 is
φ0 = 1n .
Hence, φ j corresponding to λ j > 0, j = 1, . . . ,n−1, must be orthogonal
to 1n :

∑
x∈V φ j (x) = 0, i.e., it must oscillate.

If φ(x) = 0, then (Lφ)(x) =λφ(x) = 0. Hence,
∑

y∼x Lx yφ(y) = 0.

Theorem (Grover (1990); Gladwell & Zhu (2002))

An eigenfunction of L(G) cannot have a nonnegative local minimum or a
nonpositive local maximum.

Proof. Suppose φ(x) is a local minimum of φ with φ(x) ≥ 0. Then, ∀y ∼ x,
φ(x)−φ(y) < 0. Now, recall Lφ(x) =∑

y∼x ax y (φ(x)−φ(y)) =λφ(x) ≥ 0
where ax y ≥ 0 is the x y-th entry of the adjacency matrix A(G). These
contradicts each other. ä
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Laplacians on Graphs & Networks Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions

Theorem (Merris (1998))

If 0�λ< n is an eigenvalue of L(G), then any eigenfunction affording λ
takes the value 0 on every vertex of degree n −1.

Proof. Let v ∈V be a vertex with d(v) = n −1. Then,
Lφ(v) = (n −1)φ(v)−∑

u 6=v φ(u) =λφ(v). But, φ⊥ 1n , so∑
u 6=v φ(u) =−φ(v). This leads to: nφ(v) =λφ(v). Since 0�λ� n, we

must have φ(v) = 0. ä

Theorem (Merris (1998))

Let (λ,φ) be an eigenpair of L(G). If φ(u) =φ(v), then (λ,φ) is also an
eigenpair of L(G ′) where G ′ is the graph obtained from G by either deleting
or adding the edge e = (u, v) depending on whether or not e ∈ E(G).
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Laplacians on Graphs & Networks Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions . . .

Let W be a nonempty subset of V (G). Then, the reduced graph G{W } is
obtained from G by deleting all vertices in V \W that are not adjacent to a
vertex of W and subsequent deletion of any remaining edges that are not
incident with a vertex in W .

W = {•}, W c = {◦}
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Laplacians on Graphs & Networks Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions . . .

Theorem (Merris (1998))

Fix a nonempty subset W ⊂V . Suppose φ is an eigenfunction of the
reduced graph G{W } that affords λ and is supported by W in the sense
that if φ(u) 6= 0, then u ∈W . Then the extension φ̃ with φ̃(v) =φ(v) for
v ∈W and φ̃(v) = 0 for v ∈V \W is an eigenfunction of G affording λ.

Theorem (Merris (1998))

Let φ be an eigenfunction affording λ of G. Let Nv be the set of neighbors
of v . Suppose φ(u) =φ(v) = 0, where Nu ∩Nv =;. Let G ′ be the graph on
n −1 vertices obtained by coalescing u and v into a single vertex, which is
adjacent in G ′ to precisely those vertices that are adjacent in G to u or to
v . Then, the function φ′ obtained by restricting φ to V (G) \ {v} is an
eigenfunction of G ′ affording λ.
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Laplacians on Graphs & Networks Graph Laplacian Eigenfunctions

A Simple Example

1

2

3 4 5 6

7

8
G; N3 ∩N6 =;

λ2(G) = 1;φ2(G) = [−0.0261,−0.0261,0,0.0523,0.0523,0,−0.7303,0.6781]T

1

2
3,6

4 5

7

8

G ′

λ2(G ′) = 1;φ2(G ′) ∝ [−0.0261,−0.0261,0,0.0523,0.0523,−0.7303,0.6781]T
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Laplacians on Graphs & Networks The Perron-Frobenius Theory

The Perron-Frobenius Theorem
Let A ∈Rn×n be a rather general symmetric matrix associated with a graph
G such that Auv 6= 0 iff e = (u, v) ∈ E(G). Then, A is called irreducible if its
underlying graph is connected.
Theorem (Perron-Frobenius Theorem)

Let A,B be real symmetric irreducible nonnegative n ×n matrices. Then,
(i) the spectral radius ρ(A) is a simple eigenvalue of A. If φ is an

eigenfunction for ρ(A), then no entries of φ are zero, and all have the
same sign.

(ii) Furthermore, if A−B is nonnegative, then ρ(B) ≤ ρ(A), with equality
iff B = A.

Corollary
Let G be a connected graph. Then, the smallest eigenvalue of L(G),
Lrw(G), Lsym(G), i.e., λ0 = 0, is simple, and φ0 can be taken to have all
entries positive. φ0 is often called the Perron vector of G.
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Laplacians on Graphs & Networks The Perron-Frobenius Theory

My Comments on the Perron-Frobenius Theorem

If G = Pn , then φ j is j th DCT-II basis vector, as I discussed before.
Hence, the Perron vector of Pn is the constant vector for the DC
component in the signal processing terminology.
For the continuous case, I talked about the integral operator K that
commutes with the Laplace operator. In particular, I showed the 1D
example where the domain is the unit interval Ω= (0,1). In that case,
the smallest eigenvalue is λ0 ≈−5.756915, and
φ0(x) ∝ cosh

√
−λ0

(
x − 1

2

)
. This function also does not change its

sign, hence it can be viewed as the Perron vector of K .
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Laplacians on Graphs & Networks The Perron-Frobenius Theory

My Comments on the Perron-Frobenius Theorem . . .

Does there exist the P-F theory for compact operators? =⇒ YES!
Theorem (Krein & Rutman (1948))

Let X be a Banach space, and let K ⊂ X be a convex cone such that the
set K −K = { f − g | f , g ∈ K } is dense in X . Let T : X → X be a non-zero
compact operator which is positive, meaning that T (K ) ⊂ K , and assume
that its spectral radius ρ(T ) is strictly positive. Then ρ(T ) is an eigenvalue
of T with positive eigenfunction, meaning that there exists φ ∈ K \ {0} such
that T (φ) = ρ(T )φ.

Generally, one of my research goals is to consider the graph version of
the integral operator commuting with a given graph Laplacian, and
analyze its properties!
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Laplacians on Graphs & Networks Perron-Frobenius =⇒ Courant

Perron-Frobenius/Fiedler =⇒ Courant
From the Perron-Frobenius theorem, for a connected graph G, we
know that λ0 = 0 and φ0 is all positive.
By Fielder, we also know that the algebraic connectivity
a(G) =λ1(G) > 0, φ1 (called the Fiedler vector of G) splits V into
three subsets V =V+∪V−∪V0 where the values of φ1 on V+, V−, V0

are positive, negative, and zero (note that V0 could be ;).
These reminds us of Courant’s celebrated Nodal Domain Theorem for
elliptic operatros on manifolds.

(a) F. G.
Frobenius
(1849–
1917)

(b) Oskar
Perron
(1880–1975)

(c) Richard
Courant
(1888–1972)

(d) Miroslav
Fiedler
(1926–)
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Laplacians on Graphs & Networks Perron-Frobenius =⇒ Courant

Courant’s Nodal Domain Theorem

Theorem (Courant (1923))

Let L be a self-adjoint second order differential operator, and consider the
following elliptic eigenvalue problem on a domain Ω⊂Rd :

L u +λρu = 0, ρ > 0,

with arbitrary homogeneous boundary conditions. If its eigenfunctions are
ordered according to increasing eigenvalues, then the nodes (a.k.a. nodal
sets or nodal lines) of the kth eigenfunction φk (k = 0,1, . . .) divide Ω into
no more than k +1 subdomains.

Of course, the nodal sets of a function f (x) in Ω is defined as

N[ f ] :={x ∈Ω | f (x) = 0}.
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Laplacians on Graphs & Networks Perron-Frobenius =⇒ Courant

A Famous Example of Nodal Domain Theorem
Courtesy: http://www.cymascope.com/cyma_research/history.html

(a) Chladni Plates (b) Ernst Chladini (1756–
1827)
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Discrete Nodal Domains
In the context of manifolds, the nodal domains of f refers to the
connected components of the complement of the nodal set N[ f ], i.e.,
to the components of {x ∈Ω | f (x) 6= 0}, which are bounded by the
nodal sets.
The discrete analog of a “nodal domain” is a maximal connected
induced subgraph consisting entirely of positive and negative vertices
w.r.t. a given function f defined over V (G).
However, more subtlety comes in:

1

2 3 4

5

K1,4
λ1 = 1; mK1,4 (1) = 3;φ1 ∝ [1,−1,0,1,−1]T.
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Discrete Nodal Domains . . .
A positive (or negative) strong nodal domain of f on V (G) is a
maximal connected induced subgraph of G on vertices v ∈V with
f (v) > 0 (or f (v) < 0). The number of strong nodal domains of f is
denoted by S( f ).
In contrast, a positive (or negative) weak nodal domain of f on V (G)
is a maximal connected induced subgraph of G on vertices v ∈V with
f (v) ≥ 0 (or f (v) ≤ 0) that contains at least one nonzero vertex. The
number of weak nodal domains of f is denoted by W( f ).
In the above example of K1,4, S(φ1) = 4 and W(φ1) = 2 because the
strong nodal domains are {{1}, {2}, {4}, {5}} while the weak nodal
domains are {{1,3,4}, {2,3,5}}.
Obviously, we always have W( f ) ≤S( f ).
The zero vertices separate positive (or negative) strong nodal domains
while they join weak nodal domains. In fact, each zero vertex
simultaneously belongs to exactly one weak positive nodal domain and
exactly one weak negative nodal domain.
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Laplacians on Graphs & Networks Perron-Frobenius =⇒ Courant

Discrete Nodal Domains . . .
We focus our attention on the kth eigenvalue λk with multiplicity r of a
graph Laplacian (L, Lrw, Lsym).

λ0 ≤λ1 ≤ ·· ·λk−1 <λk =λk+1 = ·· · =λk+r−1 <λk+r ≤ ·· · ≤λn−1.

Theorem (Discrete Nordal Domain Theorem (Davies, Gladwell, Leydold,
Stadler, 2001))

Let G be a connected graph with n vertices. Then, any graph Laplacian
eigenfunction φk corresponding to λk with multiplicity r has at most k +1
weak nodal domains and k + r strong nodal domains, i.e.,

W(φk ) ≤ k +1, S(φk ) ≤ k + r

where k ∈ [0,n −1].

In the example of K1,4, λ1 = 1 has multiplicity r = 3. Hence,
W(φ1) = 2 ≤ 1+1 and S(φ1) = 4 ≤ 1+3 are satisfied!
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Laplacians on Graphs & Networks Perron-Frobenius =⇒ Courant

Discrete Nodal Domains . . .

Corollary (Fiedler (1975))

If G is connected, then W(φ1) = 2.

Corollary (Fiedler (1975))

The eigenfunction φk affording λk has at most k positive weak nodal
domains for k ≥ 1. Consequently, W(φk ) ≤ 2k.

In the previous example of K1,4, we have λmax =λ4 = 5, and
φ4 ∝ [1,1,−4,1,1]T. Hence, W(φ4) = 5 ≤ 2 ·4 = 8, satisfying the corollary.

1

2 3 4

5

K1,4
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domains for k ≥ 1. Consequently, W(φk ) ≤ 2k.

In the previous example of K1,4, we have λmax =λ4 = 5, and
φ4 ∝ [1,1,−4,1,1]T. Hence, W(φ4) = 5 ≤ 2 ·4 = 8, satisfying the corollary.

1

2 3 4

5

K1,4
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Discrete Nodal Domains of a Dendritic Tree: sign(φ1)
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Discrete Nodal Domains of a Dendritic Tree: sign(φ2)
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Discrete Nodal Domains of a Dendritic Tree: sign(φ3)
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Introductory Remarks

This part of my lecture is based on the following excellent tutorial
paper:

U. von Luxburg: “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395-416, 2007.

Spectral clustering has been successfully used in many applications,
e.g., image and video segmentation, computer graphics, etc.; see e.g.,

J. Shi & J. Malik: “Normalized cuts and image segmentation”, IEEE
Trans. Pattern Anal. Machine Intell., vol. 22, no. 8, pp. 888–905, 2000.
S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, & J. C. Hart:
“Spectral surface quadrangulation,” ACM Trans. Graphics, vol. 25, no.
3, pp. 1057-1066, 2006.

See also the references cited in von Luxburg’s tutorial.
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GL Eigenfunctions for Lrw and Lsym

Recall that we have three different versions of graph Laplacians:

L(G) :=D − A Unnormalized

Lrw(G) :=In −D−1 A = In −P = D−1L Normalized

Lsym(G) :=In −D− 1
2 AD− 1

2 = D− 1
2 LD− 1

2 Symmetrically-Normalized

Proposition (Properties of Lrw and Lsym)

(a) (λ,φ) is an eigenpair of Lrw iff (λ,D1/2φ) is an eigenpair of Lsym. In
particular, (0,1n) for Lrw ⇐⇒ (0,D1/21n) of Lsym.

(b) (λ,φ) is an eigenpair of Lrw iff (λ,φ) solves the generalized
eigenproblem: Lφ=λDφ.

(c) Both Lrw and Lsym are positive semi-definite and n nonnegative
real-valued eigenvalues.
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Spectral Clustering Algorithm for a Weighted Graph G

1 Construct a weighted adjacency matrix A.
2 Choose a graph Laplacian to use: L, Lrw, or Lsym.
3 Compute the first k eigenvectors φ0, . . . ,φk−1. (Note in the case of

Lrw, one needs to solve the generalized eigenproblem Lφ=λDφ.)
4 Let Φ :=[φ0 · · ·φk−1] ∈Rn×k . (Note in the case of Lsym, each row of Φ

is further normalized to have norm 1.)
5 Let yT

j ∈R1×k be the j th row vector of Φ.

6 Cluster these n vectors {y 1, . . . , y n} ⊂Rk representing V (G) with the
k-means algorithm into clusters C1, . . . ,Ck .

7 Label each vertex with its cluster number.
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Laplacians on Graphs & Networks Spectral Clustering

Simple Examples for Spectral Clustering
The following example was taken from Von Luxburg’s tutorial paper
with some modification.
The dataset consists of 200 random samples from four normal
distributions N (µ j ,σ2) where µ j = 2 j , j = 1,2,3,4, and σ= 0.25.

These 200 points in R are the vertices in V .
A complete graph K200 was generated with the edge weight by
ai j = exp(−|xi −x j |2/2ε2) where ε= 1 was used.
Applied the spectral clustering algorithms.
Note that we will discuss more about how to construct a graph from
given datasets in the future lectures. The above strategy is used for
simplicity.
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Using L

(a) λk (b) φk
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Using Lrw

(a) λk (b) φk
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Using Lsym

(a) λk (b) φk
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Simple Examples for Spectral Clustering . . .

Now, let’s consider a less clear cut case. This time, the dataset still
consists of 200 random samples from four normal distributions
N (µ j ,σ2) where µ j = 2 j , j = 1,2,3,4. But now I set the larger
standard deviation, i.e., σ= 1 instead of σ= 0.25.

Then let’s repeat the same experiments and see how the situation
changes.
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Using L

(a) λk (b) φk
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Using Lrw

(a) λk (b) φk
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Using Lsym

(a) λk (b) φk

saito@math.ucdavis.edu (UC Davis) Laplacian Eigenfunctions Sep. 4, 2013 244 / 253



Laplacians on Graphs & Networks Spectral Clustering

Using L

(a) σ= 0.25 (b) σ= 1
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Using Lrw

(a) σ= 0.25 (b) σ= 1
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Using Lsym

(a) σ= 0.25 (b) σ= 1
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Laplacians on Graphs & Networks Spectral Clustering

Observations

For the clear cut case, L, Lrw, and Lsym all performed similarly.
Yet, the eigenvalue distributions of Lrw and Lsym revealed the number
of existing clusters more clearly than that of L.
For the case with severer overlaps, Lrw and Lsym outperformed L.
von Luxburg recommends the use of Lrw because its φ0 plays a role of
the cluster indicator vector.
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Summary & References

Summary

Provide an orthonormal basis on a general shape domain or a graph
and allow spectral analysis/synthesis of data on them
Can decouple geometry of domains and statistics of data
Can extract geometric information of a domain via {λk }k

Allow object-oriented (or localized) data analysis & synthesis
∃ A variety of applications: interpolation, extrapolation, local feature
computation, solving heat equations on complicated domains . . .
Fast algorithms are the key for higher dimensions/large domains
Can also be defined and computed on a Riemannian manifold (e.g., a
curved surface); to do so, we need the Riemannian metric of the
manifold and geodesic distances between sample points
Connect to lots of interesting mathematics and applications: harmonic
analysis, discrete mathematics, mathematical physics, PDEs,
differential geometry, signal & image processing, statistics, . . .
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References

Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/˜saito/lapeig/ contains:

My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”
My Course Slides on “Harmonic Analysis on Graphs and Networks”
Talk slides of the minisymposia on Laplacian Eigenfunctions at:
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Thank you very much for your attention!
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