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Motivations Motivations: Why Irregular Domains?

Motivations: Why Irregular Domains?

Consider a bounded domain of general (may be quite complicated)
shape Ω⊂Rd .
Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to ∂Ω.
Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ need fast decaying expansion
coefficients relative to a meaningful basis.
Want to extract geometric information about the domain Ω =⇒ shape
clustering/classification.

Figure: Ω⊂Rd with ν being a normal vector on ∂Ω.
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Motivations Motivations: Why Irregular Domains?

Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) Anomalies
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Motivations Motivations: Why Irregular Domains?

Data Analysis on a Complicated Domain
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Motivations Motivations: Why Irregular Domains?

3D Hippocampus Shape Analysis
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Motivations Motivations: Why Graphs?

Motivations: Why Graphs?

More and more data are collected in a distributed and irregular
manner; they are not organized such as familiar digital signals and
images sampled on regular lattices. Examples include:

Data from sensor networks
Data from social networks, webpages, . . .
Data from biological networks
. . .

It is quite important to analyze:
Topology of graphs/networks (e.g., how nodes are connected, etc.)
Data measured on nodes (e.g., a node = a sensor, then what is an
edge?)
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Motivations Motivations: Why Graphs?

Motivations: Why Graphs?

Fourier analysis/synthesis and wavelet analysis/synthesis have been
‘crown jewels’ for data sampled on the regular lattices.
Hence, we need to lift such tools for unorganized and
irregularly-sampled datasets including those represented by graphs and
networks.
Moreover, constructing a graph from a usual signal or image and
analyzing it can also be very useful! E.g., Nonlocal means image
denoising of Buades-Coll-Morel.
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Motivations Motivations: Why Graphs?

An Example of Sensor Networks

Figure: Volcano monitoring sensor network architecture of Harvard Sensor
Networks Lab
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Motivations Motivations: Why Graphs?

An Example of Social Networks

Figure: Through the courtesy of Prof. Fan Chung, UC San Diego
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Motivations Motivations: Why Graphs?

An Example of Biological Networks

Figure: From E. Bullmore and O. Sporns, Nature Reviews Neuroscience, vol. 10,
pp.186–198, Mar. 2009.
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Motivations Motivations: Why Graphs?

Another Biological Example: Retinal Ganglion Cells
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Motivations Motivations: Why Graphs?

Retinal Ganglion Cells (D. Hubel: Eye, Brain, & Vision, ’95)
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Motivations Motivations: Why Graphs?

A Typical Neuron (from Wikipedia)
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Motivations Motivations: Why Graphs?

Mouse’s RGC as a Graph
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Motivations Motivations: Why Graphs?

Enter Laplacian Eigenfunctions!
On either irregular Euclidean domains or graphs, appropriately defined
Laplacian eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean domain
Ω⊂Rd .

Let L :=−∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;

Neumann:
∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.
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Motivations Motivations: Why Graphs?

Enter Laplacian Eigenfunctions . . .

The nontrivial solution u =ϕ of such a boundary value problem (BVP)
is called the Laplacian eigenfunction corresponding to the eigenvalue λ.
Via Green’s 1st identity, the Dirichlet BC leads to:
0<λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0=λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace
(1749–1827)

(b) J.P.G.L. Dirichlet
(1805–1859)

(c) Carl Neumann
(1832–1925)

(d) Gustave Robin
(1855–1897)
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Motivations Motivations: Why Graphs?

Laplacian Eigenfunctions . . .Why?

Why not analyze (and synthesize) an object of interest defined or
measured on an irregular domain Ω using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, tori, balls, etc.?
After all, sines (and cosines) are the eigenfunctions of the Laplacian
on a rectangular domain (e.g., an interval in 1D) with Dirichlet (and
Neumann) boundary condition.
Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.
Laplacian eigenfunctions (LEs) allow us to perform spectral analysis of
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Motivations Motivations: Why Graphs?

Laplacian Eigenfunctions . . .Why?

LEs have more physical meaning (i.e., vibration modes, heat
conduction, . . . ) than other popular basis functions such as wavelets
and wavelet packets.
LEs may particularly be useful for inverse problems and imaging:
Suppose the domain shape Ω is fixed yet the material contents inside
that domain, say u(x), x ∈Ω, change over time, i.e., u(x , t ), x ∈Ω,
t ∈ [0,T ]. Suppose one want to detect whether there is any change in
the material contents in Ω over time, i.e., estimate ut (x , t ) via
imaging.
LEs may also be necessary for many shape optimization problems:
e.g., among all possible 2D shapes having unit area, what is the shape
that minimizes its fifth smallest Dirichlet-Laplacian eigenvalues?
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Motivations Motivations: Why Graphs?

Shape Optimization (Courtesy of B. Osting)

Computational results for single eigenvalues

Oudet (2004)TITLE WILL BE SET BY THE PUBLISHER

No Optimal union of discs Computed shapes

10

46.125 46.125

9

64.293 64.293

8

78.4782.462

7

88.9692.2506

107.47110.42

5

119.9127.88

4

133.52138.37

3

143.45154.62

Fig. 5. Best-known shapes

Fig. 6. λ1 (left) and λ2 (right)

[6] M. G. Crandall and P. L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Tran. AMS 277 (1983),
1-43.

[7] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die
kreisförmige den tiefsten Grundton gibt, Sitz. Ber. Bayer. Akad. Wiss. (1923), 169-172.

[8] S. Finzi Vita, Constrained shape optimization for Dirichlets problems : Discretization via relaxation, Adv. in
Math. Sci. and Appl. 9 (1999), 581-596.

[9] A. Henrot, Minimization problems of eigenvalues of the laplacian, to appear in Journal of Evol. Eq.

[10] A. Henrot, E. Oudet, Le stade ne minimise pas λ2 parmi les ouverts convexes du plan, C. R. Acad. Sci. Paris
Sér. I Math., 332 (2001), 417-422.
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I The level set method is used to
represent the domains

I Relaxed formulation used to
compute eigenvalues

I The k-th eigenvalue of the
minimizer is multiple

Antunes + Freitas (2012)

i Ω multiplicity λ∗
i Oudet’s result

5 2 78.20 78.47

6 3 88.52 88.96

7 3 106.14 107.47

8 3 118.90 119.9

9 3 132.68 133.52

10 4 142.72 143.45

11 4 159.39 -

12 4 172.85 -

13 4 186.97 -

14 4 198.96 -

15 5 209.63 -

Table 2: Dirichlet minimizers with the optimal values for λ∗
i and the corresponding multiplicity.

do this, we find that the results obtained do not differ in a significant way and, in particular, the numerical optimizer

for λ13 remains without any symmetries.

6 Symmetries, multiplicities and TRIANGULAR domains

An analysis of the optimizers obtained suggests several remarks and directions for future study, both numerically and

analytically. One first issue is related to symmetry. It is part of the folklore of this subject that optimizers should

have some sort of symmetry. Although this seems to be the case in most situations, we found one example, λ13,

for which there seems to be no symmetry involved. Due to the high multiplicies involved and to the complexity of

the optimization procedure we can’t, of course, ensure that there does not exist another domain - which does not

necessarily have to be close to this one - for which λ13 is lower than the one given here. We have considered the

optimization of λ13 among domains which are symmetric by reflection with respect to some line. Instead of the

expansion (12), we have considered

r(t) ≈ r̃(t) =
M∑

j=0

aj cos(j t) (17)

and then optimized the cooefficients aj , j = 0, ..., M to minimize λ13|Ω|. Our symmetric numerical optimizer is

plotted in Figure 5 together with the optimizer obtained without symmetry constraint. For this symmetric domain,

we obtained λ13 = 187.92 which, due to the high accuracy of the MFS, we believe to be significantly larger than 186.97

13

I Eigenvalues computed via meshless method

I Domains parameterized using Fourier
coefficients

I k = 13 minimizer is not symmetric

7/ 21
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Motivations Motivations: Why Graphs?

Laplacian Eigenfunctions . . . Some Facts

Analysis of L is difficult due to its unboundedness, etc.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Thus L −1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
L has a complete orthonormal basis of L2(Ω), and this allows us to do
eigenfunction expansion in L2(Ω).
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Motivations Motivations: Why Graphs?

Laplacian Eigenfunctions . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 27 / 180



Motivations Motivations: Why Graphs?

Laplacian Eigenfunctions . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 27 / 180



History–Spectral Geometry

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians

5 Summary & References

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 28 / 180



History–Spectral Geometry 1D Wave Equation

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry
1D Wave Equation
Spectral Geometry 101

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians

5 Summary & References

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 29 / 180



History–Spectral Geometry 1D Wave Equation

Laplacian Eigenfunctions in 1D — The Wave Equation
Around mid 18 C, d’Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.

Consider a perfectly elastic and flexible string of length `.
ρ(x): a mass density; T (x): the tension of the string at x ∈ [0,`].
If u(x, t ) is the vertical displacement of the string at location x ∈ [0,`]
and time t ≥ 0, then the string vibrates according to the 1D wave

equation (a.k.a. the string equation): ρ(x)
∂2u

∂ t 2 = ∂

∂x

(
T (x)

∂u

∂x

)

(a) Jean d’Alembert
(1717–1783)

(b) Leonhard Euler
(1707–1783)

(c) Daniel Bernoulli
(1700–1782)
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History–Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions

From now on, for simplicity, we assume the uniform density and
constant tension, i.e., ρ(x) ≡ ρ, T (x) ≡ T .
Under this assumption, the above wave equation simplifies to:

ut t = c2uxx c ≡
√

T /ρ.

The 1D wave equation above has infinitely many solutions.
Need to specify a boundary condition (BC) and an initial condition
(IC) to obtain the desired solution.
One possibility: both ends of the string are held fixed all the time =⇒
the Dirichlet BC: u(0, t ) = u(`, t ) = 0, ∀t ≥ 0.
As for the IC, let u(x,0) = f (x) (initial position); ut (x,0) = g (x) (initial
velocity), ∀x ∈ [0,`]. What we have then is:





ut t = c2uxx for x ∈ (0,`) and t > 0;
u(0, t ) = u(`, t ) = 0 for t ≥ 0;
u(x,0) = f (x), ut (x,0) = g (x) for x ∈ [0,`].

(1)
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History–Spectral Geometry 1D Wave Equation

Behavior of the String u(x, t )

Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, t ) = X (x)T (t ).
Plugging X (x)T (t ) into the (1), we get:

X T ′′ = c2X ′′T =⇒ X ′′

X
= T ′′

c2T
= k,

where k must be a constant.
This leads to the following ODEs:

X ′′−k X = 0 with X (0) = X (`) = 0, (2)

T ′′− c2kT = 0 (3)

The characteristic equation of (2), i.e., r 2 −k = 0, must be analyzed
carefully.
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The characteristic equation of (2), i.e., r 2 −k = 0, must be analyzed
carefully.
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History–Spectral Geometry 1D Wave Equation

Solving ODEs
Case I: k > 0 =⇒ r =±

p
k; hence

X (x) = Ae
p

kx +Be−
p

kx or A cosh(
p

kx)+B sinh(
p

kx).

Applying the BC X (0) = X (`) = 0 yields A = B = 0, thus the
case of k > 0 is not feasible.

Case II: k = 0 =⇒ X ′′ = 0 =⇒ X (x) = Ax +B , which again leads to
X (x) ≡ 0.

Case III: k < 0. Set k =−ξ2 and ξ> 0. Then the characteristic
equation becomes r 2 +ξ2 = 0, i.e., r =±iξ. Therefore we get

X (x) = A cos(ξx)+B sin(ξx)

By the BC X (0) = X (`) = 0, we get:
{

X (0) = 0 =⇒ A = 0
X (`) = B sin(ξ`) = 0 =⇒ ξ= nπ

` , ∀n ∈N
Note n = 0 leads to X (x) ≡ 0 in this case, so it should not be
included.
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History–Spectral Geometry 1D Wave Equation

Forming the Solution

Hence we have X (x) = B sin( nπ
` x), and for convenience, by setting

B =
p

2/`, let us define

Xn(x) =ϕn(x) :=
√

2

`
sin

(nπ

`
x
)

,

so that ‖ϕn‖L2[0,`] = 1. Note that {ϕn}n∈N form an orthonormal basis
for L2[0,`].
Similarly, by T ′′ =−ξ2c2T we obtain the family of solutions

Tn(t ) = an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)

.

Now, for each n ∈N, the function

un(x, t ) = Tn(t ) ·ϕn(x) =
{

an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)}√

2

`
sin

(nπ

`
x
)

satisfies (1).
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History–Spectral Geometry 1D Wave Equation

Forming the Solution . . .

Hence, by the Superposition Principle,

u(x, t ) =
∞∑

n=1
un(x, t ) =

∞∑
n=1

{
an cos

(nπc

`
t
)
+bn sin

(nπc

`
t
)}
ϕn(x) (4)

is a general solution with yet undetermined coefficients an and bn .
Next, we specify the coefficients an and bn by matching (4) with the
ICs in (1). Thus we get

u(x,0) = f (x) =
∞∑

n=1
an

√
2

`
sin

(nπ

`
x
)
=

∞∑
n=1

anϕn(x)

Then

an = 〈
f ,ϕn

〉=
√

2

`

∫ `

0
f (x)sin

(nπ

`
x
)

dx,

which is a Fourier sine series expansion of f .
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History–Spectral Geometry 1D Wave Equation

Forming the Solution . . .

Similarly, ut (x,0) = g (x) =
∞∑

n=1

nπc

`
bn

√
2

`
sin

(nπ

`
x
)

.

Note that
nπc

`
bn = 〈

g ,ϕn
〉=⇒ bn = `

nπc

〈
g ,ϕn

〉
.

Finally, we obtain the particular solution:

u(x, t ) =
∞∑

n=1

{〈
f ,ϕn

〉
cos

(nπc

`
t
)
+ `

nπc

〈
g ,ϕn

〉
sin

(nπc

`
t
)}
ϕn(x),

which satisfies (1) completely including both BC & IC.

Figure: Jean Baptiste Joseph Fourier (1768–1830)
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History–Spectral Geometry 1D Wave Equation

Remarks

Need to check if our solution makes sense physically. Notice that

c2 = T

ρ
=⇒ the sound frequency =

nπ

`

√
T

ρ
.

Hence, ` is short, T is high, and ρ is small (thin), then such a string
generates a high frequency tone.
On the other hand, if ` is long, T is low, and ρ is large (thick), then it
generates a low frequency tone.
Note that the Neumann BC imposes

ux (0, t ) = ux (`, t ) = 0 ∀t > 0.

This leads to the Fourier cosine series expansions of f and g . Note
that the Neumann problem allows the solution u0(x, t ) = a0 = const.
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History–Spectral Geometry 1D Wave Equation

Remarks . . .

Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

−X ′′ = ξ2X with X (0) = X (`) = 0. (5)

Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Ω= (0,`).
More importantly, we obtained two objects, namely:

Eigenvalues: λD
n =

(nπ

`

)2
n ∈N;

Eigenfunctions: ϕD
n (x) =

√
2

`
sin

(√
λD

n x

)
n ∈N.

In the case of the Neumann-Laplacian, we got

Eigenvalues: λN
n =

(nπ

`

)2
n ∈N0 :={0}∪N;

Eigenfunctions: ϕN
n (x) =

√
2

`
cos

(√
λN

n x

)
n ∈N0.
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History–Spectral Geometry 1D Wave Equation

Remarks . . .

We see that in either BCs, {λn}∞n=1 contains geometric information of
the domain Ω= (0,`).
For instance, the size of the first eigenvalue, λ1 = (π/`)2 tells us the
volume of Ω (i.e., the length ` of Ω in 1D).
Under our assumption of constant tension and constant density,

small λ1 ⇐⇒ long `
large λ1 ⇐⇒ short `

Furthermore, the set {ϕn}∞n=1 forms an orthonormal basis for L2(Ω), so
the eigenfunctions allows us to analyze functions living on Ω.
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Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry
1D Wave Equation
Spectral Geometry 101

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians

5 Summary & References
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Spectral Geometry 101

The Laplacian eigenfunctions defined on the domain Ω provides the
orthonormal basis of L2(Ω).
The Laplacian eigenvalues encode geometric information of the
domain Ω=⇒ “Can we hear the shape of a drum?” (Mark Kac, 1966).
Temporarily, consider the Laplacian eigenvalue problem on a planar
domain Ω ∈R2 with the Dirichlet boundary condition:

{
−∆u =λu in Ω
u = 0 on ∂Ω.

Let 0 <λ1 ≤λ2 ≤λ3 ≤ ·· · ≤λk ≤ ·· ·→∞ be the sequence of
eigenvalues of the above Dirichlet-Laplace eigenvalue problem.
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Spectral Geometry 101 . . .

Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

∞∑

k=1
e−λk t = |Ω|

4πt
− |∂Ω|

8
p
πt

+o(t−1/2) as t ↓ 0.

(a) Hermann Weyl
(1885–1955)

(b) S. Minakshisundaram
(1913–1968)

(c) Åke Pleijel
(1913–1989)

(d) Mark Kac
(1914–1984)
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Universal (or Payne-Pólya-Weinberger) Inequalities (m ∈N)

λm+1 −λm ≤ 2 · 1

m

m∑

j=1
λ j ; λm+1 ≤ 3 · 1

m

m∑

j=1
λ j ;

λm+1

λm
≤ 3.

m∑

j=1

λ j

λm+1 −λ j
≥ m

2
(Hile-Protter).

m∑

j=1
(λm+1 −λ j )2 ≤ 2

m∑

j=1
λ j (λm+1 −λ j ) (Yang).

(a) L. E. Payne (1923–2011) (b) G. Pólya (1887–1985) (c) H. Weinberger (1928– )
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Isoperimetric Inequalities

λ1 ≥
π2 j 2

0,1

|Ω|2 (Rayleigh-Faber-Krahn)

λ2

λ1
≤

j 2
1,1

j 2
0,1

≈ 2.5387 (Ashbaugh-Benguria)

jk,1 is the first zero of the Bessel function of order k, i.e., Jk ( jk,1) = 0.
j0,1 ≈ 2.4048, j1,1 ≈ 3.8317, and |Ω| is the area of Ω. In both cases, the
equality is attained iff Ω is a disk in R2.

(a) Lord Rayleigh
(1842–1919)

(b) Georg Faber
(1877–1966)

(c) Edgar Krahn
(1894–1961)

(d) Mark
Ashbaugh (1953-)

(e) Rafael
Benguria (1951-)
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Remarks

Excellent references on these inequalities are:
R. D. Benguria, H. Linde, & B. Loewe: “Isoperimetric inequalities for
eigenvalues of the Laplacian and the Schrödinger operator,” Bull.
Math. Sci., vol. 2, pp. 1–56, 2012.
A. Henrot: Extremum Problems for Eigenvalues of Elliptic Operators,
Birkhäuser Verlag, Basel, 2006.
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Other Properties

Domain monotonicity property: Ω1 ⊂Ω2 =⇒λk (Ω1) ≥λk (Ω2), k ∈N.

Scaling property: λk (αΩ) = λk (Ω)

α2 , α> 0, k ∈N.

This implies:
λk (αΩ)

λm(αΩ)
= λk (Ω)

λm(Ω)
, k, m ∈N.

=⇒ the ratios of Laplacian eigenvalues are scale invariant.
Laplacian eigenvalues are translation and rotation invariant.
Using these eigenvalues and eigenvalue ratios for shape recognition and
classification has been quite popular recently as I will describe later.
Some properties and inequalities listed above should hold not only for
the Dirichlet Laplacian eigenvalues but also for our Laplacian
eigenvalues. Note, however, that the domain monotonicity does not
hold for the Neumann Laplacian eigenvalues.
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An Counterexample to the Domain Monotonicity

Consider a 2D rectangle of sides a and b with a > b. Then, let
Ω′ :={(x, y) |0 < x < a, 0 < y < b}, and Ω⊂Ω′ be the inscribed thin rectangle
of sides

√
α2 +β2 ×

√
(a −α)2 + (b −β)2:

α

β

β

α

Ω′

Ω

︷
︸︸

︷

b

︷︸︸︷

a

Figure: The Neumann BC generates an counterexample (From A. Henrot, 2006)
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An Counterexample to the Domain Monotonicity . . .

Can easily compute the Neumann eigenvalues and eigenfunctions for a
rectangle Ω′:

λN
n =λN

`,m =π2
[(

`
a

)2
+ (m

b

)2
]

,

ϕN
n (x, y) =ϕN

`,m(x, y) = c0 cos
(
π`x

a

)
cos

(mπy
b

)
. n,`,m = 0,1,2, . . .

where c0 :=2/
p

ab.
Clearly, the smallest eigenvalue is: λN

0 =λN
0,0 = 0, ϕN

0 (x, y) ≡ c0.
How about the next smallest one? Since a > b,

λN
1 =λN

1,0 =
(π

a

)2
, ϕN

1 (x, y) =ϕN
1,0(x, y) = c0 cos

(π
a

x
)

.
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An Counterexample to the Domain Monotonicity . . .

For λN
2 , we have several possibilities, depending on the relationship

between a and b.
Here are just two examples:
(i) If 2

a > 1
b , i.e., b < a < 2b, then

λN
2 =λN

0,1 =
(π

b

)2
, ϕN

2 (x, y) =ϕN
0,1(x, y) = c0 cos

(π
b

y
)

.

(ii) If 2
a < 1

b , i.e., a > 2b, then

λN
2 =λN

2,0 =
(

2π

a

)2

, ϕN
2 (x, y) =ϕN

2,0(x, y) = c0 cos

(
2π

a
x

)
.

The point is that λN
1 of Ω′ only depends on the longer side of the

rectangle, in this case a.
Now the longer side of Ω is equal to

√
(a −α)2 + (b −β)2. By choosing

appropriate α> 0, β> 0 we can have
√

(a −α)2 + (b −β)2 > a. In other
words, we can have λN

1 (Ω) <λN
1 (Ω′), even if Ω⊂Ω′.
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Harmonic Analysis of/on Irregular Domains

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians

5 Summary & References
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Harmonic Analysis of/on Irregular Domains

Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)

Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009
Method of Fundamental Solutions (MFS)

Trefftz 1926, . . . , Karageorghis 2001, Alves/Antunes 2005, . . .

Diagonalization of Integral Operators Commuting with Laplacian (NS,
2008)
. . .
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

Integral Operators Commuting with Laplacian
Simple Examples
Discretization of the Problem
Fast Algorithms for Computing Eigenfunctions
General Comments on Applications
Image Approximation I: Comparison with Wavelets
Image Approximation II: Robustness against Perturbed Boundaries
Hippocampal Shape Analysis
Statistical Image Analysis; Comparison with PCA
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

Analysis of the Laplacian L =−∆ is difficult due to its
unboundedness, etc.
Computing the eigenfunctions of L by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 53 / 180



Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

Analysis of the Laplacian L =−∆ is difficult due to its
unboundedness, etc.
Computing the eigenfunctions of L by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 53 / 180



Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

Analysis of the Laplacian L =−∆ is difficult due to its
unboundedness, etc.
Computing the eigenfunctions of L by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 53 / 180



Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

Analysis of the Laplacian L =−∆ is difficult due to its
unboundedness, etc.
Computing the eigenfunctions of L by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 53 / 180



Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian

The key idea to avoid difficulties associated with the Laplacian L is to
find an integral operator K commuting with L without imposing the
strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)

Suppose K and L commute and one of them has an eigenvalue with finite
multiplicity. Then, K and L share the same eigenfunction corresponding
to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

The inverse of L with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel is
called the Green’s function G(x , y).
Since it is not easy to obtain G(x , y) in general, let’s replace G(x , y) by
the fundamental solution of the Laplacian:

K (x , y) =





−1
2 |x − y | if d = 1,

− 1
2π log |x − y | if d = 2,

|x−y |2−d

(d−2)ωd
if d > 2,

where ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.
The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x , y):

K f (x) :=
∫

Ω
K (x , y) f (y)dy , f ∈ L2(Ω).

Theorem (NS 2005, 2008)

The integral operator K commutes with the Laplacian L =−∆ with the
following non-local boundary condition:
∫

∂Ω
K (x , y)

∂ϕ

∂νy
(y)ds(y) =−1

2
ϕ(x) + pv

∫

∂Ω

∂K (x , y)

∂νy
ϕ(y)ds(y), ∀x ∈ ∂Ω,

where ϕ is an eigenfunction common for both operators, and pv indicates
the Cauchy principal value.
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian . . .

Corollary (NS 2009)

The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ=
{
λϕ if x ∈Ω;

0 if x ∈Rd \Ω,

with the boundary condition that ϕ and
∂ϕ

∂ν
are continuous across the

boundary ∂Ω. Moreover, as |x |→∞, ϕ(x) must be of the following form:

ϕ(x) =
{

const · |x |2−d +O
(|x |1−d

)
if d 6= 2;

const · ln |x |+O
(|x |−1

)
if d = 2.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2005, 2008)

The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x , y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x , y) ∼
∞∑

j=1
µ jϕ j (x)ϕ j (y),

and {ϕ j } j forms an orthonormal basis of L2(Ω).
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Harmonic Analysis of/on Irregular Domains Simple Examples

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians
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Simple Examples
Discretization of the Problem
Fast Algorithms for Computing Eigenfunctions
General Comments on Applications
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Harmonic Analysis of/on Irregular Domains Simple Examples

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

ϕ(0)+ϕ(1) =−ϕ′(0) =ϕ′(1).

The kernel K (x , y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.
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Harmonic Analysis of/on Irregular Domains Simple Examples

1D Example . . .

λ0 ≈−5.756915, which is a solution of tanh
p

−λ0

2 = 2p
−λ0

,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m −1)2π2, m = 1,2, . . .,

ϕ2m−1(x) =
p

2cos(2m −1)πx;

λ2m , m = 1,2, . . ., which are solutions of tan
p
λ2m

2 =− 2p
λ2m

,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0,1, . . . are normalization constants.
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p

−λ0

2 = 2p
−λ0

,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m −1)2π2, m = 1,2, . . .,

ϕ2m−1(x) =
p

2cos(2m −1)πx;

λ2m , m = 1,2, . . ., which are solutions of tan
p
λ2m

2 =− 2p
λ2m

,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0,1, . . . are normalization constants.
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Harmonic Analysis of/on Irregular Domains Simple Examples

First 5 Basis Functions
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Harmonic Analysis of/on Irregular Domains Simple Examples

1D Example: Comparison

The Laplacian eigenfunctions with the Dirichlet boundary condition:
−ϕ′′ =λϕ, ϕ(0) =ϕ(1) = 0, are sines. The Green’s function in this case
is:

GD (x, y) = min(x, y)−x y.

Those with the Neumann boundary condition, i.e., ϕ′(0) =ϕ′(1) = 0,
are cosines. The Green’s function is:

GN (x, y) =−max(x, y)+ 1

2
(x2 + y2)+ 1

3
.

Remark: Gridpoint ⇔ DST-I/DCT-I;
Midpoint⇔ DST-II/DCT-II.
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Harmonic Analysis of/on Irregular Domains Simple Examples

2D Example

Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x , y) =− 1

2π log |x − y | gives rise to:

−∆ϕ=λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
∂Ω

= ∂ϕ

∂r

∣∣∣
∂Ω

=−∂Hϕ

∂θ

∣∣∣
∂Ω

,

where H is the Hilbert transform for the circle, i.e.,

H f (θ) := 1

2π
pv

∫ π

−π
f (η)cot

(
θ−η

2

)
dη θ ∈ [−π,π].

Let jk,` is the `th zero of the Bessel function of order k, Jk ( jk,`) = 0.
Then,

ϕm,n(r,θ) =
{

Jm( jm−1,n r )
(cos

sin

)
(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0( j0,n r ) if m = 0, n = 1,2, . . .,

λm,n =
{

j 2
m−1,n , if m = 1, . . . , n = 1,2, . . .,

j 2
0,n if m = 0, n = 1,2, . . ..
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Harmonic Analysis of/on Irregular Domains Simple Examples

First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace
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Harmonic Analysis of/on Irregular Domains Simple Examples

3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x , y) = 1

4π|x−y | .
Top 9 eigenfunctions cut at the equator viewed from the south:
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Harmonic Analysis of/on Irregular Domains Discretization of the Problem

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

Integral Operators Commuting with Laplacian
Simple Examples
Discretization of the Problem
Fast Algorithms for Computing Eigenfunctions
General Comments on Applications
Image Approximation I: Comparison with Wavelets
Image Approximation II: Robustness against Perturbed Boundaries
Hippocampal Shape Analysis
Statistical Image Analysis; Comparison with PCA

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians

5 Summary & References
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Harmonic Analysis of/on Irregular Domains Discretization of the Problem

Discretization of the Problem

Assume that the whole dataset consists of a collection of data sampled
on a regular grid, and that each sampling cell is a box of size

∏d
i=1∆xi .

Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are {x i }N

i=1.
Under these assumptions, we can approximate the integral eigenvalue
problem K ϕ=µϕ with a simple quadrature rule with node-weight
pairs (x j , w j ) as follows.

N∑

j=1
w j K (x i , x j )ϕ(x j ) =µϕ(x i ), i = 1, . . . , N , w j =

d∏

i=1
∆xi .

Let Ki , j :=w j K (x i , x j ), ϕi :=ϕ(x i ), and ϕ :=(ϕ1, . . . ,ϕN )T ∈RN . Then,
the above equation can be written in a matrix-vector format as:
Kϕ=µϕ, where K = (Ki j ) ∈RN×N . Under our assumptions, the
weight w j does not depend on j , which makes K symmetric.
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

Integral Operators Commuting with Laplacian
Simple Examples
Discretization of the Problem
Fast Algorithms for Computing Eigenfunctions
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Image Approximation I: Comparison with Wavelets
Image Approximation II: Robustness against Perturbed Boundaries
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

A Possible Fast Algorithm for Computing ϕ j ’s

Observation: our kernel function K (x , y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory.
Idea: Accelerate the matrix-vector product Kϕ using the Fast
Multipole Method (FMM).
Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N 2), but
can achieve O(N log N ) via the randomized SVD algorithm of
Woolfe-Liberty-Rokhlin-Tygert (2008)).
Construct O(N ) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS”
algorithm of Chandrasekaran et al. (2006)).
Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.
(Computational cost: O(N ) for each eigenvalue/eigenvector).
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

Tree-Structured Matrix via FMM

(a) Hierarchical indexing scheme (b) Tree-Structured Matrix
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

A Real Challenge: Kernel matrix is of 387924×387924.
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

First 25 Basis Functions via the FMM-based algorithm
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

Splitting into Subproblems for Faster Computation

(a) Whole islands (b) Separated islands
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

Eigenfunctions for Separated Islands
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Harmonic Analysis of/on Irregular Domains General Comments on Applications

General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:
Interactive image analysis, discrimination, interpretation:

Medical image analysis: e.g., hippocampal shape analysis for early
Alzheimer’s
Biometry: e.g., identification and characterization of eyes, faces, etc.

Geophysical data assimilation:
Incorporating ocean current data measured by high frequency radar
into a numerical model;
Interpolation, extrapolation, prediction of vector-valued meteorology
data (temperature, pressure, wind speed, etc.) measured at the
weather station in the 3D terrain.

. . .
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Harmonic Analysis of/on Irregular Domains General Comments on Applications

Remark on the DC vector

The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector χΩ :=1N /

p
N ∈RN .

If some application needs to have the DC vector of a given domain Ω
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.
Consider the orthogonal complement to the 1D subspace span{χΩ} in
the column space of the kernel matrix K :

K̃ = (
I −χΩχT

Ω

)
K .

Then, χΩ together with the eigenvectors of K̃ corresponding to the
largest N −1 eigenvalues form the desired orthonormal basis.
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Harmonic Analysis of/on Irregular Domains General Comments on Applications

Remark on the DC vector . . .

(a) Laplacian Eigenfunctions via
Commuting Integral Operator

(b) Laplacian Eigenfunctions incorporating
the DC vector

=⇒ leads to the generalized discrete cosine basis!
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Image Approximation; Comparison with Wavelets

(a) What data?

(b) χJ · Barbara
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Image Approximation; Comparison with Wavelets

(a) What data? (b) χJ · Barbara
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

First 25 Basis Functions
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Next 25 Basis Functions
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 Coefficients

(a) Reconstruction

(b) Error

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 84 / 180
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Reconstruction with Top 100 Coefficients

(a) Reconstruction (b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Comparison of Coefficient Decay
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Experiments on Domains with Perturbed Boundaries

We will use the following domains for our experiments:
Ω1: The Japanese Islands
Ω2: A smoothed and connected version of Ω1;
Ω3: The same as Ω2 but with a “jaggy” boundary curve
Ω4: The two-component version of Ω2.

As for the data on these domains, we adopted three functions with
different smoothness:

1 A discontinuous function (i.e., a simple step function whose
discontinuity is a straight line along the “spine” or the main axis of the
domain);

2 A pyramid-shaped function, which is continuous and its first order
partial derivatives are of bounded variation;

3 The standard Gaussian function.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

The Domains with Perturbed Boundaries

(a) χΩ1 (b) χΩ2

(c) χΩ3 (d) χΩ4
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Decay Rates of the Expansion Coefficients (Unsorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Observations on the Decay Rates

The decay rates reflect the intrinsic smoothness of the functions living
in the domain, but are not affected by the existence of the boundary
of the domains.
The decay rates are rather insensitive to the smoothness of the
boundary curves. In particular, the plots for Ω2, Ω3, and Ω4 are
virtually the same whereas those for Ω1—the most complicated
domain among these four—seem slightly worse than the others. Yet
all behave better than O(k−1).
The decay rates are rather insensitive to the number of the separated
subdomains. Again, it will be also of interest to investigate the
behavior the conventional Laplacian eigenfunctions in this respect.
Although the coefficient plots oscillate around the linear lines (in the
log-log scale), the decay rates O(k−α), regardless of the domain
shapes, behave as follows. For the discontinuous functions, α< 1. For
the pyramid-shape function, 1 <α< 1.5. For the Gaussian function,
α≥ 1.5.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Decay Rates of the Expansion Coefficients (Sorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The blue, red, and green curves correspond to the discontinuous,
pyramid-shape, and Gaussian functions, respectively. It is obvious that these
curves show no oscillations and their decay rates are faster than those of the
unsorted coefficients. Moreover, the decay rates can be read off easily from the
plots. The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Conjecture on the Coefficient Decay Rate

Conjecture (NS 2007)

Let Ω be a C 2-domain of general shape and let f ∈C
(
Ω

)
with

∂ f

∂x j
∈ BV

(
Ω

)
for j = 1, . . . ,d . Let

{
ck = 〈

f ,ϕk
〉}

k∈N be the expansion

coefficients of f with respect to our Laplacian eigenbasis on this domain.
Then, |ck | decays with rate O(k−α) with 1 <α< 2 as k →∞. Thus, the
approximation error using the first m terms measured in the L2-norm, i.e.,∥∥ f −∑m

k=1 ckϕk
∥∥

L2(Ω)
should have a decay rate of O

(
m−α+0.5

)
as m →∞.

The C 2-smoothness of the boundary could be weakened . . .
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Hippocampal Shape Analysis

Presenting the work of Faisal Beg and his group at Simon Fraser Univ.
using our technique
Want to distinguish people with mild dementia of the Alzheimer type
(DAT) from cognitively normal (CN) people
Hippocampus plays important roles in long-term memory and spatial
navigation

Figure: From Wikipedia
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Hippocampal Shape Analysis . . .

Dataset: Left hippocampus segmented from 3D MRI images
Compute the smallest 999 Laplacian eigenvalues (i.e., the largest 999
eigenvalues of the integral operator K ) for each left hippocampus
Construct a feature vector for each left hippocampus:

F :=
(
λ1

λ2
, . . . ,

λ1

λn+1

)T
=

(
µ2

µ1
, . . . ,

µn+1

µ1

)T
∈Rn .

This feature vector was used by Khabou, Hermi, and Rhouma (2007)
for 2D shape classification (e.g., shapes of tree leaves).
Reduce the feature space dimension via PCA to from n = 998 to n′

Classified by the linear SVM (support vector machine)
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First Three Eigenfunctions of Three Patients
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The Second Eigenfunction ϕ2

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240
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The Third Eigenfunction ϕ3

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 100 / 180



Harmonic Analysis of/on Irregular Domains Hippocampal Shape Analysis

Classification Results

Dataset consists of the segmented left hippocampuses of 18 DAT subjects
and of 26 CN subjects:

Method Accuracy Specificity Sensitivity n n′

MomInv 68.1% 69.2% 66.6% 12 1
TensorInv 75.0% 76.9% 72.2% ≥ 1.9E5 17
LapEig 77.2% 84.6% 66.6% 998 14
GeodesicInv 86.3% 77.7% 92.3% ≥ 1.3E6 27

accuracy := |T P |+ |T N |
|people examined| =

|people correctly diagnosed|
|people examined|

specificity := |T N |
|T N |+ |F P | =

|people correctly diagnosed as healthy|
|healthy people examined|

sensitivity := |T P |
|T P |+ |F N | =

|people correctly diagnosed as mild AD|
|people with mild AD examined|
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Comparison with PCA

Consider a stochastic process living on a domain Ω.
PCA/Karhunen-Loève Transform is often used.
PCA/KLT implicitly incorporate geometric information of the
measurement (or pixel) location through data correlation.
Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K (x , y).
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Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich
72 training dataset; 71 test dataset
Left & right eye regions
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Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Comparison with PCA: Kernel Matrix

(a) Covariance (b) Harmonic kernel
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Comparison with PCA: Energy Distribution over Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 110 / 180



Harmonic Analysis of/on Irregular Domains Statistical Image Analysis; Comparison with PCA

Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Introductory Remarks
For much more details of this part of tutorial, please check my course
website on “Harmonic Analysis on Graphs & Networks”:
http://www.math.ucdavis.edu/˜saito/courses/HarmGraph/
Good general references on the graph Laplacian eigenvalues are:

R. B. Bapat: Graphs and Matrices, Universitext, Springer, 2010.
F. R. K. Chung: Spectral Graph Theory, Amer. Math. Soc., 1997.
D. Cvetković, P. Rowlinson, & S. Simić: An Introduction to the Theory
of Graph Spectra, Vol. 75, London Mathematical Society Student
Texts, Cambridge Univ. Press, 2010.

As for the graph Laplacian eigenfunctions, there are not too many books
(although there may be many papers); one of the good books is

T. Bıyıkoğlu, J. Leydold, & P. F. Stadler, Laplacian Eigenvectors of
Graphs, Lecture Notes in Mathematics, vol. 1915, Springer, 2007.

As for wavelet-like transforms on graphs, there are many recent publications
including those of my group. The following is a good survey paper:

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, & P.
Vandergheynst: “The emerging field of signal processing on graphs,”
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 113 / 180



Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
Graph Laplacian Eigenfunctions
Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors
Graph Partitioning via Spectral Clustering
Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT
Signal Denoising Experiments

5 Summary & References
saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 114 / 180



Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Basic Definitions
A graph G consists of a set of vertices (or nodes) V and a set of edges
E connecting some pairs of vertices in V . We write G = (V ,E).
An edge connecting a vertex x ∈V and itself is called a loop.
For x, y ∈V , if ∃ more than one edge connecting x and y , they are
called multiple edges.
A graph having loops or multiple edges is called a multiple graph (or
multigraph); otherwise it is called a simple graph.

A multiple graph A simple graph

In this tutorial, we shall only deal with simple graphs. So, when we say
a graph, we mean a simple graph.
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If two distinct vertices x, y ∈V are connected by an edge e, then x, y
are called the endpoints (or ends) of e, and x, y are said to be
adjacent, and we write x ∼ y . We also say an edge e is incident with x
and y , and e joins x and y .
The number of edges that are incident with x (i.e., have x as their
endpoint) = the degree (or valency) of x and write d(x) or dx .
If the number of vertices |V | <∞, then G is called a finite graph;
otherwise an infinite graph.
If each edge in E has a direction, G is called a directed graph or
digraph, and such E is written as E .

x

y

e

e = [x, y]
x

y

ē

ē = [y, x]

If e = [x, y], then x and y are called a tail and a head, respectively.
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ē
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If an edge e does not have a direction, we write e = (x, y).
If each edge e = (x, y) of G has a weight (normally positive), written as
we = wx y , then G is called a weighted graph. G is said to be
unweighted if we = const. for each e ∈ E , and normally we is set to 1.
A path from x to y in a graph G is a subgraph of G consisting of a
sequence of distinct vertices starting with x and ending with y such
that consecutive vertices are adjacent. A path starting from x that
returns to x (but is not a loop) is called a cycle.
For any two vertices in V , if ∃ a path connecting them, then such a
graph G is said to be connected. In the case of a digraph, it is said to
be strongly connected.
A tree is a connected graph without cycles, and is often denoted by T
instead of G. For a tree T , we have |E(T )| = |V (T )|−1, where | · |
denotes a cardinality of a set.
The length (or cost) `(P ) of a path P is the sum of its corresponding
edge weights, i.e., `(P ) :=∑

e∈E(P ) we . Let Px y be a set of all possible
paths from x to y in G. The graph distance from x to y is defined by
d(x, y) := inf

P∈Px y

`(P ).
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Clearly, for an undirected graph, we always have d(x, y) = d(y, x), but
that is not the case for a directed graph in general.
diam(G) := sup

x,y∈V
d(x, y) is called the diameter of G. Note that

diam(G) <∞⇐⇒ G is finite.
We say two graphs are isomorphic if ∃ a one-to-one correspondence
between the vertex sets such that if two vertices are joined by an edge
in one graph, the corresponding vertices are also joined by an edge in
the other graph.

isomorphic≈
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The complete graph Kn on n vertices is a simple graph that has all
possible

(n
2

)
edges.

K3 K4 K5

If all the vertices of a graph has the same degree, the graph is called
regular. Hence, Kn is regular.
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph

The adjacency matrix A = A(G) = (ai j ) ∈Rn×n , n = |V |, for an
unweighted graph G consists of the following entries:

ai j :=
{

1 if vi ∼ v j ;

0 otherwise.

Another typical way to define its entries is based on the similarity of
information at vi and v j :

ai j :=exp(−dist(vi , v j )2/ε2)

where dist is an appropriate distance measure (i.e., metric) defined in
V , and ε> 0 is an appropriate scale parameter. This leads to a
weighted graph. We will discuss later more about the weighted
graphs, how to determine weights, and how to construct a graph from
given datasets in general.
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Matrices Associated with a Graph . . .

The degree matrix D = D(G) = diag(d1, . . . ,dn) ∈Rn×n is a diagonal
matrix whose entries are:

di = d(vi ) = dvi :=
n∑

j=1
ai j .

Note that the above definition works for both unweighted and
weighted graphs.
The transition matrix P = P (G) = (pi j ) ∈Rn×n consists of the following
entries:

pi j :=ai j /di if di 6= 0.

pi j represents the probability of a random walk from vi to v j in one
step:

∑
j pi j = 1, i.e., P is row stochastic.

AT = A, PT 6= P , P = D−1 A .
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Matrices Associated with a Graph . . .

Let G be an undirected graph. Then, we can define several Laplacian
matrices of G:

L(G) :=D − A Unnormalized

Lrw(G) :=In −D−1 A = In −P = D−1L Normalized

Lsym(G) :=In −D− 1
2 AD− 1

2 = D− 1
2 LD− 1

2 Symmetrically-Normalized

The signless Laplacian is defined as follows, but we will not deal with
this in this tutorial: Q(G) :=D+A.
Graph Laplacians can also be defined for directed graphs; However,
there are many different definitions based on the types/classes of
directed graphs, and in general, those matrices are nonsymmetric. See,
e.g., Fan Chung: “Laplacians and the Cheeger inequality for directed
graphs,” Ann. Comb., vol. 9, no. 1, pp. 1–19, 2005, for an attempt to
symmetrize graph Laplacian matrices for strongly connected digraphs.
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Functions Defined on a Graph

C (V ) :={all functions defined on V }

C0(V ) :={ f ∈C (V ) |supp f is a finite subset of V }

supp f :={u ∈V | f (u) 6= 0}
〈

f , g
〉

:=
∑

u∈V
f (u)g (u)

〈
f , g

〉
# :=

∑

u∈V
d(u) f (u)g (u)

L2(V ) :=
{

f ∈C (V )
∣∣∣‖ f ‖# :=

√〈
f , f

〉
# <∞

}

Lemma
〈

P f , g
〉

# =
〈

f ,P g
〉

# ∀ f , g ∈L2(V );

‖P f ‖# ≤ ‖ f ‖# ∀ f ∈L2(V ).
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Functions Defined on a Graph . . .
Let f ∈L2(V ). Then

L f (vi ) = di f (vi )−
n∑

j=1
ai j f (v j ) =

n∑

j=1
ai j

(
f (vi )− f (v j )

)
.

i.e., this is a generalization of the finite difference approximation to
the Laplace operator.
On the other hand,

Lrw f (vi ) = f (vi )−
n∑

j=1
pi j f (v j ) = 1

di

n∑

j=1
ai j

(
f (vi )− f (v j )

)
.

Lsym f (vi ) = f (vi )− 1√
di

n∑

j=1

ai j√
d j

f (v j ) = 1√
di

n∑

j=1
ai j




f (vi )√
di

− f (v j )
√

d j


 .

Note that these definitions of the graph Laplacian corresponds to −−−∆
in Rd , i.e., they are nonnegative operators (a.k.a. positive semi-definite
matrices).
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Functions Defined on a Graph . . .

A function f ∈C (V ) is called harmonic if

L f = 0, Lrw f = 0, or Lsym f = 0.

A function f ∈C (V ) is called superharmonic at x ∈V if

L f (x) ≥ 0, Lrw f (x) ≥ 0, or Lsym f (x) ≥ 0.

These corresponds to:

f (vi ) ≥ 1

di

n∑

j=1
ai j f (v j ), f (vi ) ≥

n∑

j=1
pi j f (v j ), or f (vi ) ≥

n∑

j=1

ai j
√

di

√
d j

f (v j ).

One can also generalize various analytic concepts such as Green’s
functions, Green’s identity, analytic functions, Cauchy-Riemann
equations, . . . , to the graph setting!
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Derivatives and Green’s Identity

Let C (E ) :={ϕ defined on E |ϕ(ē) =−ϕ(e),e ∈ E }. For f ∈C (V ), define the
derivative d f ∈C (E ) of f as

d f (e) = d f ([x, y]) := f (y)− f (x).

Theorem (The discrete version of Green’s first identity, Dodziuk 1984)

∀ f1, f2 ∈C0(V ),
〈

d f1,d f2
〉= 〈

Lrw f1, f2
〉

# =
〈

L f1, f2
〉

Corollary
L, Lrw, and Lsym are nonnegative operators, e.g.,

〈
Lrw f , f

〉
# =

〈
L f , f

〉= 〈
d f ,d f

〉≥ 0.
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

The Minimum Principle

Theorem (The discrete version of the minimum principle)

Let f ∈C (V ) be superharmonic at x ∈V . If f (x) ≤ miny∼x f (y), then
f (z) = f (x), ∀z ∼ x.

Proof. From the superharmonicity of f at x ∈V , we have

1

dx

∑
y∼x

ax y f (y) ≤ f (x).

On the other hand, from the condition of this theorem, we have

1

dx

∑
y∼x

ax y f (y) ≥ 1

dx

∑
y∼x

ax y f (x) = f (x).

Hence, we must have
1

dx

∑
y∼x

ax y f (y) = f (x). But this can happen only if
f (z) = f (x), ∀z ∼ x. ä
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Why Graph Laplacians?
We already know that the Laplacian eigenvalues and eigenfunctions
are extremely useful for general domains in Rd .
The graph Laplacian eigenvalues reflect various intrinsic geometric and
topological information about the graph including connectivity or the
number of separated components; diameter; mean distance, . . .
Fan Chung: Spectral Graph Theory, Amer. Math. Soc., 1997, says:
“This monograph is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.”
Due to the time limitation, I will not be able to discuss the details on
how the graph Laplacian eigenvalues reveal the geometric and
topological information of the graph. For the details, please check the
above book, the books listed in the beginning of this section, and

R. Merris: “Laplacian matrices of graphs: a survey,” Linear Algebra
Appl., vol. 197/198, pp. 143–176, 1994.
N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using
eigenvalues of graph Laplacians,” Japan SIAM Lett. vol. 1 pp. 13–16,
2009 (Invited paper).
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Fan Chung: Spectral Graph Theory, Amer. Math. Soc., 1997, says:
“This monograph is an intertwined tale of eigenvalues and their use in
unlocking a thousand secrets about graphs.”
Due to the time limitation, I will not be able to discuss the details on
how the graph Laplacian eigenvalues reveal the geometric and
topological information of the graph. For the details, please check the
above book, the books listed in the beginning of this section, and

R. Merris: “Laplacian matrices of graphs: a survey,” Linear Algebra
Appl., vol. 197/198, pp. 143–176, 1994.
N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using
eigenvalues of graph Laplacians,” Japan SIAM Lett. vol. 1 pp. 13–16,
2009 (Invited paper).
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

Why Graph Laplacians? . . .

The graph Laplacian eigenfunctions form an orthonormal basis on a
graph =⇒

can expand functions defined on a graph
can perform spectral analysis/synthesis/filtering of data measured on
vertices of a graph

Can be used for graph partitioning, graph drawing, data analysis,
clustering, . . .=⇒ Graph Cut, Spectral Clustering
Less studied than graph Laplacian eigenvalues
In this tutorial, I will use the terms “eigenfunctions” and “eigenvectors”
interchangeably.
Also, an eigenvector/function is denoted by φ, and its value at vertex
x ∈V is denoted by φ(x).
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Harmonic Analysis of/on Graphs/Networks Basics of Graph Theory: Graph Laplacians

A Simple Yet Important Example: A Path Graph




1 −1
−1 2 −1

−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 1




︸ ︷︷ ︸
L(G)

=




1
2

2

. . .
2

1




︸ ︷︷ ︸
D(G)

−




0 1
1 0 1

1 0 1

. . .
. . .

. . .
1 0 1

1 0




︸ ︷︷ ︸
A(G)

The eigenvectors of this matrix are exactly the DCT Type II basis vectors
used for the JPEG image compression standard! (See G. Strang, “The
discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0,1, . . . ,n −1.
φk (`) = cos

(
πk

(
`+ 1

2

)
/n

)
, k,`= 0,1, . . . ,n −1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. However, in general, the
notion of frequency is not well defined.
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenvalues

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
Graph Laplacian Eigenfunctions
Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors
Graph Partitioning via Spectral Clustering
Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT
Signal Denoising Experiments

5 Summary & References
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues

In this review part, we only consider undirected and unweighted graphs
and their unnormalized Laplacians L(G) = D(G)− A(G). Let |V (G)| = n,
|E(G)| = m.
It is a good exercise to see how the statements change for the
normalized or symmetrically-normalized graph Laplacians.
Can show that L(G) is positive semi-definite.
Hence, we can sort the eigenvalues of L(G) as
0 =λ0(G) ≤λ1(G) ≤ ·· · ≤λn−1(G) and denote the set of these
eigenvalue by Λ(G).
mG (λ) := the multiplicity of λ.
Let I ⊂R be an interval of the real line. Then define
mG (I ) :=#{λk (G) ∈ I }.
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues . . .

Graph Laplacian matrices of the same graph are permutation-similar.
In fact, graphs G1 and G2 are isomorphic iff there exists a permutation
matrix Q such that

L(G2) =QTL(G1)Q.

rankL(G) = n −mG (0) where mG (0) turns out to be the number of
connected components of G. Easy to check that L(G) becomes mG (0)
diagonal blocks, and the eigenspace corresponding to the zero
eigenvalues is spanned by the indicator vectors of each connected
component.
In particular, λ1 6= 0, i.e., mG (0) = 1 iff G is connected.
This led M. Fiedler (1973) to define the algebraic connectivity of G by
a(G) :=λ1(G), viewing it as a quantitative measure of connectivity.
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues . . .

Denote the complement of G (in Kn) by Gc .

The Petersen graph and its complement in K10 (from Wikipedia)

Then, we have
L(G)+L(Gc ) = L(Kn) = nIn − Jn ,

where Jn is the n ×n matrix whose entries are all 1.
We also have:

Λ(Gc ) = {0,n −λn−1(G),n −λn−2(G), . . . ,n −λ1(G)}.
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenvalues

A Brief Review of Graph Laplacian Eigenvalues . . .

From the above, we can see that

λmax(G) =λn−1(G) ≤ n,

and mG (n) = mGc (0)−1.
On the other hand, Grone and Merris showed in 1994

λmax(G) =λn−1(G) ≥ max
1≤ j≤n

d j +1.

Let G be a connected graph and suppose L(G) has exactly k distinct
eigenvalues. Then

diam(G) ≤ k −1.
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenfunctions

Basic Properties of GL Eigenfunctions

If G = (V ,E), |V | = n, is connected, then λ0 = 0, a(G) =λ1 > 0.
We already know that the eigenfunction corresponding to λ0 = 0 is
φ0 = 1n .
Hence, φ j corresponding to λ j > 0, j = 1, . . . ,n−1, must be orthogonal
to 1n :

∑
x∈V φ j (x) = 0, i.e., it must oscillate.

If φ(x) = 0, then (Lφ)(x) =λφ(x) = 0. Hence,
∑

y∼x Lx yφ(y) = 0.

Theorem (Grover (1990); Gladwell & Zhu (2002))

An eigenfunction of L(G) cannot have a nonnegative local minimum or a
nonpositive local maximum.

Proof. Suppose φ(x) is a local minimum of φ with φ(x) ≥ 0. Then, ∀y ∼ x,
φ(x)−φ(y) < 0. Now, recall Lφ(x) =∑

y∼x ax y (φ(x)−φ(y)) =λφ(x) ≥ 0
where ax y ≥ 0 is the x y-th entry of the adjacency matrix A(G). These
contradicts each other. ä
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We already know that the eigenfunction corresponding to λ0 = 0 is
φ0 = 1n .
Hence, φ j corresponding to λ j > 0, j = 1, . . . ,n−1, must be orthogonal
to 1n :

∑
x∈V φ j (x) = 0, i.e., it must oscillate.

If φ(x) = 0, then (Lφ)(x) =λφ(x) = 0. Hence,
∑

y∼x Lx yφ(y) = 0.

Theorem (Grover (1990); Gladwell & Zhu (2002))

An eigenfunction of L(G) cannot have a nonnegative local minimum or a
nonpositive local maximum.

Proof. Suppose φ(x) is a local minimum of φ with φ(x) ≥ 0. Then, ∀y ∼ x,
φ(x)−φ(y) < 0. Now, recall Lφ(x) =∑

y∼x ax y (φ(x)−φ(y)) =λφ(x) ≥ 0
where ax y ≥ 0 is the x y-th entry of the adjacency matrix A(G). These
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions

Theorem (Merris (1998))

If 0�λ< n is an eigenvalue of L(G), then any eigenfunction affording λ
takes the value 0 on every vertex of degree n −1.

Proof. Let v ∈V be a vertex with d(v) = n −1. Then,
Lφ(v) = (n −1)φ(v)−∑

u 6=v φ(u) =λφ(v). But, φ⊥ 1n , so∑
u 6=v φ(u) =−φ(v). This leads to: nφ(v) =λφ(v). Since 0�λ� n, we

must have φ(v) = 0. ä

Theorem (Merris (1998))

Let (λ,φ) be an eigenpair of L(G). If φ(u) =φ(v), then (λ,φ) is also an
eigenpair of L(G ′) where G ′ is the graph obtained from G by either deleting
or adding the edge e = (u, v) depending on whether or not e ∈ E(G).
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions . . .

Let W be a nonempty subset of V (G). Then, the reduced graph G{W } is
obtained from G by deleting all vertices in V \W that are not adjacent to a
vertex of W and subsequent deletion of any remaining edges that are not
incident with a vertex in W .

W = {•}, W c = {◦}
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions . . .

Let W be a nonempty subset of V (G). Then, the reduced graph G{W } is
obtained from G by deleting all vertices in V \W that are not adjacent to a
vertex of W and subsequent deletion of any remaining edges that are not
incident with a vertex in W .

G{W }
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenfunctions

Basic Properties of Unweighted GL Eigenfunctions . . .

Theorem (Merris (1998))

Fix a nonempty subset W ⊂V . Suppose φ is an eigenfunction of the
reduced graph G{W } that affords λ and is supported by W in the sense
that if φ(u) 6= 0, then u ∈W . Then the extension φ̃ with φ̃(v) =φ(v) for
v ∈W and φ̃(v) = 0 for v ∈V \W is an eigenfunction of G affording λ.

Theorem (Merris (1998))

Let φ be an eigenfunction affording λ of G. Let Nv be the set of neighbors
of v . Suppose φ(u) =φ(v) = 0, where Nu ∩Nv =;. Let G ′ be the graph on
n −1 vertices obtained by coalescing u and v into a single vertex, which is
adjacent in G ′ to precisely those vertices that are adjacent in G to u or to
v . Then, the function φ′ obtained by restricting φ to V (G) \ {v} is an
eigenfunction of G ′ affording λ.
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Harmonic Analysis of/on Graphs/Networks Graph Laplacian Eigenfunctions

A Simple Example

1

2

3 4 5 6

7

8
G; N3 ∩N6 =;

λ2(G) = 1;φ2(G) = [−0.0261,−0.0261,0,0.0523,0.0523,0,−0.7303,0.6781]T

1

2
3,6

4 5

7

8

G ′

λ2(G ′) = 1;φ2(G ′) ∝ [−0.0261,−0.0261,0,0.0523,0.0523,−0.7303,0.6781]T
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Harmonic Analysis of/on Graphs/Networks Localization Phenomena of Eigenvectors

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
Graph Laplacian Eigenfunctions
Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors
Graph Partitioning via Spectral Clustering
Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT
Signal Denoising Experiments

5 Summary & References
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Harmonic Analysis of/on Graphs/Networks Localization Phenomena of Eigenvectors

A Peculiar Phase Transition Phenomenon

We observed an interesting phase transition phenomenon on the behavior
of the eigenvalues of graph Laplacians defined on dendritic trees.

(a) RGC #100

(b) Eigenvalues of RGC #100
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Harmonic Analysis of/on Graphs/Networks Localization Phenomena of Eigenvectors

A Peculiar Phase Transition Phenomenon . . .

We have observed that this value 4 is critical since:
the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC #100; λ1141 = 3.9994 (b) RGC #100; λ1142 = 4.3829
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Harmonic Analysis of/on Graphs/Networks Localization Phenomena of Eigenvectors

We know why such localization/phase transition occurs =⇒ See our
article for the detail: Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries
around graph Laplacian eigenvalue 4,” Linear Algebra & Its Applications,
vol. 438, no. 8, pp. 3231–3246, 2013.

Any physiological consequence? Importance of branching vertices?
Many such eigenvector localization phenomena have been reported:
Anderson localization, scars in quantum chaos, . . .
See also an interesting related work for more general setting and for
application in numerical linear algebra: I. Krishtal, T. Strohmer, & T.
Wertz: “Localization of matrix factorizations,” Foundations of Comp. Math.,
to appear, 2014.

Our point is that eigenvectors corresponding to high eigenvalues are
quite sensitive to topology and geometry of the underlying domain and
cannot really be viewed as high frequency oscillations unless the
underlying graph is a simple unweighted path.
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Harmonic Analysis of/on Graphs/Networks Localization Phenomena of Eigenvectors

Even a simple path, if edges are weighted, localization tends to occur.

A simple yet weighted path

We want to control such eigenvector localizations by ourselves rather
than dictated by the topology and geometry of the graphs!
This leads us to the development of the multiscale basis dictionaries
on graphs.
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Harmonic Analysis of/on Graphs/Networks Graph Partitioning via Spectral Clustering

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
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Harmonic Analysis of/on Graphs/Networks Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering
Goal: Split the vertices V into two “good” subsets, X and X c

Plan: Use the signs of the entries in φ1 known as the Fiedler vector

Why? Using φ1 to generate X and X c yields an approximate minimizer of
the RatioCut function1,2:

RatioCut(X , X c ) := cut(X , X c )

|X | + cut(X , X c )

|X c | ,

where
cut(X , X c ) :=

∑

vi∈X
v j∈X c

Ai j

1L. Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2We could also use the signs of φ1 of Lrw :=D−1L (equivalently, Lsym :=D− 1
2 LD− 1

2 ),
which yield an approximate minimizer of the Normalized Cut function of Shi and Malik.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 149 / 180



Harmonic Analysis of/on Graphs/Networks Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering
Goal: Split the vertices V into two “good” subsets, X and X c

Plan: Use the signs of the entries in φ1 known as the Fiedler vector

Why? Using φ1 to generate X and X c yields an approximate minimizer of
the RatioCut function1,2:

RatioCut(X , X c ) := cut(X , X c )

|X | + cut(X , X c )

|X c | ,

where
cut(X , X c ) :=

∑

vi∈X
v j∈X c

Ai j

1L. Hagen and A. B. Kahng: “New spectral methods for ratio cut partitioning and
clustering,” IEEE Trans. Comput.-Aided Des., vol. 11, no. 9, pp. 1074-1085, 1992.

2We could also use the signs of φ1 of Lrw :=D−1L (equivalently, Lsym :=D− 1
2 LD− 1

2 ),
which yield an approximate minimizer of the Normalized Cut function of Shi and Malik.

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 149 / 180



Harmonic Analysis of/on Graphs/Networks Graph Partitioning via Spectral Clustering

Graph Partitioning via Spectral Clustering
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Example of Graph Partitioning

Figure: The MN road network
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Example of Graph Partitioning

Figure: The MN road network partitioned via the Fiedler vector of L
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Harmonic Analysis of/on Graphs/Networks Multiscale Basis Dictionaries

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
Graph Laplacian Eigenfunctions
Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors
Graph Partitioning via Spectral Clustering
Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT
Signal Denoising Experiments

5 Summary & References
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Harmonic Analysis of/on Graphs/Networks Multiscale Basis Dictionaries

Motivation: Building Multiscale Basis Dictionaries

Wavelets have been quite successful on regular domains
They have been extended to irregular domains ⇒ “2nd Generation
Wavelets” including graphs, e.g.:

Coifman and Maggioni (2006): diffusion wavelets; Bremer et al.
(2006): diffusion wavelet packets
Jansen, Nason, and Silverman (2008): Adaptation of the lifting scheme
to graphs
Hammond, Vandergheynst, and Gribonval (2011): Spectral graph
wavelet transforms (via spectral graph theory)
. . .

Key difficulties:
The notion of frequency is ill-defined on graphs and the Fourier
transform is not properly defined on graphs
Hence, the use of graph Laplacian eigenvectors, which can be viewed as
“sines” and “cosines” on graphs, has been quite popular
However, they exhibit peculiar behaviors depending on topology and
structure of given graphs!
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Harmonic Analysis of/on Graphs/Networks Multiscale Basis Dictionaries

Our transforms involve 2 main steps:

1 Recursively partition the graph

m These steps can be performed concurrently, or we can fully partition
the graph and then generate a set of bases

2 Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a novel transform that can be viewed as a generalization of
the block Discrete Cosine Transform. We refer to this transform as the
Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 155 / 180



Harmonic Analysis of/on Graphs/Networks Hierarchical Graph Laplacian Eigen Transform (HGLET)

1 Generate an orthonormal basis for the entire graph ⇒ Laplacian
eigenvectors (Notation is φ j

k,l with j = 0)

2 Partition the graph using the Fiedler vector φ j
k,1

3 Generate an orthonormal basis for each of the partitions ⇒ Laplacian
eigenvectors

4 Repeat...

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N 0

0−1

]

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N 1

0−1

] [
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1

]

[
φ2

0,0φ
2
0,1 · · ·φ2

0,N 2
0−1

] [
φ2

1,0φ
2
1,1 · · ·φ2

1,N 2
1−1

] [
φ2

2,0φ
2
2,1 · · ·φ2

2,N 2
2−1

] [
φ2

3,0φ
2
3,1 · · ·φ2

3,N 2
3−1

]

...
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Harmonic Analysis of/on Graphs/Networks Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

For an unweighted path graph, this exactly yields a dictionary of the
block DCT-II
Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand ⇒ best-basis algorithm, local discriminant
basis algorithm, . . .

A union of bases on disjoint subsets is obviously orthonormal

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N 0

0−1

]

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N 1

0−1

][
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1

]

[
φ2

0,0 · · · φ2
0,N 2

0−1

][
φ2

1,0 · · · φ2
1,N 2

1−1

][
φ2

2,0 · · · φ2
2,N 2

2−1

][
φ2

3,0 · · · φ2
3,N 2

3−1

]
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3−1
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Harmonic Analysis of/on Graphs/Networks Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

For an unweighted path graph, this exactly yields a dictionary of the
block DCT-II
Similar to wavelet packet or local cosine dictionaries in that it
generates an overcomplete basis from which we can select a basis
useful for the task at hand ⇒ best-basis algorithm, local discriminant
basis algorithm, . . .
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
Graph Laplacian Eigenfunctions
Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors
Graph Partitioning via Spectral Clustering
Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT
Signal Denoising Experiments

5 Summary & References
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Generalized Haar-Walsh Transform (GHWT)

HGLET is a generalization of the block DCT, and it generates basis vectors
that are smooth on their support.

The Generalized Haar-Walsh Transform (GHWT) is a generalization of the
classical Haar and Walsh-Hadamard Transforms, and it generates basis
vectors that are piecewise-constant on their support.

The algorithm proceeds as follows...
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

1 Generate a full recursive partitioning of the graph ⇒ Fiedler vectors
2 Generate an orthonormal basis for level jmax (the finest level) ⇒

scaling vectors on the single-node regions
As with HGLET, the notation is ψ j

k,l
3 Using the basis for level jmax, generate an orthonormal basis for level

jmax−1 ⇒ scaling and Haar-like vectors
4 Repeat... Using the basis for level j , generate an orthonormal basis for

level j −1 ⇒ scaling , Haar-like, and Walsh-like vectors

[
ψ0

0,0 ψ0
0,1 ψ0

0,2 ψ0
0,3 · · · ψ0

0,N−2 ψ0
0,N−1

]

...
[
ψ

jmax−1
0,0 ψ

jmax−1
0,1

] [
ψ

jmax−1
1,0 ψ

jmax−1
1,1

]
· · ·

[
ψ

jmax−1

K jmax−1−1,0
ψ

jmax−1

K jmax−1−1,1

]

[
ψ

jmax
0,0

] [
ψ

jmax
1,0

] [
ψ

jmax
2,0

] [
ψ

jmax
3,0

]
· · ·

[
ψ

jmax
K jmax−2,0

] [
ψ

jmax
K jmax−1,0

]
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Remarks
For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions
As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions
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Remarks
For an unweighted path graph, this yields a dictionary of Haar-Walsh
functions
As with the HGLET, we can select an orthonormal basis for the entire
graph by taking the union of orthonormal bases on disjoint regions

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Remarks

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

Figure:

This reorganization gives us more options for choosing a good basis
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Remarks

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

Figure: Default dictionary; i.e., coarse-to-fine

This reorganization gives us more options for choosing a good basis
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Remarks

We can also reorder and regroup the vectors on each level of the GHWT
dictionary according to their type (scaling, Haar-like, or Walsh-like)

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

Figure: Reordered & regrouped dictionary; i.e., fine-to-coarse

This reorganization gives us more options for choosing a good basis
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Remarks
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2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

Figure: Reordered & regrouped dictionary; i.e., fine-to-coarse

This reorganization gives us more options for choosing a good basis
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 1
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 0, Region k = 0, l = 7
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 1, Region k = 0, l = 2
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 2, Region k = 1, l = 2
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

HGLET vs. GHWT

Here we display some of the basis vectors generated by our HGLET (left) and
GHWT (right) schemes on the MN road network. (Note: j = 0 is the coarsest
scale, j = 14 is the finest.)

Level j = 3, Region k = 2, l = 2
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Computational Complexity: HGLET vs. GHWT

Computational Run Time

Complexity for MN1

HGLET (redundant) O(N 3) 67 sec

GHWT (redundant) O(N 2) 10 sec

1Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N = 2640 and

nnz(W)= 6604.
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Harmonic Analysis of/on Graphs/Networks Generalized Haar-Walsh Transform (GHWT)

Related Work

The following articles also discussed the Haar-like transform on graphs and
trees, but not the Walsh-Hadamard transform on them:

1 A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs:
top-down and bottom-up constructions,” in Wavelets XI (M.
Papadakis et al. eds.), Proc. SPIE 5914, Paper # 59141D, 2005.

2 F. Murtagh, “The Haar wavelet transform of a dendrogram,” J.
Classification, vol. 24, pp. 3–32, 2007.

3 A. Lee, B. Nadler, and L. Wasserman, “Treelets–an adaptive
multi-scale basis for sparse unordered data,” Ann. Appl. Stat., vol. 2,
pp. 435–471, 2008.

4 M. Gavish, B. Nadler, and R. Coifman, “Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi
supervised learning,” in Proc. 27th Intern. Conf. Machine Learning (J.
Fürnkranz et al. eds.), pp. 367–374, Omnipress, Haifa, 2010.
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Harmonic Analysis of/on Graphs/Networks Best-Basis Algorithm for HGLET & GHWT

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
Graph Laplacian Eigenfunctions
Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors
Graph Partitioning via Spectral Clustering
Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT
Signal Denoising Experiments

5 Summary & References
saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 166 / 180



Harmonic Analysis of/on Graphs/Networks Best-Basis Algorithm for HGLET & GHWT

Coifman and Wickerhauser (1992) developed the best-basis algorithm as a
means of selecting the basis from a dictionary of wavelet packets that is
“best” for approximation/compression.

We generalize this approach, developing and implementing an algorithm for
selecting the basis from the dictionary of HGLET / GHWT bases that is
“best” for approximation.

As before, we require a cost functional J . For example:

J (x) =
(

n∑

i=1
|xi |p

)1/p

= norm(x,p) 0 < p ≤ 1

For our denoising experiments in the following pages, we used p = 0.1.
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Harmonic Analysis of/on Graphs/Networks Best-Basis Algorithm for HGLET & GHWT

[
φ0

0,0 φ0
0,1 φ0

0,2 · · · φ0
0,N 0

0−1

]

d0
0,0 d0

0,1 d0
0,2 · · · d0

0,N 0
0−1

[
φ1

0,0 φ1
0,1 φ1

0,2 · · · φ1
0,N 1

0−1

] [
φ1

1,0 φ1
1,1 φ1

1,2 · · · φ1
1,N 1

1−1

]

d1
0,0 d1

0,1 d1
0,2 · · · d1

0,N 1
0−1

d1
1,0 d1

1,1 d1
1,2 · · · d1

1,N 1
1−1

[
φ2

0,0φ
2
0,1 · · ·φ2

0,N 2
0−1

] [
φ2

1,0φ
2
1,1 · · ·φ2

1,N 2
1−1

] [
φ2

2,0φ
2
2,1 · · ·φ2

2,N 2
2−1

] [
φ2

3,0φ
2
3,1 · · ·φ2

3,N 2
3−1

]

d2
0,0 d2

0,1 · · · d2
0,N 2

0−1
d2

1,0 d2
1,1 · · · d2

1,N 2
1−1

d2
2,0 d2

2,1 · · · d2
2,N 2

2−1
d2

3,0 d2
3,1 · · · d2

3,N 2
3−1

According to cost functional J , this is the best basis for approximation.
With the GHWT bases, we run the best-basis algorithm on both the
default (coarse-to-fine) dictionary and the reorganized (fine-to-coarse)
dictionary and then compare the cost of the 2 bases to determine the
best-basis.
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Harmonic Analysis of/on Graphs/Networks Best-Basis Algorithm for HGLET & GHWT
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Harmonic Analysis of/on Graphs/Networks Signal Denoising Experiments

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Harmonic Analysis of/on Graphs & Networks via Graph Laplacians
Basics of Graph Theory: Graph Laplacians
A Brief Review of Graph Laplacian Eigenvalues
Graph Laplacian Eigenfunctions
Localization/Phase Transition Phenomena of Graph Laplacian
Eigenvectors
Graph Partitioning via Spectral Clustering
Multiscale Basis Dictionaries
Hierarchical Graph Laplacian Eigen Transform (HGLET)
Generalized Haar-Walsh Transform (GHWT)
Best-Basis Algorithm for HGLET & GHWT
Signal Denoising Experiments

5 Summary & References
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Harmonic Analysis of/on Graphs/Networks Signal Denoising Experiments

Original Signal vs. Noisy Signal
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(a) Original signal: mutilated Gaussian

−98 −96 −94 −92 −90 −88
43

44

45

46

47

48

49

50

 

 

−1

−0.5

0

0.5

1

1.5

2

2.5

(b) Noisy signal: SNR = 5dB
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Harmonic Analysis of/on Graphs/Networks Signal Denoising Experiments

Denoising Algorithm

1 Perform the HGLET / GHWT on the noisy signal
2 Run the best-basis algorithm
3 Soft-threshold and find the fraction of coefficients kept that yields the

highest SNR
Sort the best-basis coefficients in non-increasing order of magnitude
Specify a magnitude threshold, T
Soft-threshold the coefficients d :

dST(i ) =
{

sign(d(i )) · (|d(i )|−T ) if |d(i )| > T

0 otherwise

Note: keep all scaling coefficients intact
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Harmonic Analysis of/on Graphs/Networks Signal Denoising Experiments

Results
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(a) Original
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(b) Denoised via HGLET

Transform % Coefficients Kept SNR
HGLET 49% 6.77 dB

GHWT (fine-to-coarse) 11% 11.56 dB
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(c) Denoised via GHWT
(coarse-to-fine)

Transform % Coefficients Kept SNR
HGLET 49% 6.77 dB

GHWT (coarse-to-fine) 25% 10.11 dB

GHWT (fine-to-coarse) 11% 11.56 dB
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(d) Denoised via GHWT
(fine-to-coarse)

Transform % Coefficients Kept SNR
HGLET 49% 6.77 dB

GHWT (coarse-to-fine) 25% 10.11 dB
GHWT (fine-to-coarse) 11% 11.56 dB
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(b) Noisy signal
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(c) HGLET
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(d) GHWT (coarse-to-fine)
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(e) GHWT (fine-to-coarse)
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Harmonic Analysis of/on Graphs/Networks Signal Denoising Experiments

Observations

Transform % Coefficients Kept SNR
HGLET 49% 6.77 dB

GHWT (coarse-to-fine) 25% 10.11 dB
GHWT (fine-to-coarse) 11% 11.56 dB

Even though its basis vectors are piecewise-constant, the GHWT does
a good job of reconstructing the (mostly) smooth signal

It outperforms the HGLET, which has basis vectors that are smooth on
their support

The GHWT fine-to-coarse best basis achieved a higher SNR than the
coarse-to-fine best basis

This suggests that for the purpose of denoising, grouping basis
vectors/coefficients by ‘frequency’ is more effective than grouping by
location
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Summary & References
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Summary: Harmonic Analysis of/on Irregular Domains via Laplacian Eigenfunctions

LEs computed via the commuting integral operator provide an orthonormal
basis on a general shape domain or a graph and allow spectral
analysis/synthesis of data on them
Can get fast-decaying expansion coefficients thanks to the rather implicit BC
that may be more natural under certain situations
Can decouple geometry of domains and statistics of data
Can extract geometric information of a domain via {λk }k

Allow object-oriented (or localized) data analysis & synthesis, e.g., could be
effective for local reconstruction of an ROI and anomaly detection on it
∃ A variety of applications: interpolation, extrapolation, local feature
computation, solving heat equations on complicated domains . . .
Fast algorithms are the key for higher dimensions/large domains
Can also be defined and computed on a Riemannian manifold (e.g., a curved
surface); to do so, we need the Riemannian metric of the manifold and
geodesic distances between sample points
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Summary: Harmonic Analysis of/on Graphs via Laplacian Eigenfunctions

Although graph Laplacian eigenvectors have been popular as replacement of
the Fourier basis on a graph, the analogy takes us only so far due to their
sensitivity to the geometry and topology of underlying graphs.
We developed multiscale basis dictionaries on graphs and networks: HGLET
and GHWT. We also developed a corresponding best-basis algorithm.
The HGLET is a generalization of Hierarchical Block Discrete Cosine
Transforms originally developed for regularly-sampled signals and images.
The GHWT is a generalization of the Haar Transform and the
Walsh-Hadamard Transform.
Both of these transforms allow us to choose an orthonormal basis suitable
for the task at hand, e.g., approximation, classification, regression, . . .
They may also be useful for regularly-sampled signals, e.g., can deal with
signals of non-dyadic length; adaptive segmentation, . . .
Developing harmonic analysis tools for directed graphs will be challenging
=⇒ our idea: use distance matrix + SVD instead; to be continued!
Connect to lots of interesting mathematics and applications: harmonic
analysis, discrete mathematics, mathematical physics, PDEs, differential
geometry, signal & image processing, statistics, . . .

saito@math.ucdavis.edu (UC Davis) SSP14 Tutorial #4 June 29, 2014 177 / 180



Summary & References

References

Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/˜saito/lapeig/ contains:

My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”
My Course Slides on “Harmonic Analysis on Graphs and Networks”
Talk slides of the minisymposia on Laplacian Eigenfunctions at:
ICIAM 2007, Zürich (Organizers: NS, Mauro Maggioni); SIAM
Imaging Science Conference 2008, San Diego (Organizers: NS,
Xiaomin Huo); IPAM 5-day Workshop 2009, UCLA (Organizers: Peter
Jones, Denis Grebenkov, NS); SIAM Annual Meeting 2013, San Diego
(Organizers: Chiu-Yen Kao, Braxton Osting, NS).
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The following articles (and the other related ones) are available at
http://www.math.ucdavis.edu/˜saito/publications/

N. Saito & J.-F. Remy: “The polyharmonic local sine transform: A new tool
for local image analysis and synthesis without edge effect,” Applied &
Computational Harmonic Analysis, vol. 20, no. 1, pp. 41-73, 2006.
N. Saito: “Data analysis and representation using eigenfunctions of
Laplacian on a general domain,” Applied & Computational Harmonic
Analysis, vol. 25, no. 1, pp. 68–97, 2008.
N. Saito & E. Woei: “Analysis of neuronal dendrite patterns using
eigenvalues of graph Laplacians,” Japan SIAM Letters, vol. 1, pp. 13–16,
2009.
Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries around graph Laplacian
eigenvalue 4,” Linear Algebra & Its Applications, vol. 438, no. 8, pp.
3231–3246, 2013.
J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,” Japan
SIAM Letters, vol. 6, pp. 21–24, 2014.
J. Irion & N. Saito: “The generalized Haar-Walsh transform,” Proc. 2014
IEEE Workshop on Statistical Signal Processing, pp. 488-491, 2014.
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Thank you very much for your attention!
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