
Algebraic approach: starting point is a ∗-algebra
A(unital associative algebra with involution ∗)
Cone of states C- linear functionals ω ∈ L obeying
ω(A∗A) ≥ 0 for all A ∈ A. (Here L = A∨-dual
space.)
Set of normalized states N : normalization condition
ω(1) = 1.
Geometric approach: starting point is a convex set
of states N or cone of states C that are subsets of
Banach space L
Evolution operators Tτ -automorphisms
Decoherence from interactions with adiabatic
random perturbations. Derivation of probabilities
from decoherence.



Classical theories with restricted set of observables
(our devices allow us to measure only a part of
observables).
Quantum mechanics and its generalizations from
such theories.
Geometric theories with commutative group of time
translations and spatial translations → QFT.
Particles as elementary excitations of ground state.
Quasiparticle as elementary excitations of
translation-invariant stationary state.
Inclusive scattering matrix.



Inclusive cross section= probability density of the
process
(M ,N) → (P ,Q, ...,R)+something
Can be obtained as a limit of matrix elements of
inclusive scattering matrix
Inclusive scattering matrix can be expressed in
terms of generalized Green functions on shell (an
analog of LSZ formula)
Rediscovered in:
What can be measured asymptotically?
S Caron-Huot, M Giroux, HS Hannesdottir, S
Mizera
Journal of High Energy Physics 2024 (1), 1-63
Asymptotic observables ≈ inclusive scattering
matrix



Green function = expectation value of chronological
product (times descending),
Gn(x1, ..., xn) = ω

(
T (A1(x1, t1)...An(xn, tn)

)
Ai ∈ A, ω-translation-invariant stationary state
Generalized Green functions ω(MN)
M-chronological product, N-antichronological
product (times ascending).
Appear in Keldysh formalism of non-equilibrium
statistical physics and in formalism of L-functionals



If the theory has particle interpretation the inclusive
scattering matrix carries the same information as
the conventional scattering matrix.
However, inclusive scattering matrix can exist even
if the conventional scattering matrix does not exist
(for example, for quasiparticles).
In QED conventional scattering matrix does not
exist (every process involving fixed number of
particles has zero probability).
However, inclusive scattering matrix does exist.



L-functionals
Let us quantize a classical theory with finite or
infinite number of degrees of freedom.
If pk , q

k have standard Poisson brackets after
quantization, we obtain operators p̂k , q̂

k obeying
canonical commutation relations (CCR).
We are working with operators
â(f ) =

∫
dkf (k)â(k), â+(f ) =

∫
dkf (k)â+(k) where

f runs over the space of test functions E considered
as pre-Hilbert space. The integral over k is
considered as an integral over continuous
parameters and a sum over discrete parameters.
The CCR can be written in the form
[â(f ), â(g)] = [â+(f ), â+(g)] = 0, [â(f ), â+(ḡ)] =
ℏ⟨f , g⟩ where f , g ∈ E .



In the case of an infinite number of degrees of
freedom, there exist representations of CCR that are
not equivalent to the standard Fock representation
where â(f ), â+(f ) can be interpreted as annihilation
and creation operators (i.e. there exists a cyclic
vector θ obeying â(f )θ = 0)). Vectors and density
matrices in all representation spaces can be
regarded as states of the theory at hand.



We can represent the states as functionals

LK (f ) = TrŴfK .

where Ŵf = e−â+(f )e â(f̄ ). It is easy to verify that
this functional is well-defined for a density matrix K
in any representation of CCR.
One can say that when working with functionals L
we consider all representations of CCR
simultaneously.
To emphasize that LK does not depend analytically
on f we use the notation LK (f̄ , f ) or LK (f

∗, f ).



Weyl algebra=algebra generated by a(f ), a+(f )
obeying CCR.
Exponential form of Weyl algebra = algebra W of
operators in Fock space containing all operators of
the form Wf and closed in norm topology.
N is the set of normalized positive linear functionals
σ on W represented by non-linear functionals
σ(Wf ) on E .
The space L should be identified with the space of
linear functionals on W or with the space of
non-linear functionals on E .



dL

dt
= HL

H-”Hamiltonian”. It can be expressed in terms of
operators c+i , ci where c+1 (f̄ ) is a multiplication
operator by f̄ , c+2 (f ) is a multiplication operator by
f , and c1(f̄ ), c2(f ) are variational derivatives with
respect to f̄ and f .



Example: QED when we neglect the action of
photons on electrons (joint work with I.Frolov).
Time-dependent Hamiltonian
Ĥ = Ĥ0 + V̂ = ℏ

∫
dkϵ(k)a+(k) · a(k)

+ℏ
∫

dk√
2ϵ(k)

(j(k, t) · a+(k) + j∗(k, t) · a(k))
where a(k) is a vector potential of electromagnetic
field with components aµ(k), µ = 0, .., 3 satisfying
the Lorenz gauge condition kµaµ(k) = 0. The scalar
product of two 4-vectors has the form
p · k = pk− p0k0. We use the notation ϵ(k) = |k|.
We suppose that jµ(k, t) is a numerical function
(Fourier transform of divergence-free current.)



The equation of motion for L-functional
corresponding to this Hamiltonian has the form ,
dL/dt = HL where H = H0 + V and

H0 = ℏ
∫

dkϵ(k)(c+1 (k) · c1(k)− c+2 (k) · c2(k)),

V = ℏ
∫

dk√
2ϵ(k)

(j(k, t) · c+1 (k) + j∗(k, t) · c+2 (k))

In the interaction picture we obtain the following
equation for the evolution operator S(t)
i dSdt = VS(t) where
V =∫

dk√
2ϵ(k)

(e iϵ(k)t j(k, t) ·c+1 (k)+e−iϵ(k)t j∗(k, t) ·c+2 (k))



A solution of this equation can be found in the form

e
∑2

i=1(Mi+(t)·c+i +Mi−(t)·ci )

We obtain
L(α∗, α, t) =
exp

( ∫ t

t0
dτ

∫
dk√
2ϵ(k)

(e iϵ(k)τ j(k, τ) · α∗(k)+

e−iϵ(k)τ j∗(k, τ) · α(k))
)
L(α∗, α, t0)



The formula for the solution can be rewritten in the
form
L(α∗, α, t) =
exp

( ∫
dk

√
2ϵ(k)(e−iϵ(k)tA(k, t)α̇∗(k)+

e iϵ(k)tA∗(k, t) · α(k)
)
L(α∗, α, t0)

We use the notation

Aµ(k, t) =
1

2ϵ(k)(2π)
3
2

∫ t

t0

dτ(e iϵ(k)(τ−t)jµ(k, τ).

where Aµ(k, t) is the expectation value of
electromagnetic potential.



We obtain the inclusive cross-section

dN(k) = A(k, t) · A∗(k, t)2ϵ(k)dk

We calculated the expectation value of the operator

ρ(k) =
∑
i=±

(ε∗i · a+(k))(εi · a(k)),

where εi are polarizations of outgoing photons.



If we are interested in the inclusive cross-section of
emission of n photons with momenta k1, ..., kn then
similar calculations lead to the following formula:

dN(k1, ..., kn) =
n∏

i=1

A(ki , t) · A∗(ki , t)2ϵ(ki)dk.



QED

S = Smat + Sph +

∫
dxjµ(x)Aµ(x)

In formalism of L-functionals we have doubling of
fields.
Inclusive scattering matrix is finite. It can be
expressed in terms of generalized Green functions,



Adiabatic scattering matrix for the Hamiltonian
Ĥ0 + V̂ =evolution operator in interaction picture
for the time-dependent Hamiltonian
Ĥ(t) = Ĥ0 + h(at)V̂
When a → 0 then h(at) changes adiabatically
(slowly)
Adiabatic scattering matrix in the formalism of
L-functionals= evolution operator in interaction
picture for the ”Hamiltonian” H0 + h(at)V .
Scattering matrix and inclusive scattering matrix are
limits of adiabatic scattering matrices multiplied by
some simple factors (Likhachev, Tyupkin, Sch)



Scattering matrix Ŝ can be expressed in terms of
the adiabatic scattering matrix in finite volume Ω in
the following way

Ŝ = lim
a→0

lim
Ω→∞

Ûa,ΩŜa,ΩÛa,Ω

⟨θ|Ŝa,Ω|θ⟩

where
Ûa,Ω = e i

∑
k ra,Ω(k)a

+(k)a(k),

the limit is understood as the convergence of matrix
elements in the sense of generalized functions.



Inclusive scattering matrix S can be represented in
the form

S = limUaSaUa

where

Ua = e i
∫
dpra(p)(c

+
1 (p)c1(p)−c+2 (p)c2(p))

and the function ra(p) is chosen in such a way that
one-particle L-functionals are S-invariant. Namely,
one can take

ra(p) =

∫ 0

−∞
dτ(ϵ(p, h(aτ))− ϵ(p))

where ϵ(p, g) are one-particle energies of the

Hamiltonian Ĥ(g) = Ĥ(0) + gV̂



Relation between inclusive scattering matrix S and
conventional scattering matrix Ŝ

SLK = LŜ∗KŜ


