
Highlights

Quantum mechanics can be obtained as a
classical theory with a restricted set of
observables.
Generalizations of QM can be obtained in similar
way. They can be described as geometric theories
( theories where the starting point is the set of
states). Deterministic theories.
Decoherence can be proved in general geometric
theories placed in random environment. One can
derive probabilities from decoherence.
Calculations in geometric approach are as easy as
in conventional approach (and sometimes easier).
L-functionals. Applications to infrared problem
in QED.



Theories with translation symmetry=quantum
field theories without fields. Asymptotic
commutativity.
In theories with translation symmetry one can
define particles and quasiparticles.
If we have asymptotic commutativity or cluster
property we can define inclusive scattering
matrix.
Inclusive scattering matrix can be expressed in
terms of Keldysh Green’s functions on shell.
The notion of inclusive scattering matrix can be
introduced in geometric theories.



Cross-section =probability density of the process
(A,B) → (M,N, ..., R)
Inclusive cross-section=probability density of the
process (A,B) → (M,N, ..., R)+something else
Cross-section is a quadratic expression in terms
of scattering amplitudes (matrix elements of
scattering matrix)
Inclusive cross-section is a linear expression in
terms of matrix elements of inclusive scattering
matrix.
Scattering matrix and inclusive scattering matrix
contain the same information.



Scattering matrix exists only in theories having
particle interpretation. The existence of
scattering matrix was proved only in
non-relativistic quantum mechanics.
The existence of inclusive scattering matrix can
be derived from asymptotic commutativity or
cluster property.



Scattering matrix can be obtained from adiabatic
scattering matrix.
Inclusive scattering matrix can be obtained from
adiabatic scattering matrix in the formalism of
L-functionals
Only inclusive scattering matrix makes sense in
quantum electrodynamics. L-functionals.



Classical theory with a restricted set of
observables

Phase space M , pure states are points of M ;
mixed states are probability distributions on M ;
every mixed state can be uniquely representedas
a mixture of pure states. Physical observables are
real functions on M. An observable a specifies a
vector field A on M as a Hamiltonian vector field
with the Hamiltonian a:
Af = {a, f}.
By integrating this vector field we obtain a
one-parameter group σA(t) of canonical
transformations



Let us suppose that our devices are able to see
only a part of observables. We assume that the
set Λ of ”observable observables” (of real
functions on M that can be measured by our
devices) is a linear space closed with respect to
the Poisson bracket
We label this set by elements of Lie algebra
denoted g. ( The map γ → aγ sending γ ∈ g into
aγ ∈ Λ is an isomorphism of Lie algebras g and
Λ.) Hamiltonian vector fields Aγ with
Hamiltonians aγ specify an action of Lie algebra g
on M . The assumption that vector fields Aγ

generate one-dimensional subgroups means that
this action comes from an action of simply
connected Lie group G having g as Lie algebra.



One defines the moment map µ of M to g∨ as a
map x→ µx where µx(γ) = aγ(x). ( Here
x ∈M,γ ∈ g, and g∨ denotes the space of linear
functionals on g. ) This map is G-equivariant
with respect to coadjoint action of G on g∨. For
every state of the classical system (for every
probability distribution ρ on M) we define a
point ν(ρ) ∈ g∨ as an integral of µx over x ∈M
with respect to the measure ρ:

ν(ρ) =

∫
M

µxdρ.

The point ν(ρ) belongs to the convex envelope N
of µ(M) ⊂ g∨. (The convex envelope of a subset
E of topological vector space is defined as the
smallest convex closed set containing E.)
The group G acts naturally on the space of
classical states. It follows from G-equivariance of
the moment map that the map ν is a
G-equivariant map of this space into g∨ equipped
with coadjoint action of G.



We say that two classical states (two probability
distributions ρ and ρ′ ) are equivalent if∫

x∈M
aγ(x)dρ =

∫
x∈M

aγ(x)dρ
′

for every γ ∈ g. In other words, we say that two
states are equivalent if calculations with these
states give the same results for every Hamiltonian
aγ. (Our devices cannot distinguish these two
states.)
Two states ρ and ρ′ are equivalent iff
ν(ρ) = ν(ρ′).



To give proof we notice that for every γ ∈ g

ν(ρ)(γ) =

∫
x∈M

µx(γ)dρ =

∫
x∈M

aγ(x)dρ

and similarly

ν(ρ′)(γ) =

∫
x∈M

µx(γ)dρ
′ =

∫
x∈M

aγ(x)dρ
′.

In the classical theory with Hamiltonians taken
only from the set Λ = {aγ} where γ ∈ g
equivalent states should be identified. The map ν
induces a bijective map of the space of
equivalence classes onto the set N obtained as a
convex envelope of µ(M) (”quantum states”).
The evolution of classical states agrees with the
evolution of quantum states.



Complex projective space CP.
Sphere ||x|| = 1 in complex Hilbert space H with
identifications x ∼ λx where λ ∈ C, |λ| = 1.
The group U of unitary operators acts
transitively on CP. There exists a unique (up to a
constant factor) U -invariant symplectic structure
on this space.
The manifold CP can be considered as a
coadjoint orbit of the group U (as an orbit of U
in the the space dual to the Lie algebra of U).
The symplectic structure on this manifold is the
standard symplectic structure on the coadjoint
orbit.



”Observable observables” aC(x) = ⟨x,Cx⟩ where
C is a self-adjoint operator.
g = self-adjoint operators on H where the
operation is defined as the commutator
multiplied by i.
The one-parameter group of unitary operators
corresponding to the Hamiltonian aC is given by
the formula σ(t) = e−iCt.



The moment map transforms a point x into a
linear functional on the space of self-adjoint
operators that maps an operator C into ⟨x,Cx⟩.
The convex envelope of the image of the moment
map consists of linear functionals of the frorm
TrKC where K is positive definite self-adjoint
operators with unit trace ( i.e. it is a density
matrix).
We see that by applying our general construction
to complex projective space we obtain the
conventional quantum mechanics. In this case,
our considerations are close to Weinberg’s
”non-linear quantum mechanics”. (Weinberg
suggested considering the classical theory on CP
as a deformation of quantum mechanics.)



One can consider a more general case when the
manifold M is a coadjoint orbit ( an orbit of the
group G in the space g∨). It is well known that
such an orbit is a homogeneous symplectic
manifold. Elements of the Lie algebra g can be
regarded as linear functions on g∨; let us denote
by Λ the set of restrictions of these functions to
the orbit. We consider classical theory on M
assuming that only observables from the set Λ
can be measured. Then eliminating redundant
states we obtain a theory where the set of states
is a convex envelope of the orbit. ( In our case
the moment map is simply the embedding of the
orbit into g∨.)



Geometric approach to physical theories.
Deterministic theories.

In the geometric approach, the starting point is
the set of states. We assume that one can
consider a mixture of states; therefore we
consider the set of states as a closed convex
subset N of Banach space (or, more generally
topological vector space) denoted by L. ( Instead
of this set one can consider convex cone C of not
necessarily normalized states where proportional
states are identified.) We fix a subgroup V of the
group of automorphisms of N .



An observable in the geometric approach is
specified by a pair (A, a). Here a is a linear
functional on L and A is an element of the Lie
algebra of the group V . We say that a is a
Hamiltonian function and A is a ”Hamiltonian”.
The set of observables is denoted by Λ.
We define the evolution operator σA(t) as a
solution of the equation of motion:

dσA(t)

dt
= AσA(t)

We assume that the Hamiltonian function a is
invariant with respect to σA(t) ( equivalently
a(Ax) = 0.)
One can consider also a more general case when
A depends on t.



We considered classical theory with a restricted
set of observables. It is equivalent to ”quantum”
system in geometric approach. The set of states
N should be identified with convex envelope N of
µ(M), the group G plays the role of V . The pairs
(Aγ, aγ) where γ ∈ g play the role of observables.



In textbook quantum mechanics N consists of
density matrices (positive definite self-adjoint
operators with unit trace acting in Hilbert space
H) and the equation of motion in the case of

time- independent Hamiltonian Â has the form

dK

dt
= AK = −i(ÂK −KÂ). (1)

The space L consists of all self-adjoint operators
having trace (belonging to trace class) and the
complexification of this space consists of all
operators belonging to trace class. The cone C
consists of positive definite trace class operators.
The group V is isomorphic to the group of
unitary operators in H ; these operators act on L
by the formula K → U−1KU.



Observables (A, a) correspond to self-adjoint

operators Â. The Hamiltonian function a(K) is
defined as a linear functional on L given by the
formula a(K) = trÂK.



In the algebraic approach to quantum theory the
starting point is a ∗-algebra A (a unital
associative algebra with involution ∗) .The cone C
consists of positive linear functionals on A. ( One
says that a linear functional ω is positive if
ω(x∗x) ≥ 0 for every x ∈ A). The set N consists
of positive functionals obeying the normalization
condition ω(1) = 1. The space L = A∨ consists of
all linear functionals on A. The group V can be
interpreted as the group of automorphisms of A
acting naturally on the dual space L.
An observable (A, a) corresponds to a self-adjoint

element Â of A, or , more generally to a
self-adjoint derivation A of A. The Hamiltonian
function a(K) where K ∈ L is defined by the

formula a(K) = K(Â).



The evolution operator σA(t) acts on A as

conjugation with eiÂt; this action induces an
action of σA(t) on L = A∨. Similarly, the
”Hamiltonian” A entering the equation of motion
acts on A as a commutator with Â ( up to a
factor of i); this action induces an action of A on
L.
If A is a topological algebra one should assume
that all functionals and operators are continuous.

If A is a C∗-algebra then eiÂt is a well defined
unitary element of A, hence the equation of
motion has a solution and the evolution operator
σA(t) is well defined.



We say that there exist redundant states in the
theory if on can find such states x, y ∈ N that for
every observable (A, a) we have a(x) = a(y)
(there are no observables that allow us to
distinguish these states). In this case, it is useful
to work with theory without redundant states (to
eliminate redundant states). To construct such a
theory we introduce an equivalence relation in L
saying that x ∼ y if a(x) = a(y) for every
observable (A, a). In the new theory the set of
states N ′ is defined as a set of equivalence classes
in N The group V acts on L′ (on the space of
equivalence classes in L); its elements can be
regarded as automorphisms of N ′. The
observables descend to N ′.



Decoherence. Probabilities

Let us start with some considerations in the
framework of textbook quantum mechanics.
Let us assume that the quantum mechanical
system we consider is placed in random
environment. We interpret the random
environment as random adiabatic perturbation
Ĥ(t) of the Hamiltonian Ĥ. We assume for

simplicity that the operators Ĥ(t) have simple
eigenvalues En(t) with orthonormal system of
eigenvectors ϕn(t).



The density matrix K(t) obeys the equation

iℏdK(t)
dt = Ĥ(t)K(t)−K(t)Ĥ(t).

We can solve this equation in adiabatic
approximation. Denoting by Kmn(t) the matrix
entries of K(t) in the basis ϕn(t) we obtain in this
approximation
dKmn(t)

dt = i(Em(t)−En(t))
ℏ Kmn(t).

We see that the diagonal entries do not depend
on time, but the non-diagonal entries acquire a
random phase factor: Kmn(t) = eiCmn(t)Kmn(0)

where dCmn(t)
dt = Em(t)−En(t)

ℏ .
This means that only diagonal matrix elements of
density matrix K are predictable; this effect is
known as decoherence.



Imposing some conditions on the random
Hamiltonian H(t) we obtain that the expectation
values of non-diagonal matrix entries vanish. In
other words the interaction with random
environment ”kills” non-diagonal entries of
density matrix (this corresponds to ”the collapse
of wave function ” of Copenhagen interpretation).
At the end we obtain a diagonal density matrix
that can be interpreted as the mixture of pure
states ϕn with probabilities Knn. If K
corresponds to a pure state we obtain the
standard formula for probabilities.



Very similar arguments can be applied in
geometric approach if we impose an additional
condition that the set of states N is bounded.
Let us consider an observable (A, a).
It follows from boundedness of N that
eigenvalues of the ”Hamiltonian” A are purely
imaginary and A does not have Jordan cells of
size > 1. Therefore we assume that A is
diagonalizable and has discrete spectrum with
eigenvectors ψj and eigenvalues ϵj.



Let us suppose that A(g) is a continuous family
of ”Hamiltonians” such that A(0) = A. Then for
a right choice of eigenvectors (ψj) and for |g| < δj
we can construct vectors (ψj(g)) that depend
continuously on g in such a way that

A(g)ψj(g) = ϵj(g)ψj(g)

where ψj(0) = ψj. (We assume that all non-zero
eigenvalues are at most finitely degenerate)
We say ψj is a robust zero mode of A if
ϵj(g) ≡ 0. In other words a zero mode ψj is a
robust zero mode of A if in any neighborhood of
ψj and sufficiently small g we can find a zero
mode of A(g) in this neighborhood.



Let us model the interaction with environment by
random adiabatic ” Hamiltonian” A(g(t)). Then
in the adiabatic approximation

σ(t)ψj = eρj(t)ψj(g(t)),

where
dρj
dt = ϵj(g(t)). ( In adiabatic

approximation we can neglect the derivative ġ(t).
This means that σ(t) obeys the equations of
motion in this approximation.)
Imposing some conditions on the random
”Hamiltonian” A(g(t)) one can prove that in
average the random phase factors eρj(t) vanish
unless ϕj is a robust zero mode.



Let us sketch the proof of this fact if
g(t) = αt, α → 0 and the probability distribution
on ”Hamiltonians” comes from a probability
distribution on the parameter g. In this case the
expectation value of the random phase factor can
be written in the form∫

dµe
1
αρj(g)

where
dρj
dg = ϵj(g).

Assuming that the measure µ (the probability
distribution on g) is absolutely continuous and
taking into account that ρj(g) is purely
imaginary we obtain that the expectation value
tends to zero as α → 0.



Let us assume that all zero modes of A are
robust. The operator P defined by the formula

Px = lim
T→∞

1

T

∫ T

0

dtσA(t)x

where σA(t) is the group of automorphisms
generated by A sends all eigenvectors of A that
are not zero modes to zero.



To calculate probabilities of the observable (A, a)
in the state x we should represent the zero mode
Px as a mixture of pure zero modes:

Px =
∑

pkzk.

Then pk is the probability to find the the value
a(zk) measuring the observable (A, a). (We
assume that the numbers a(zk) are different. If
this condition is not satisfied we should calculate
the probability to obtain the value α summing all
pk with a(zk) = α.)



In the textbook quantum mechanics, we take A
as a commutator with a self-adjoint operator Â
multiplied by i and define a(K) = trÂK. Notice
that a(K) is not necessarily finite; for example, in
a translation-invariant state the value of energy is
in general infinite (but we can talk about the
density of energy and about the difference of
energies). The situation in the geometric
approach is similar.
In Â-representation the basis of eigenvectors of A
consists of matrices having only one non-zero
entry equal to 1. Diagonal matrices are zero
modes of A.



Notice, the representation of zero mode as a
mixture of pure zero modes, in general, is not
unique. However, in conventional quantum
mechanics, this representation is unique in the
case when A corresponds to an operator Â having
simple eigenvalues (in this case all zero modes of
A are diagonal matrices, all of them are robust).



Suppose that the symplectic manifold M is a
coadjoint orbit of Lie group G and the set of
”observable observables” is identified with the Lie
group g of G. ( To every element γ ∈ g we assign
a pair (Aγ, aγ) where aγ is the restriction to the
orbit of linear functional on g∨ specified by γ and
the ”Hamiltonian” Aγ comes ffrom coadjoint
representation of g.) Then the space of states of
the theory obtained by the elimination of
redundant states is a convex envelope N of the
orbit; pure states belong to the orbit.



For compact Lie group the coadjoint
representation can be identified with adjoint
representation. Without loss of generality, we can
assume that the ”Hamiltonian” Aγ corresponds
to an element γ belonging to Cartan subalgebra
h. Using commutativity of Cartan subalgebra we
obtain that elements of h are zero modes of Aγ.
Elements of h belonging to an orbit are pure zero
modes. If γ is a regular element of Cartan
subalgebra h all zero modes of Aγ can be
considered as elements of h; all of them are
robust. The operator P can be interpreted as an
orthogonal projection of g onto Cartan
subalgebra h.



If G is a unitary group then the elements of its
Lie algebra considered as matrices are regular iff
all eigenvalues are distinct. Let us consider a zero
mode x (= a stationary state) of Hamiltonian”
Aγ corresponding to regular γ; it can be identified
with an element of the Cartan subalgebra
containing γ. Probabilities in the state x can be
calculated as coefficients in the representation of
Px as a mixture of pure zero modes.



In the case when the orbit can be identified with
complex projective space we obtain conventional
quantum mechanics. Notice that in this case, the
representation of Px as a mixture of pure zero
modes is unique (as should be in quantum theory
in the case of simple spectrum). For all other
orbits the representation is not unique. This
means that corresponding physical theories
cannot be described in the framework of
conventional quantum mechanics.


