
L-functionals

The main idea of the geometric approach is to take
as a starting point the set of states. It is important
to emphasize that working with the set of states is
as convenient as working with Hilbert spaces (and
sometimes more convenient). We illustrate this by
representing states by functionals called
L-functionals.



Let us quantize a classical theory with finite or
infinite number of degrees of freedom. The
Hamiltonian of the classical theory is a functional
on the phase space with coordinates pk , q

k having
standard Poisson brackets; after quantization, we
obtain operators p̂k , q̂

k obeying canonical
commutation relations (CCR):
[p̂k , p̂k ′] = 0, [q̂k , q̂k

′
] = 0, [p̂k , q̂

k ′
] = ℏ

i δ
k ′

k .
It will be convenient to work with CCR for operators

â(k) = p̂k+q̂k√
2
, â+(k) = p̂k−q̂k√

2
that can be regarded

as generalized functions of continuous and discrete
parameters.



In other words, we are working with operators
â(f ) =

∫
dkf (k)â(k), â+(f ) =

∫
dkf (k)â+(k) where

f runs over the space of test functions E considered
as pre-Hilbert space. The integral over k is
considered as an integral over continuous
parameters and a sum over discrete parameters. We
assume that E is the space S of smooth
fast-decreasing functions taking values in Cr .



The CCR can be written in the form

[â(f ), â(g)] = [â+(f ), â+(g)] = 0, [â(f ), â+(ḡ)] = ℏ⟨f , g⟩

where f , g ∈ E .



In the case of an infinite number of degrees of
freedom, there exist representations of CCR that are
not equivalent to the standard Fock representation
where â(f ), â+(f ) can be interpreted as annihilation
and creation operators (i.e. there exists a cyclic
vector θ obeying â(f )θ = 0)). In Hilbert space
approach vectors and density matrices in all
representation spaces can be regarded as states of
the theory at hand.



In the geometric approach, we can represent the
states as functionals

LK (f ) = TrŴfK .

where Ŵf = e−â+(f )e â(f̄ ).



It is easy to verify that this functional is well-defined
for a density matrix K in any representation of CCR.
The operator −i â+(f ) + i â(f̄ ) is self-adjoint; this is
a rigorous form of the statement the operator â+(f )
is Hermitian conjugate to the operator â(f̄ ). Using
the fact that f is square integrable we obtain that
up to a finite factor the operator Ŵf coincides with
unitary operator e−â+(f )+â(f̄ ).



One can say that when working with functionals L
we consider all representations of CCR
simultaneously.
To emphasize that LK does not depend analytically
on f we use the notation LK (f̄ , f ) or LK (f

∗, f ).
The condition TrK = 1 leads to normalization
condition LK (0, 0) = 1.
The operator K is positive definite, this implies
some positivity conditions on LK (f̄ , f ).
We denote by L the vector space of non-linear
continuous functionals L(f̄ , f ) and by N the subset
of L satisfying the conditions above.



Algebraic approach.
∗-algebra=unital associative algebra A with
involution ∗

State=linear functional ω on A obeying ω(x∗x) ≥ 0
for x ∈ A (positive linear functional)
C-cone of states, N -set of all normalized states
(ω(1) = 1)



Weyl algebra=algebra generated by a(f ), a+(f )
obeying CCR.
Exponential form of Weyl algebra = algebra W of
operators in Fock space containing all operators of
the form Wf and closed in norm topology.
We use the geometric approach taking N as the set
of normalized positive linear functionals σ on W
represented by non-linear functionals σ(Wf ) on E .
The space L should be identified with the space of
linear functionals on W or with the space of
non-linear functionals on E .



It is easy to check that
b̃+(f )LK = LKa(f ), b̃(f )LK = LKa+(f ),
b(f )LK = La(f )K , b+(f )LK = La+(f )K

where

b(f ) = −ℏc+2 (f ) + c1(f ), b+(f ) = −c2(f ),

b̃+(f ) = ℏc+1 (f )− c2(f ), b̃(f ) = c1(f ),

c+1 (f̄ ) is a multiplication operator by f̄ , c+2 (f ) is a
multiplication operator by f , and c1(f̄ ), c2(f ) are
variational derivatives with respect to f̄ and f .



More generally, in algebraic approach we start with
∗-algebra A, L is the space dual to A,every element
Â ∈ A specifies two operators A and Ã acting in L.
The operator A transforms ω ∈ Linto functional
ω(xA), the operator Ã transforms it into ω(A ∗ x)
It is easy to verify that the sets N and C are

invariant under the operators of the form etAetÃ. In
other words, if the equation of motion in the form

dσ

dt
= (A+ Ã)σ,

then N and C are invariant under the evolution
operator specified by a ”Hamiltonian” A+ Ã.



Unfortunately, a simple description of the set N for
the algebra W does not exist. For our goals it is
convenient to consider this set as a minimal closed
subset of L invariant under all operators of the form
exp(A+ Ã) and containing Gaussian functionals
e−⟨f ,Sf ⟩ where S is a positive definite linear operator



Quantizing classical Hamiltonian we obtain a formal
expression

Ĥ =
∑
m,n

∫
Γm,n(k1, ...km|l1, ..., ln)×

â+(k1)...â
+(km)â(l1)...â(ln)d

mkdnl .

We presented it in the normal form (i.e. all creation
operators are moved to the left). In many
interesting cases, this formal expression does not
define a self-adjoint operator in Fock space, but the
corresponding equation of motion in the space L of
functionals L(f̄ , f ) is well-defined.



To write down this equation we calculate the
operator corresponding in L to the commutator of
Ĥ with K . We obtain
dL
dt = (H + H̃)L where

H = 1
iℏ(
∑

m,n

∫
Γm,n(k1, ...km|l1, ...ln)×

b+(k1)...b
+(km)b(l1)...b(ln)d

mkdnl)
H̃ = −1

iℏ (
∑

m,n

∫
Γ̄m,n(k1, ...km|l1, ...ln)×

b̃+(k1)...b̃
+(km)b̃(l1)...b̃(ln))d

mkdnl)



Let us consider in more detail quadratic Hamiltonian

Ĥ(0) =

∫
ϵ(k)â+(k)â(k)dk .

Here k = (k, s) where k runs over Rd , and s runs
over a finite set X , integration over k is understood
as integration over k and summation over discrete
intex s. This Hamiltonian commutes with
momentum operator P =

∫
kâ+(k)â(k)dk , hence it

is translation-invariant.
The functionals of the form

Ln = e−
∫
f̄ (k)n(kf (k)dk ,

are translation-invariant stationary states of the
corresponding ”Hamiltonian”

H(0) = i

∫
ϵ(k)(c+1 (k)c1(k)− c+2 (k)c2(k))dk .

These states can be characterized as normalized
solutions of equations

A(k)Ln = 0, Ã(k)Ln = 0

where A(k) = c1(k) + n(k)c+2 (k), Ã(k) =
c2(k) + n(k)c+1 (k).



In particular, equilibrium states of the
”Hamiltonian” H(0) have this form. To prove this
we make volume cutoff ( we replace Rd with a

lattice). Then we can approximate Ĥ0 by a
Hamiltonian of the form

∑
ϵk â

+
k âk where k runs

over a discrete set. The equilibrium state of the
latter Hamiltonian can be represented by density
matrix Ω(T ) = exp(−β

∑
ϵk â

+
k âk)/Z in the Fock

space; it is easy to check that

âkΩ(T ) = e−ℏ ϵk
T Ω(T )âk , â

+
k Ω(T ) = e

ℏϵk
T Ω(T )a+k .



Using these equations we obtain equations for the
corresponding L-functional; taking the limit we
obtain for the L-functional LT corresponding to the
equilibrium state in infinite volume

c1(k)LT = e−
ℏϵ(k)
T (−ℏc+2 (k) + c1(k))LT

c2(k)LT = e−
ℏϵ(k)
T (−ℏc+1 (k) + c2(k))LT

hence

n(k) =
ℏ

e
ℏϵ(k)
T − 1

.



Functional integrals for evolution operators.
Adiabatic scattering matrix
Ĥ(t) = Ĥ0 + g(t)V̂
Adiabatic scattering matrix in the formalism of
L-functionals.
Scattering matrix and inclusive scattering matrix.
Perturbation theory.



GGreen functions

⟨α|T (C1(x1, t1)...Cs(xs , ts)|ω⟩
Here ω ∈ L, α ∈ L∨ are translation-invariant and
stationary, Ci denotes Ai or B̃i

We assume that spatial and time translations act in
L



In algebraic approach we can take α ∈ A.Then
GGreen function can be written as

ω(MαN)

where M is chronological product (times decreasing)
and N is anti-chronological product (times
increasing).
For α = 1 we obtain Keldysh Green functions.



Infrared problem in quantum
electrodynamics

Let us show that in the formalism of L-functionals
infrared divergences do not appear.
Consider a time-dependent Hamiltonian
Ĥ = Ĥ0 + V̂ = ℏ

∫
dkϵ(k)a+(k) · a(k)

+ℏ
∫

dk√
2ϵ(k)

(j(k, t) · a+(k) + j∗(k, t) · a(k))
where a(k) is a vector potential of electromagnetic
field with components aµ(k), µ = 0, .., 3 satisfying
the Lorenz gauge condition kµaµ(k) = 0. The scalar
product of two 4-vectors has the form
p · k = pk− p0k0. We use the notation ϵ(k) = |k|.



We suppose that the j(k, t) is a numerical function
( Fourier transform of divergence-free current. For
example, we can consider an electron moving in a
potential field and interacting with a quantized
electromagnetic field (we neglect the action of
electromagnetic field on the electron).



The equation of motion for L-functional
corresponding to this Hamiltonian has the form ,
dL/dt = HL where H = H0 + V and

H0 = ℏ
∫

dkϵ(k)(c+1 (k) · c1(k)− c+2 (k) · c2(k)),

V = ℏ
∫

dk√
2ϵ(k)

(j(k, t) · c+1 (k) + j∗(k, t) · c+2 (k))



The corresponding evolution operator will be
denoted by U(t). Working in the interaction picture
( = making the change of variables
LI (t) = e iH0t/ℏL(t)) we reduce the calculation of
U(t) to the calculation of the operator
S(t) = e−iH0t/ℏU(t)e iH0t/ℏ obeying i dSdt = VS
whereV=∫

dk√
2ϵ(k)

(e iϵ(k)t j(k, t) ·c+1 (k)+e−iϵ(k)t j∗(k, t) ·c+2 (k))



A solution of this equation can be found in the form

e
∑2

i=1(Mi+(t)·c+i +Mi−(t)·ci ) =
∏2

i=1 e
Mi (t)

where we use the notation
Mi(t) = Mi+(t) · c+i +Mi−(t) · ci ≡∫

dk√
2ϵ(k)

(Mi+(k, t) · c+i (k) +Mi−(k, t) · ci(k)).



One can prove that
d
dt e

Mi (t) =
(
Ṁi+(t) · c+i + Ṁi−(t) · ci+

1
2(Ṁi+(t)Ṁi−(t)− Ṁi−(t) ·Mi+(t))

)
eMi (t). By

comparing this expression with equation of motion
we get
Ṁ1+(t) = j(k, t)e iϵ(k)t ;
Ṁ2+(t) = j∗(k, t)e−iϵ(k)t ;
Ṁi−(t) = 0.



Using the definition of operators c+i we can write
the expression for the solution of the equation of
motion in the formalism of L-functionals in the
following form
L(α∗, α, t) =
exp
( ∫ t

t0
dτ
∫

dk√
2ϵ(k)

(e iϵ(k)τ j(k, τ) · α∗(k)+

e−iϵ(k)τ j∗(k, τ) · α(k))
)
L(α∗, α, t0)



This expression agrees with calculations by Kulish
and Faddeev who argued that the asymptotic
dynamic of the system of charged particles can be
described by the evolution operator

Uas(t) = e iH0te iΦ(t)eR
I (t)

where Φ(t) is purely real and independent of
electromagnetic field so it drops out of the
expression for L-functional and R I (t) can be written
in the form
R I (t) = i

∫
dk√
2ϵ(k)

( ∫ t
e iϵ(k)τ j(k, τ)dτ · a+(k)+∫ t

e−iϵ(k)τ j∗(k, τ)dτ · a(k)
)
.



The formula for the solution can be rewritten in the
form
L(α∗, α, t) =
exp
( ∫

dk
√

2ϵ(k)(e−iϵ(k)tA(k, t)α̇∗(k)+

e iϵ(k)tA∗(k, t) · α(k)
)
L(α∗, α, t0)

We use the notation

Aµ(k, t) =
1

2ϵ(k)(2π)
3
2

∫ t

t0

dτ(e iϵ(k)(τ−t)jµ(k, τ).

where Aµ(k, t) is the expectation value of
electromagnetic potential.



Indeed, it is easy to check that

⟨Aµ(k, t)⟩ = e iϵ(k)t√
2ϵ(k)

b̃µ(k)L(α, α∗, t)|α=0 =

e iϵ(k)t√
2ϵ(k)

δ
δα∗

µ
L(α, α∗, t)|α=0 = Aµ(k, t)



Let us now turn to calculating the inclusive
cross-section of the photon emission. For this
purpose, we calculate the expectation value of the
operator

ρ(k) =
∑
i=±

(ε∗i · a+(k))(εi · a(k)),

where εi are polarizations of outgoing photons. We
get

dN(k) = ⟨ρ(k)⟩dk =(∑
i=±

εi
δ

δα(k)
ε∗i

δ

δα∗(k)
L(α, α∗, t)|α=0

)
2ϵ(k)dk

= A(k, t) · A∗(k, t)2ϵ(k)dk



If we are interested in the inclusive cross-section of
emission of n photons with momenta k1, ..., kn then
similar calculations lead to the following formula:

dN(k1, ..., kn) = ⟨ρ(k1, ..., kn)⟩
n∏

i=1

dki =

n∏
i=1

A(ki , t) · A∗(ki , t)2ϵ(ki)dki



QED

S = Smat + Sph +

∫
dxjµ(x)Aµ(x)

In formalism of L-functionals we have doubling of
fields.
Integrate over doubled photon fields


