
Particles as elementary excitations

To give a definition of particle we need time
translations Tτ and spatial translations Ta acting
on states. These notions allow us to define
excitations of translation-invariant stationary
state ω.
A state σ is an excitation of ω if for every
observable A the expectation value of A in the
state Taσ tends to the expectation value of A in
the state ω as a → ∞.



In classical mechanics we can assume that the
states are represented by functions of coordinates
x, spatial translations shift the argument
x → x+ a, time evolution is specified by
translation-invariant Hamiltonian. Translation
-invariant state is represented by a constant
function, an excitation is a bump; we do not see
this bump anymore when it is shifted to infinity.



In the algebraic approach to quantum theory,
every state (linear functional ω on the ∗-algebra
of observables A obeying positivity condition
ω(x∗x) ≥ 0) can be represented as a vector in
some Hilbert space through so-called GNS
(Gelfand-Naimark-Segal) construction. (More

precisely, there exists a representation A → Â of
A by operators in some Hilbert space H and a
cyclic vector θ such that ω(A) = ⟨θ, Âθ⟩.)
If ω(1) = 1 one can say that ω(A) is the
expectation value of A in the state ω



H-pre Hilbert space
θ ∈ H is a cyclic vector if a map A → H defined
by the formula A → Âθ is surjective.
The relation
⟨Âθ, B̂θ⟩ = ω(A∗B)
allows us to define pre Hilbert space H as the
quotient of A with inner product
⟨A,B⟩ = ω(A∗B)
with respect to null vectors



If the state is translation-invariant and stationary
then time and spatial translations descend to
Hilbert space; infinitesimal translations are
interpreted as energy operator Ĥ and momentum
operator P. (Translations can be considered as
automorphisms of A; the action of translations
on H is compatible with these automorphisms.)



Elements of H can be considered as excitations of
translation-invariant stationary state ω (at least
in the case when ω obeys cluster property).
Simplest form of cluster property
limx→∞ ω(A(x, t)B) = ω(A)ω(B)
Element σ of H has the form Bθ where B ∈ A.
Expectation value of A in the state Taσ is
proportional to
⟨TaBθ,ATaBθ⟩ = ω(B∗(a, 0)AB(a, 0)) ≈
ω(B∗B)ω(A)



Elementary excitation of ω in algebraic approach
is defined as a generalized vector function
Φ(p) ∈ H obeying

PΦ(p) = pΦ(p), ĤΦ(p) = ϵ(p)Φ(p).

Here p ∈ Rd.
Introducing notation Φ(f) =

∫
dpf(p)Φ(p) we

can consider an elementary excitation as a map
of the space of test functions h into H.



Let us define the action of spatial and time
translations in h (in ”elementary space”) by the
formulas (Taf)(p) = eiapf(p), (Tτf)(p) = e−iτϵ(p).
More generally, we can define an elementary
space as the space of vector functions f(p) where
spatial translations are defined by the same
formula and time translations commute with
spatial translations.



We can identify an elementary excitation with a
map of h into the set of excitations; this map
should commute with translations. The same
definition works in the geometric approach. The
only difference: in the algebraic approach the
map is linear, in the geometric approach it is
non-linear. (It is natural to assume that it is
quadratic, more precisely, Hermitian).



If we are working in algebraic approach then the
state σ(f) corresponding to the vector Φ(f) is a
functional

(σ(f))(A) = ⟨Φ(f), AΦ(f)⟩.

We assume that in algebraic approach

Φ(f) = B̂(f)θ

where B(f) ∈ A depends linearly on f ∈ h. Then
we can obtain the state σ(f) acting on ω by the
operator L(f) transforming a linear functional
ρ ∈ A∨ into the functional
(L(f)ρ)(A) = ρ(B∗(f)AB(f)).



This remark prompts the following definition of
elementary excitation in the geometric approach:
We say that an elementary excitation of
translation-invariant stationary state ω is
specified by a map σ of an elementary space h into
the set of excitations of ω commuting with space
and time translations. We assume that for f ∈ h
we have σ(f) = L(f)ω. The operators L(f) and
L(g) should almost commute if the supports of f
and g in coordinate representation are far away.



Two-particle state
L(f)L(g)ω
where supports of f and g in coordinate
representation are far away.
(Tτf)(x) =

∫
dpe−iϵ(p)τ+ipxf(p)

is small outside of the set τUf where Uf is an
open neighborhood of compact set containing all
points of the form ∇f(p) with f(p) ̸= 0.
We say that τUf is an essential support of Tτf in
coordinate representation.



If the sets Uf and Ug do not overlap we say that
functions f and g do not overlap. In this case the
essential supports τUf and τUg are far away for
large |τ |



If the theory came from algebraic approach then
L(f) can be obtained from L(f̃ , f) taking f̃ = f.
(Here L(f̃ , f) denotes an operator acting in L; it
should be linear with respect to f and anti-linear
with respect to f̃ .)



Elementary excitations of the ground state are
called particles, in general case they should be
called quasiparticles. Particles can be unstable
(and quasiparticles are in general unstable).
Saying that an elementary excitation is unstable
we have in mind that the above relations are
satisfied only approximately.



If particles have some discrete quantum numbers
(like spin) or there are several kinds of particles
we have several elementary excitations in the
above terminology. ( Alternatively one can define
the space of test functions f(p) as the space
vector-valued functions on Rd where spatial
translations act as multiplication:
(Taf)(p) = eiapf(p), and time translations
commute with spatial translations. Then the
same definition that we gave can serve as a
definition of elementary excitation in the presence
of discrete quantum numbers.)



To have a Lorentz-invariant theory we need an
extension of the commutative group of
translations to the Poincaré group. In this case
we should assume that ω is Poincaré-invariant,
then the representation of Poincaré group
descends to H. Irreducible subrepresentations of
the representation of Poincaré group in the space
H can be regarded as elementary excitations.



One can obtain the ”elementary space” h
quantizing ”elementary symplectic manifold”
with Darboux coordinates (q,p) and space and
time translations defined by formulas
Ta(q,p) = (q+ a,p), Tτ(q,p) = (q+ v(p)τ,p)
where v(p) = ∇ϵ(p). In translation-invariant
classical theory, a map of ”elementary symplectic
manifold” into the space of excitations of
translation-invariant solution of equations of
motion specifies a family of solitons if it
commutes with space and time translations.



Solitons and generalized solitons.

Consider a translation-invariant Hamiltonian in
an infinite-dimensional phase space M consisting
of vector-valued functions f(x), where x ∈ Rd are
spatial coordinates. Spatial translations act as
shifts of these coordinates, and time translations
are governed by a Hamiltonian that is invariant
with respect to spatial translations.



The equation of motion can be written as:

∂f

∂t
= Af +B(f),

where A is a linear operator and B represents the
nonlinear part. Assuming the nonlinear part is at
least quadratic, for small f the linear part
dominates. We can say that f ≡ 0 is a solution,
and in its neighborhood, one can neglect the
nonlinear part.



Soliton (solitary wave) is defined as a solution of
the form s(x− vt). We suppose that s(x) tends
to zero as x → ∞. We can visualize the solution
f ≡ 0 as a horizontal straight line, and then the
soliton is a bump moving with constant speed
without changing the shape. A generalized
soliton is a bump that moves, with a constant
average speed, but at the same time it can
pulsate, it can change its shape.



In Lorentz-invariant theory, by applying a
Lorentz transformation to a soliton we again get
a soliton. We obtain a family of solitons- solitons
with different velocities. The same reasoning can
be used for Galilean invariance and Galilean
transformations. In both cases, we have a family
of functions sp(x− a) that is invariant under
temporal and spatial translations (here p denotes
the momentum of soliton). This family can be
considered as a symplectic manifold. A family of
generalized solitons also can be considered a
symplectic manifold that is invariant under
temporal and spatial translations; the coordinates
on this manifold are the data characterizing a
(generalized) soliton.



We assume that the soliton has finite energy.
(The fact that the energy is finite means, roughly
speaking, that the soliton is more or less
concentrated in some finite domain.)



In an old paper we conjectured that for many
systems and for almost all initial conditions
having finite energy the solution behaves in the
following way for times tending to plus or minus
infinity. If there are no solitons or generalized
solitons in the theory then asymptotically the
solution obeys a linear equation. In the general
case, we get a few solitons plus something that
approximately satisfies a linear equation (a tail).



This is a well-known result for integrable systems
in the case d = 1; we have conjectured that this is
true without the assumption of integrability in
any dimension. Later this hypothesis has also
been expressed in other papers. Soffer calls it
”grand conjecture”, Tao calls it ”soliton
resolution conjecture”.



So far there are no results in this direction for
d > 1 (and even for non-integrable theories in the
case d = 1) if there exist solitons in the theory.



This conjecture can be justified by the following
reasoning. Let us assume that the initial
condition is a field concentrated in some domain.
In this case, we should expect the spreading of
wave packet. That is, if the initial data were
concentrated in some domain, then later the
solution spreads to a larger domain. The energy
is conserved, so this spreading causes the
amplitude of the wave to decrease. If the
amplitude decreases all the time, then, as we
assumed, in the case of small amplitudes the
nonlinear part can be neglected, and the solution
of the nonlinear equation can be approximated by
a solution of a linear equation.



If there is a soliton or a generalized soliton in the
theory the height of the bump remains the same,
hence the amplitude does not tend to zero.
However, we can expect that in the end, we get
some solitons or generalized solitons plus a tail
that approximately satisfies a linear equation. Of
course, our reasoning is not proof, but it is
convincing.
To prove the above conjecture one should impose
some conditions. In particular, the stability of
the translation-invariant state f ≡ 0 and of the
solitons is necessary, otherwise, the solution can
blow up. Nevertheless, it seems that the
conjecture is true in many cases.



In these cases, there is a notion of soliton
scattering. For solvable models of dimension 1+1
(one space dimension and one time dimension)
this is a well-known fact. Two solitons collide, we
see something that does not resemble any solitons
(” a mess”), and then the same solitons appear
again. The situation in the general case is slightly
different: after the collision, we get some solitons
( not necessarily the same solitons) plus a ”tail”.
The tail asymptotically behaves as a solution of a
linear equation.



Let us give some formal definitions. Let us denote
the space of possible initial data by R. Our
conjecture means that for a dense set of initial
data, we can define a mapping D+(t) : R → Ras

of initial data at the moment t to asymptotic data
at t → +∞. (The asymptotic data characterize
the solitons and the asymptotic behavior of the
tail.). We can also consider the asymptotic data
at t → −∞ to get a mapping D−(t) : R → Ras.



Now we assume that there is also an inverse
mapping, i.e. one can find a solution with given
asymptotic behavior. That is, we want to
consider inverse operators S(t,+∞) = (D+(t))−1

and S(t,−∞) = (D−(t))−1.



In the quantum case, the solution to this problem
is well known - it is what is called the
Haag-Ruelle scattering theory; a generalization of
this theory will be explained in the next lecture.



Now we can define the non-linear scattering
matrix:

S = S(0,+∞)−1S(0,−∞) : Ras → Ras.

Roughly speaking, we fix asymptotic condition at
minus infinity, solve the equation and watch the
asymptotic behavior at plus infinity.



One should expect that we can get the non-linear
scattering matrix from the quantum scattering
matrix in the limit ℏ → 0. ( More precisely, one
should expect that the inclusive scattering matrix
has a limit as ℏ → 0 and the non-linear scattering
matrix can be expressed in terms of this limit.)



Classical soliton can be considered a model of a
quantum particle. In quantum field theory, the
notion of a particle is an asymptotic notion: if
two particles collide, we get ”a mess”, which then
disintegrates into particles.
Notice, that the analogy with solitons makes it
obvious that the existence of identical particles is
not surprising.



The following considerations further emphasize
the analogy of solitons with quantum particles.
Consider a phase space and a Hamiltonian; in
other words, we consider a symplectic manifold
M (that can be identified with the space R of
initial data) and an evolution operator. Assume
that spatial translations act on M and time
translations commute with spatial translations.
Formally this means that on the symplectic
manifold M we have an action of the
commutative group T of spatial and temporal
translations. Now let us take a stationary
translation-invariant point m ∈ M of this
symplectic manifold.



In the previous picture, such a point was the
solution f ≡ 0.
Let us define an excitation of a
translation-invariant stationary state as a state
with finite energy (we assume that the energy of
a translation-invariant state is equal to zero).
We define an elementary symplectic manifold E
as such a symplectic manifold where in Darboux
coordinates p,x the spatial translations act as
shifts x → x+ a, while p does not change. We
consider a Hamiltonian ϵ(p) that depends only on
p (i.e. it is invariant with respect to spatial
translations). Then the time translations are
transformations x → x+ v(p)t,p → p, where
v(p) = ∇ϵ(p).



Suppose now that M is realized as a space of
vector-valued functions f(x) where x ∈ Rd and
the spatial translations act as shifts x → x+ a.
Let us take a symplectic embedding of the
elementary symplectic space E into the set of
excitations of translation-invariant state
f(x) = const in M. If this embedding commutes
with the space-time translations, then we get a
family of solitons.



To verify this we notice that symplectic
embedding maps the point (p, 0) into some
function sp(x) depending on p. Since the
embedding E → M commutes with spatial
translations, the point (p, a) maps into a shifted
function sp(x+ a). The condition that the
mapping E → M commutes with time shifts
means that the function sp(x− v(p)t) satisfies
the equation of motion.


