
Particles as elementary excitations

To develop scattering theory we need time
translations Tτ and spatial translations Ta acting
in the cone of states C ⊂ L. These notions allow
us to define elementary excitations of
translation-invariant stationary state ω.
We define elementary space h as a space S of
complex vector-valued smooth fast decreasing
functions on Rd where spatial translatioct as
shifts of argument: (Taf)(x) = f(x + a) and time
translations Tτ are unitary operators commuting
with spatial translations. ( A scalar product of
two functions taking values in Cr is specified by
the formula 〈f, g〉 =

∑r
1

∫
dxfk(x)ḡk(x).)



In momentum representation spatial translation
Ta is defined as multiplication by eiap and time
translation Tτ can be represented as
multiplication by e−iE(p)τ where E(p) is a
Hermitian r × r matrix.
We say that an elementary space is admissible if
the matrix E(p) is positive definite.



An elementary excitation of the state ω is
specified by a map σ of elementary space h into
the cone C commuting with spatial and temporal
translations and bounded linear operators
L(φ), φ ∈ h acting in the space L and obeying

L(φ)ω = σ(φ)

Notice that we do not suppose that linear
operators L depend linearly on φ; it is natural to
assume that their dependence on φ is quadratic,
but this assumption will not be necessary to
define the scattering matrix.



The operators L(φ) should satisfy some
additional conditions; not very precisely one can
say that L(φ) and L(ψ) should almost commute
when the supports of φ and ψ in coordinate
representation are far away. This assumption can
be made precise in various ways.



If the elementary space is admissible we say that
the elementary excitation is a particle.
In relativistic theory the action of the group of
translations on the cone C should be extended to
the action of the Poincaré group and the state ω
should be Poincaré-invariant. Similarly, the
Poincaré group should be represented by unitary
transformations of an elementary space h. A
relativistic particle is defined as a map of
admissible elementary space equipped with an
irreducible representation of Poinaré group into
the cone C; this map should commute with
actions of Poincaré group in h and C.



Denote by Uφ an open set containing all points of
the form ∇εi(p) where εi(p) is an eigenvalue of
the matrix E(p) entering the definition of
elementary space and p belongs to the support of
φ(p) in momentum representation (we assume
that this support is compact) . Then in
coordinate representation the function Tτφ is very
small outside the set τUφ for large τ . We say that
τUφ is an essential support of Tτφ in coordinate
representation.



To prove this we estimate
(Tτφ)(x) =

∫
dpe−iε(p)τ+ipx)φ(p)

for large |τ |. We obtain that this expression is
≤ Cn

1+||x||n+|τ |n

when x /∈ τUφ.
Heuristically this follows from the remark that
for x /∈ τUφ stationary points of −ε(p)τ + px do
not appear in stationary phase method



We say that functions φ, ψ ∈ h do not overlap if
the sets Uφ and Uψ do not overlap. In this case
essential supports τUφ and τUψ of functions Tτφ
and Tτψ in coordinate representation are far
away for large |τ |.
It follows that the operators L(Tτφ) and L(Tτψ)
almost commute for large |τ |.



Scattering. Inclusive scattering matrix

We would like to consider the scattering of
elementary excitations. It seems that one cannot
define the conventional scattering matrix in the
geometric approach, however, there exists a very
natural definition of the inclusive scattering
matrix. This definition is based on the
consideration of operators L(f, τ) specified by the
formula

L(f, τ) = Tτ(L(T−τf)) = TτL(T−τf)T−τ

where L(f) denotes the operator entering the
definition of elementary excitation.



Using the assumption that ω is a stationary state
and the assumption that σ commutes with
temporal translations it is easy to check that
L(f, τ)ω does not depend on τ , hence

L̇(f, τ)ω = 0



To define (inclusive) scattering matrix we fix
translation-invariant stationary element α of the
dual space L∨. Then the scattering matrix (more
precisely, (α, ω) scattering matrix) is defined as a
functional
Sn′,n(g

′
1, ..., g

′
n′, g1, ..., gn) = limτ ′→+∞,τ→−∞

〈α|L(g′1, τ
′)...L(g′n′, τ

′)L(g1, τ)...L(gn, τ)|ω〉 =
limτ ′→+∞〈α|L(g′1, τ

′)...L(g′n′, τ
′)Λ(f1, · · · , fn| −∞)

Here
Λ(f1, · · · , fn| −∞) = limτi→−∞Λ(f1, τ1, ..., fn, τn)
where
Λ(f1, τ1, · · · , fn, τn) = L(f1, τ1)...L(fn, τn)ω.
We say that Λ(f1, · · · , fn| −∞) is an in-state.



We assume that the functions (g1, ..., gn) do not
overlap as well as the functions (g′1, ..., g

′
n′).

It follows that essential supports of functions Tτgi
and Tτgj are far away for τ → −∞. This implies
that operators L(gi, τ) and L(gj, τ) commute in
this limit. We conclude that Sn,n′ is symmetric
with respect to g1, ..., gn; similarly, we can prove
that it is symmetric with respect to g′1, .., g

′
n′.



To prove the existence of the limit as τ → −∞
we assume that

||[L̇(gi, τ), L(gj, τ)]|| < c(τ)

where c(τ) is a summable function. Then the
derivative of the function under the lim sign with
respect to τ is also summable; the existence of
the limit follows from this fact. To estimate this
derivative we use the Leibniz rule. We obtain n
summands, and to prove that every summand is
summable we transfer the factor with time
derivative to the rightmost place.
One should expect that the condition on the
commutators is satisfied if functions gi, gj do not
overlap.



To prove the existence of the limit as τ ′ → +∞
we impose additional condition
〈α|L̇(g, τ)→ 0 as τ → +∞
and use the same reasoning.



To justify the definition of scattering matrix we
analyze the notion of in-state.
For large negative τ the state

TτΛ(f1, · · · , fn| −∞)

can be described as a collection of particles with
wave functions Tτfi.
To prove this fact we use the formulas

Tτ(L(f, τ ′)) = Tτ+τ ′L(T−τ ′f)T−τ−τ ′ = L(Tτf, τ+τ ′),

TτΛ(f1, · · · , fn| −∞) = Λ(Tτf1, · · · , Tτfn| −∞).

If functions f1, ..., fn do not overlap we have a
collection of distant particles for τ → −∞.



This remark allows us to say that the state
TτΛ(f1, · · · , fn| −∞) describes a collision of
particles with wave functions (f1, · · · , fn).
A number describing this state in the limit
τ → +∞ can be interpreted as a matrix element
of the inclusive scattering matrix.



Algebraic approach

In the algebraic approach, the starting point is a
∗-algebra A; time shifts and spatial shifts come
from automorphisms of A. We can construct the
data of the geometric approach identifying the
cone C of states with the cone of positive
functionals on A (of linear functionals obeying
ω(A∗A) ≥ 0) and the space L with the space of
continuous linear functionals on A. Fixing a
translation-invariant stationary element
α ∈ A ⊂ L∨ and translation-invariant stationary
state ω ∈ C we can construct (inclusive)
scattering matrix. ( For example, we can take
α = 1.)



However, in algebraic approach we can construct
also the conventional scattering matrix starting
with a linear map Φ : h→ H commuting with
spatial and temporal translations. ( Here H
stands for pre Hilbert space obtained from
translation-invariant stationary state ω by means
of GNS construction.)

We assume that Φ(f) = B̂(f)θ where θ denotes
cyclic vector corresponding to ω and B(f) ∈ A



Define B(f, τ) = TτB(T−τf)T−τ
and in-vector
Ψ(f1, · · · , fn| −∞) =
limτ1→−∞,··· ,τn→−∞Ψ(f1, τ1, · · · , fn, τn)
where
Ψ(f1, τ1, ..., fn, τn) = B̂(f1, τ1)...B̂(fn, τn)θ
The limit exists in H̄ if functions f1, ..., fn do not
overlap and the algebra A is asymptotically
commutative:

||[Â(x, t), B̂]|| ≤ Cn(t)

1 + ||x||n



Møller matrix

S(0,−∞) : Has → H̄

Has-Fock space (direct sum of symmetric powers
of h)

S(0,−∞)(f1 ⊗ ...⊗ fn) = Ψ(f1, ..., fn| −∞)



Scattering matrix

S = S(0,+∞)−1S(0,−∞)

makes sense if Møller matrices are surjective.
Then we say that the theory has particle
interpretation.
out-operators

a∗out(f) = lim
τ→+∞

B̂(f, τ), aout(f) = lim
τ→+∞

B̂∗(f, τ),

in-operators, τ → −∞



Green functions in the state ω=expectation
values of chronological products (times
decreasing)
ω
(
T (A1(x1, t1)...An(xn, tn))

)
LSZ
Scattering matrix can be expressed in terms of
asymptotic behavior of Green function in
(p, t)-representation as t→ ±∞ or in terms of
poles in (p, ε)-representation (Green function on
shell)



Relation to geometric approach
Φ(f) = B̂(f)θ

(σ(f))(A) = 〈Φ(f), ÂΦ(f)〉 =

〈θ, B̂∗(f)ÂB̂(f)θ〉 =
ω(B∗(f)AB(f))
hence
L(f) = B̃(f)B(f)
L(f, τ) = B̃(f, τ)B(f, τ)
We use notations
(B̃σ)(A) = σ(B∗A), (Bσ)(A) = σ(AB)



We see that in algebraic approach operators
limτ→+∞ L(g, τ) can be expressed in terms of
out-operators a∗out(f), aout(f). Using this remark
one can express inclusive cross-sections in terms
of the inclusive scattering matrix where α is the
unit element of the algebra A



In the algebraic approach inclusive scattering
matrix with α = 1 can be expressed in terms of
generalized Green functions on shell.
Generalized Green functions can be defined by
the formula ω(NM) where in one of the factors
we have the chronological product of operators
(times decreasing) and in another factor, we have
the antichronological product (times increasing).
They appear naturally in Keldysh formalism of
non-equilibrium statistical physics and in the
formalism of L-functionals



GGreen functions can be defined by the formula
ω(MαN); they can be used to express the (α, ω)
scattering matrix.


