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1. Introduction
1.1. Statements of the Main Results

Given a sufficiently smooth Sobolev-class bounded domain © C R™ and forcing functions f and g in 2
together with boundary data given by either h or h on 0f2, we establish the basic elliptic estimates for
the vector elliptic system of Hodge-type:

curlv = f in Q,

divv =g in Q,
with boundary conditions given by either
v-N=h or vxN=h ond{,

where N is the outward-pointing unit normal vector on 9€2. When the domain ) is of class €**1, elliptic
estimates for solutions v in H**1(Q) are now classical. We extend this well-known theory to the case of
domains € of Sobolev class H**1.

We first establish the following

Theorem 1.1. Let Q C R? be a bounded H¥''-domain with integer k > g Given f,g € H*=Y(Q) with
div f = 0, consider the equations

curlv = f inQ, (2a)
divv=g infQ. (2b)
(1) If f satisfies
/ f-NdS =0 for each connected component I" of 02, (3)
r

and h € H*=92(0Q) satisfies / hdS = /gda:, then, for 1 < £ < k, there exists a solution
o0 Q
v € HY(Q) to (2) with boundary condition

v-N=h ondQ, (4)
such that
o[l ey < CUOQ gros) [1F Il e-1 () + lgllme-1() + 1Pl ge-o050.0) |-

The solution is unique if Q is the disjoint union of simply connected open sets.

(2) If f satisfies (3) and f-N = div’®h on 9Q (where div®® denotes the surface divergence operator
defined in Definition 2.4), h € H*=°5(0Q) satisfies h-N = 0 as well as

/z:'f ‘ndS = (ﬁE(N x h) -dr if ¥ C Q has piecewise smooth boundary 0% C 0
with unit normal n, compatible with the orientation of 0%, (5)
then, for 1 < £ <k, there exists a solution v € H*(Q) to (2) with boundary condition
vxN=h ondQ, (6)
such that
[0l e () < C(10Q peros) [”fHH@fl(Q) + gl me-1(0) + ”hHH‘f*Df’(aQ)]

The solution is unique if each connected component of 2 has a connected boundary.
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Remark 1.2. To explain condition (3), let  be a connected bounded open set, and let {I';}!_, denote
the connected components of 02 in which I'y is the boundary of the unbounded connected component
of OF. For each i = 0,...,1, let g; be the solution to

Ag; =0 in Q, (7a)
q; = 51’]’ on Fj. (7b)

Then if u satisfies curlu = f in Q for some divergence-free vector f, applying the divergence theorem
and then integrating by parts, shows that for i =0,...,1I,

/Fif.NdS/ (f«N)Q¢dS:/E)Q(f~N)qidS:/qudivfd:rJr/Qf.vqidz

I
= / curlu - Vg;dz = / (N x u)-VgdS = / (N x u)-V*?q;dS =0,
Q a0 a0
where V?? is the tangential derivative defined below in Definition 2.4. Therefore, for curlu = f to be
solvable, it is necessary that

/ F-NdS=0 ViE{O,l,...,I}.
T

In other words, (3) is a necessary condition for the solvability of (2a). We will show that it is also one of
the sufficient conditions to solve (2) with the boundary conditions (4) or (6).

The problem (2) with either boundary conditions (4) or (6) has been well studied. The characterization
of the kernel of both problems, the solvability conditions, and the existence theory has been developed
in a number of papers; see, for example, [1,2,5,6,13-15,17], and the references therein. The inequalities
given in Theorem 1.1 are new for Sobolev-class domains.

Motivated by the analysis of the free-boundary problems which arise in inviscid fluid dynamics, we
next state a theorem which provides two fundamental elliptic estimates set on Sobolev-class domains:

Theorem 1.3. Let Q C R™, n =2 or 3, be a bounded H*'-domain with integer k > g Then there exists
a generic constant C' depending on |0 gtos such that for all w € H<F1 (),

||u||Hk+1(Q) < C|:H'U/HL2(Q) + ||curlu||Hk(Q) + Hdivu||Hk(Q) + ||V - NHH“*D-E’(&Q)}» (8)

||u||Hk+1(Q) < C|:HUHLZ(Q) + ||curlu||Hk(Q) -+ HdiVUHHk(Q) —+ ||V69u « N”Hk*“-f’(BQ)}a (9)
where Vo©u is the tangential derivative on 0 (defined in Definition 2.4).

Remark 1.4. The inequalities (8) and (9) play a fundamental role in the regularity theory of the Euler
equations with moving interfaces; see, for example, [10] for the incompressible setting and [11] for the com-
pressible problem with vacuum. The use of the norm [|[V??u - N|| ji-0.55q) rather than [[u-N||giro590)
is crucial, as the regularity of the normal vector to field to 9€2 is often worse than the regularity of the
velocity vector w.

On the other hand, if € is at least of class H*™2 then the inequalities (8) and (9) can be replaced,
respectively, by

Jell s ) < C|llull 2@y + llewrlu] sy + ldival| oy + - Nl o s | (10)
Jull sy < C[lull 2@y + llewrtaal ey + ldivasl oy + lu x N o o0 (1)

Remark 1.5. Recently, Amrouche and Seloula [5] established the inequalities (10) and (11) in the LP
framework and for domains € of class €**!; see Corollary 3.5 in [5]. Of course, in the case of a €*+1-
domain €, the inequalities (8) and (9) follow immediately from (10) and (11), respectively.

When € is very close to a °°-domain, we can obtain these inequalities for fractional-order Sobolev
spaces, as in the following
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Theorem 1.6. Let Q C R®, n =2 or 3, be a bounded H* ' -domain with s € R such that s > g, and let

D denote a €>°-domain such that the distance between 0D and 0N in the H1O5-norm is less than e
for 0 < e < 1. Then there exists a generic constant C' depending only on |0D|gs+o.5, such that for all
u € H*TH(Q),

e o0y < c[HuHL2(Q) + lewrlul| e + [|divel| ) + |V - N||H570.5(8Q)}, (12)
wllgs+10) < C[HUHLQ(Q) + leurlu|| g (@) + [[diva| g ) + [[V7u x N||HS*0-5(BQ)} (13)
where Vou is the tangential derivative on 0§ (defined in Definition 2.4).

The inequalities (12) and (13) set in fractional-order Sobolev spaces are fundamental to the analysis of
Euler-type free-boundary problems. We remark that 0€2 is assumed to be in a small tubular neighborhood
of the normal bundle over OD; hence, there is height function h(zx,t) such that each point on 9€ is given
by = + h(x)n(z), x € 0D, where n is the outward-pointing unit normal to 9D. The assumption that
the distance between 0D and 9€) in the H*t0%5-norm is less than € < 1 means that we assume that
||hHHS+0~5(8D) <ex1

1.2. Outline of the Paper

In Sect. 2, we introduce our notation as well as a number of elementary technical lemmas, whose proofs we
include (for completeness) in Appendix A. Section 3 is devoted to the analysis of the vector-valued elliptic
system (31a) with mixed-type boundary conditions (31b) and (31c), which is fundamental to the proof
of our two main theorems; in particular, we prove Theorem 3.6 which establishes the elliptic estimate for
(31) when the coefficients are of Sobolev-class. As a corollary to this theorem, we state in Corollary 3.8
the basic elliptic estimates for both the classical Dirichlet and Neumann problems, again with Sobolev
class regularity. Finally, for coefficients which are close to the identity, we give an improved estimate in
Theorem 3.9 for solutions to (31), which is linear in the highest derivatives of the coefficient matrix. This
latter theorem is essential for estimates in fractional-order Sobolev spaces via linear interpolation.

In Sect. 4, we prove Theorem 1.3, using the elliptic regularity theory developed for the elliptic system
(31). Then, in Sect. 5, we prove Theorem 1.1. Our proof relies on some basic geometric identities involving
the mean curvature of 02, together with the elliptic regularity theory established in Sect. 3. Finally, in
Sect. 6, we prove Theorem 1.6.

1.3. A Brief History of Prior Results

In addition to the recent work of Amrouche and Seloula [5] noted above, there have been many other
methods and results to study such elliptic systems on smooth domains. The elliptic system (2) can be
viewed as a particular example of the systems studied by Agmon et al. [1], wherein both Schauder-type
estimates and LP-estimates can be found.

In [19], von Wahl proved that if the normal or the tangential trace of a vector field vanishes, and for
bounded or unbounded 2, the inequality ||Vullrrq) < C(||divul i) + [[curlul|rs(q)) holds when the
first Betti number or the second Betti number, respectively, is equal to zero.

Vector potentials and the characterization of the kernel of problem (2) with boundary conditions (4)
or (6) have been obtained by Foias and Temam [13], Georgescu [14], Bendali et al. [6], Amrouche et al.
[2], and Amrouche et al. [3].

Amrouche and Girault [4] derived the LP-regularity theory of the steady Stokes equation by estab-
lishing the equivalency between the Sobolev space W™ " and the direct sum of W " by divergence-free
vector fields and the gradients of W™+1 ™ functions.

Schwarz [18], studied the Hodge decomposition on manifolds with boundaries and showed that a
differential k-form can be written as the sum of an exact form, a coexact form, and a harmonic form.
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Bolik and von Wahl [7] derived € “-estimates of the gradient of a vector field whose curl, divergence,
and normal or tangential traces are prescribed. Mitrea et al. [16] studied the vector potential theory on
non-smooth domains in R? with applications to electromagnetic scattering.

Buffa and Ciarlet [8] and [9] established the Hodge decomposition of tangential vector fields defined
on polyhedron domains, and studied the tangential trace and tangential components of vectors belonging
to the space H(curl, Q) := {u € L*(Q;R?) | curlu € L?(Q;R?) }.

In [15], Kozono and Yanagisawa proved the decomposition of a divergence-free vector-field as the sum
of the curl of a vector-field and a vector-field which is solenoidal, irrotational and has zero normal trace.

2. Notation and Preliminary Results

The Einstein summation convention is used throughout the paper. In particular, repeated Latin indices
are summed from 1 to n, and repeated Greek indices are summed from 1 to n — 1. For example, f;g; =
Sy figi and foga = Z;:ll faga- The gradient operator is denoted by V = (91,...,9,). Below, we
shall also define various tangential derivative operators. When it is not explicitly stated, k, ¢ > 0 denote
integers, and s denotes a real number.

2.1. Definition of a ¥*¥-Domain

We recall that a domain © C R" is said to be of class €* if 9 is an (n — 1)-dimensional ¢’*-manifold;
that is, there exists an open cover {U,,}X _; C R" of 9Q and a collection of ¢’*-maps {¢,,}2_, such that
foreach 1 < m < K,

G i Uy NOQ — V,, CRTE

is one-to-one, onto, and has a ¢*-inverse map for some open subset V,, of R"~'. A domain  is called a
€ >°-domain if it is a ¥*-domain for all k € N. Equivalently, we shall use the following

Proposition 2.1. Let Q C R" be a €*-domain for some k € N, and € > 0 be given. Then there exists
a collection of open sets {Un }E _o with each U, C R®, a collection of €*-maps {9 }E_, and positive
numbers {r,, }E_, such that

K K
QC (JUn anddQC | Un,
m=0 m=1

and for each 1 <m < K,

1. 9y 2 B0, 7)) — Uy, is a €*-diffeomorphism;
O B(0, 7)) N {yn, =0} = U, NOQ;

Vs B = B(0,7,) N {yn > 0} — Uy, NQ;

. det(Vd,,) = 1;

VY, — IdHLOO(B(O,rm)) <e.

CUs

The proof of this proposition is given in Appendix A.

2.2. Definition of an H*-Domain

In order to make our presentation self-contained, in this section, we collect a number of useful technical
lemmas. These lemmas are well-known when the domains are smooth, but we shall need these basic
results for Sobolev class domains. The proofs will be collected in Appendix A. We use the term domain
to mean an open connected subset of R".



380 C. H. A. Cheng and S. Shkoller JMFM

Definition 2.2. Let 2 C R™ be a bounded domain, and s > g + 1 be a real number. € is said to be an
H*-domain, or of class H*, if there exists a bounded ¢’ >°-domain O and a map 1 such that ¢ : O — Q
is an H*-diffeomorphism; that is,

1. ¢ : O — Q is continuous;

2. 1) : O — € is one-to-one and onto, with differentiable inverse map ¥~ : Q — O;

3. ¥ : 00 — 99 is one-to-one and onto, with differentiable inverse map ¢~ : 9Q — 90;

4. € H*(0;Q) and ¢~ € H*(Q2;0).
By the trace theorem, ¥|s0 € H*~%°(00;0) and we shall often denote the value of this norm by
|0Q| fre—o0.5.

Definition 2.3. For s > g + 1, given a local chart (U, ) as defined in Proposition 2.1, the induced metric

in the local chart (U, ¥) is the (0, 2)-tensor gog given by
T )
o8 = gy Bys’
and the induced second-fundamental form in a local chart (U, ) is the (0,2)-tensor byg given by
9%
0Yadyg

bap = -(Nod),

where N is the outward-pointing unit normal to 0.

Definition 2.4 (Tangential gradient and surface divergence operators). For s > g + 1, 1let Q C R" be a
bounded H*-domain. We let V?? denote the tangential gradient of a function on 9Q. If ¢ : 900 — R is
differentiable, then in local chart (U, ), V¢ is given by

d(pov) 09

Voo o = af ;
(V) A T

2
where [g*7] is the inverse matrix of the induced metric [gag], and {;—ﬁ}ﬁ are tangent vectors to ().
Yp J p=1

We define the surface divergence operator div®® to be the formal adjoint of —V°%; if u is a tangent
vector field on €2 so that w - N = 0 on 91, then

—/GQu~anpdS= 8Q<pdivmud5' Yope HY(00).

In a local chart (U, ),

) og = L 0 [ e vy

(v u) o0 = - 0| VEg™ (wor) - 7)),

where g = det(g) is the determinant of the induced metric [gqz3]-
Definition 2.5 ( Tangential projection of a vector field onto 9€2). With N denoting the outward unit normal
vector field to 92 and v : 9Q — R*, we define Py : R" — R™ to be the tangential projection operator
given by

Pni(v)=v— (v -N)N = (Id-N® N)w. (14)
We will also write v for Py (v).
Definition 2.6 (Various tangential derivatives). We let w : 92 — R™ and w : 9Q — R denote vector-
valued functions, and let w be given by (14).

1. V3 u denotes the directional derivatives of w in the direction w. In a local chart (U, ),

20 _ aﬁ&(uoﬂ)@fﬁj j _ aB 99 O (uo)
[Vﬂu]oﬂ g oy 6yﬁ( o) =g [Byg (woz?)} R
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2. Voou = (Vo%ul, ... Vo), and V% -w = Y w' (V??u?), so that V?u - w is a vector in the
i=1
tangent space of 9. In a local chart (U, ¥),
_ ap0(ui 09) 99 i _ ap0(uov) ]819i
V- w)od = g 2 (wio) = - (wod .
( ) 9 o o )=9 g VoD 5

The product rule holds:
VP -w=V*u- -w)— VW - u.
3. V??u x w is defined to be the linear map satisfying (at each point of 9Q)
(V*?u x w)v = (V5'u) x w

for all v € R™. In a local chart (U, ),
(Vu x w); 00 =g aﬂ—i)(ws o),

where €;,.5 is the permutation symbol, equaling 1 if (4,7, s) is an even permutation of (1,2,3), —1 if
(i,7,8) is an odd permutation of (1,2,3), and 0 otherwise.

2.3. Basic Inequalities

We now state some basic inequalities, that we use throughout the paper.

Proposition 2.7. Fork > g and 0 < £ <k, let Q CR™ be a bounded €°°-domain. Then for all o € (0, i),
there exists a constant C,, de‘zéendmg on o such that for all f € H*(Q) and g € H (),
Z IV Vgl 2oy < Coll fll e llgll e (0)- (15)
j=1
Moreover, for some generic constant C > 0,
1f9ll ey < Clflameyllgllmey V¥ F € HSQ), g € H (). (16)
Remark 2.8. Suppose that s > g and 0 < r < s for some real numbers r» and s. Then there exists a

generic constant Cs > 0 such that

||fg||Hr(Rn) < CS||f||Ha(Rxx)|‘g“H7(Rn) Vf c HS(RH),g € HT.(RH). (17)
By the Sobolev extension argument, we also conclude that
19l @) < Csll fler=@ gl V€ H(Q),9€ H(Q) (18)

if Q is a bounded €°°-domain.

The following corollary is a direct consequence of Proposition 2.7 since by Leibniz’s rule,
¢

[V fla =3 (f)ijVHg

j=1
Corollary 2.9. Let  C R" be a bounded € °°-domain for some integer k > g

1. Suppose that spt(g) CC Q. Then for 0 < o < i and 1 <L <k+1,

H[[vé7 f]]gHLz(Q) < Cff”f”Hmax{kvé}(Q)||g||H‘5*”(Q)7 (19)

where [V, flg = V*(fg) — fV'g.
2. Suppose that ¢ is a smooth cut-off function such that

(a) spt(C) CU;
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(b) there exists a €°°-diffeomorphism ¢ : B(0,1) — U satisfying
(i) 9: BT(0,1) = B(0,1) N {yn >0} - UNKQ;
(ii) ¥ : {yn =0} — 0Q2.
Define F = ((f) o9 and G = (g) o). Then for 0 <o <1/4, 1 <L <k+1,

=4
||[[8 aF]]GHLz(BJr(O’T)) < CaHf”Hmax{k,é}(Q)||g||H"'—ﬂ(Q)7 (20)

where [[5Z7 F]G = EZ(FG) _F'G and d = (Oyys- .-, 0y._,) denotes the horizontal derivative.

The following two corollaries are direct consequences of Proposition 2.7, and are the foundation of the
study of inequalities on H*-domains. The proof of these two corollaries can also be found in Appendix A.

Corollary 2.10. Let O C R™ be a bounded € -domain, and 1) : O — Q C R be a H*1-diffeomorphism
for some integer k > g If J = det(Vv) and A = (Vp)~L, then

C(|\V¢||Hk(0))7 (21a)
C(I11/ TN Lo 0)s IV v (0y) - (21b)

Corollary 2.11. Let O C R™ be a bounded €>°-domain, and 1 : O — Q C R™ be an H*'-diffeomorphism
for some integer k > g Then for all £ <k +1,

(BAITEY))

NN

1Al (0

111z < CUVY o) I f 0 ¥llmeoy V€ H(Q), (22a)
I o ¥llmeoy < CUNVPNax) I f e v fe H Q). (22b)

Remark 2.12. Note that Corollary 2.11 implies that the interpolation inequalities on a Sobolev class
domain are still valid if the domain is bounded and has H**! regularity for some integer k > g For

NN

example,

£ llz0.5(0) < CUOR mpero o)1 0 ¥l 1050y < COL zpesos)[1f 0 ¥l 22y If 0 ¥l 7 o)
< C(|aQ|Hk+0v5)Hf||g2(Q)Hf”?{l(gy

Similar arguments can be applied to prove the following theorem whose proof we omit.

Theorem 2.13. Let  C R™ be a bounded domain of class HT' for an integer k > g Then for all
o € (07 i), there exists constant Cy depending on |0Q|gxros and o such that for all 0 < £ < k+ 1,
f e H Q) and g € HY(Q),

¢
Z IV7 £V gl 2 @) < Coll £l prmastes @y llgll e (0)- (23)

j=1
Moreover, for a generic constant C' depending on |0Q|gr+to.s,
1792 @) < Cllfllgmmcen @llgllaey V€ H™H(Q),g € HY(Q). (24)
By using Theorem 2.13, we can easily establish the following

Theorem 2.14. Let Q C R™ be a bounded H''-domain for an integer k > g Then for each integers
te{0,1} U (g,k + 1], there exists a generic constant C = C(|0Q giros) such that

1fgllze@) < C{Hf”LO"(Q)”gHHe(Q) e lglleey| Y g€ H(QNL®(Q).  (25)
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2.4. Poincaré-Type Inequalities

We will make use of the following Poincaré-type inequalities, whose proofs are similar to the proof of the
standard Poincaré inequality.
Lemma 2.15. Let k > g be an integer and Q C R3 be a bounded H T -domain with outward-pointing unit
normal N. We set
H(Q)={u:Q—R*|luec H(Q),uxN=0ondQ},
Hi () ={u: Q- R*|uecH (Q),u-N=0ondQ}.
Then
ullz2(0) < ClIVaullr2@) ¥Vu e H(Q), (26)
and
lullz20) < ClIVullra@) Vu € Hy(Q). (27)

2.5. Commutation with Mollifiers

Our proof of elliptic regularity relies on a mollification procedure (rather than the use of difference
quotients).

Definition 2.16 (Standard mollifiers). Let n(x) = Cexp (W%l) for |x| < 1 and n vanishes outside the
unit ball, where C' is chosen so that |[n]|z1(g=) = 1. The standard mollifier 7. is defined by

ne(x) = ~n(2).

en €

We will make use of the following

Lemma 2.17. For f € W1>(Q) and g € L*(Q) with compact support, there is a generic constant C
independent of € such that

IV (e, F19) || 2y = IV [ % (£9) = Fr1e % 9] | 2
< Ol fllwrs @ llgllz2 @) (28)
for all 0 < € < min {dist((‘)Q,spt(f)),dist(@Q,spt(g))}.

Since we are dealing with problems on domains with boundaries, we make use of the horizontal
convolution-by-layers operator, introduced in [10]. We define the horizontal convolution-by-layers operator
A, as follows:

Af(enan) = [ pelon =)o)y for Fa) € LHR,

1

en—1

p(%), and p € €>°(R*1) is given by p(z) = Cexp(W%l) if |#| <1 and p(z) =0
if |z,| > 1. The constant C is chosen so that f,, ,pdz = 1. It follows that for € > 0, 0 < p. € €°(R*!)
with spt(pe) C B(0,¢). (Here, spt stands for support.)

It should be clear that A, smooths functions defined on R™ along all horizontal subspaces, but does
not smooth functions in the vertical x,-direction. On the other hand, we can restrict the operator A,
to act on functions f : R®! — R as well, in which case A, becomes the usual mollification operator.
Associated to A, we need the following

where pc(zp) =
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Lemma 2.18. For f € Wl’OO(RI}r) and g € L2(Rrjr), there is a generic constant C independent of € such

that
Hg([[AG’f]]g)HLQ(R;‘_) = Hg[Af(fg) — fA] HLQ(R;‘_) S CHfHWLw(Rg;) (29)

for all e > 0.

‘gHL"’(R{;_)

2.6. The Piola Identity

Lemma 2.19 (Piola identity). Let v : @ C R™ — R" be a diffeomorphism, and [a;j]lnxn be the cofactor
matriz of V. Then

0

The proof can be found in [12].

3. Vector-Valued Elliptic Equations

Let 2 C R™ denote a bounded domain whose regularity will be specified below. In this section, we study
a vector-valued elliptic equation

- , 0 . ou’ 4
Lul:uz——<]k—): " in Q, 3la
(L) == G (HGE) < f i (31a)
with special types of boundary conditions, where u = (u1,...,u,) and f = (f4,..., f,) are vector-valued
functions, and a’* is a two-tensor satisfying the positivity condition
a*€;€, > MEPP VEER® (32)

for some A > 0. Since u € R", n boundary conditions are needed to solve the system uniquely. We
consider a mixed-type boundary condition given by

u-w=0 ondf, (31b)
b o0u
RN, —g)=
PWJ_(G/ 5'ka] g) 0 on 0, (31c)

where w is a uniformly continuous vector field defined in a neighbourhood of 92 which vanishes nowhere
on 012, N is the outward-pointing unit normal to 02, g is a vector-valued function defined on 92, and
Pyo : R — R" is the projection map given by

PWL(’U):’U_WW:(ICI—

(33)
The condition (31b) specifies the component of the vector u in the direction of w, while the condition
(31c) specifies the (n — 1) components of the Neumann derivative ajkgle.

T

Integration by parts with respect to x; leads to the following identity:

0 L outy L 0ul 0! ou’ ,
— | 2 (d* =) oide = JRZZ 2V e — Jk N. ot
/Q Ox; (a Bxk)go du /Qa Oxy 0xj du /aﬂa Oxy, spde

o Oul Ot . S ou”  Wew
_ ]kiid o |:l ]kiN'# id
/Qa By, Oy /@Q g e W 1P

which, in turn, motivates the following
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Definition 3.1. Let V = {v € H'(Q) "v -w = 0on dQ}. A function w € V is called a weak solution to
(31) if

—dr =(f,¢)r2) + (9, P)oa VeeV, (34)

where (-,-)9q denotes the duality pairing between distributions in H~2(99) and functions in Hz (99).
With the help of the Lax-Milgram theorem it is easy to conclude the following

Theorem 3.2 (Weak solutions). Suppose that a’* € L>(R) satisfies the positivity condition (32), and w
18 a uniformly continuous vector field defined in a meighborhood of 02 which vanishes nowhere on 0.
Then for all f € L*(Q) and g € H~%5(0Q), there exists a unique weak solution to (31) in V), and the
weak solution uw satisfies

lwll g (o) < C{HfHL?(Q) +lgllaz-0s00) |- (35)

Remark 3.3. Let uw € H?(Q) NV be a weak solution to (31). Integrating by parts with respect to Zj, we
find that

" . 0 o Oul N i L O0u .
i jk _ pi id Jk N. — 1S = .
/Q (u —axj (a 763%) I )(p 964»./80 (a PrR g)cp S=0 VeV

Since ¢ -w = 0 on 912, the Neumann-type boundary condition (31c) is thus shown to hold.
We next establish the regularity theory for weak solutions satisfying (34).

Definition 3.4 (Partition-of-unity subordinate to an open cover). For a given collection of open sets
{U,}E_, C R", there exists a partition of unity {¢,, }£_, subordinate to {U,,}X_; such that v/(,, €
€ (R®) for all 1 < m < K. In fact, if {,,}5_, is a smooth partition-of-unity subordinate to {U, }X_;,
by defining {¢m} -1 by

e,

K )
Y187
then 0 < G < 1, Spt(Cm) € Uy /G € € (R?) for all 1 < m < K, and that Y5 _ ¢, = 1.

Cm =

3.1. The Case that the Coefficients a?* are of Class ¢

Now we study the regularity of the weak solution u to (31) when the coefficients a’* are of Sobolev class
H¥, k € N, and the domain Q is €**'. To do so, we shall first establish this regularity result under the
more restrictive assumption that the coefficients a’* are in €*(€Q2).

Theorem 3.5 (Regularity for the case that /¥ € €%(Q) and Q € €¥+1). Suppose that fork € N, Q C R®
is a bounded € *1-domain, a’* € €*(Q) satisfies the positivity condition (32), w is €+ in an open
neighborhood U of 0, and |w| > 0 on 9. Then for all f € H"Y(Q) and g € H*9%(99), the weak
solution u to (31) in fact belongs to H*T1()), and satisfies

el sy < C 1 fll sy + glmosiom)] (36)
for a constant C' depending on ||al|4x ), |Wlgeri@y and [0Q|gir.

Proof. Our goal is to establish the regularity theory for weak solutions w € V to (36). We prove this by
induction and divide the proof into several steps as follows:

Step 1: (Interior regularity) Suppose that uw € H*(Q) for 1 < £ < k. Let x be a smooth function with
spt(x) CC ), and 0 < e < dist(spt(x), ). We define

p= (—1)€X[7k * V%(??e * (xu))]
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with no summation over the index £, and we let {n.}.~o denote a sequence of standard mollifiers given
in Definition 2.16. We note that this choice of test function ¢ is in V, and can hence be used in the
variational formulation (34). First, we see that

(u, QD)LZ(Q) = Hvzne * (X'U‘)Hiz(g)- (37)

Since convolution is self-adjoint, the product rule shows that

ou' 0! o i i
[ S e = [ Vlnor (@9 ) )]V )

-2
+ > (Z;I)/Qv[ne * (Ve )V (') ) VO [0 * (xu') g ] dae
v* [77E * ( TR uiy ok )]Vz [77E * (Xui),j ]da:

- / Ve e * (a5 ufk)]VZH (7 % (xu')]dz.
Q

Using the commutator notation [A, B]f = A(Bf) — B(Af), the first term on the right-hand side of the
identity above can be rewritten as

[ 90  @w)]9 x ) Ja

\
s—1

_ / V[0 % VI (xul) o ]V [ (), ] da
4 /Q [V [nesk, @] V4 () 1 ]V [me % (') 5 ]da
_ / @V [ne % (xu') o |V [ne % (xu'),; ] da
—|—/Q(Vajk)ve_l[neélé (xu' )k ]V [1e % (xu'),; | da

+/ [V [nex, a?* [V (xu') | VE e % (xu?),; | da;
Q

thus, after rearranging terms, the positivity condition (32) implies that

L 0ut D' en ol ; ;
AV (e % cw)) [ < </Qa]ka$ka%_dfc—/Q(Va]k)Vz Hne x (xu') o |V e % (xu'),; ] do

*/Q [V [ne, a?* ]V ') ] VE [ne % (xu'),; ] dae
—Z /V ne % (V"M )\V (xu') i ) [V e * (xu'),; |da
+/ v’ [ne * (a?*uly,, )]Vz [ne * (xu'),; |de

Q

—|—/ Vit [776 * (ajkx,j ufk)]V”l [7]6 * (Xui)]dx.
Q

The last five integrals on the right-hand side of the inequality above can be estimated using Holder’s
inequality and the commutation estimate (28), and we obtain that

2 5 0u O’ ;
>\HVH1 (775 * (XU)) HL2(Q) < /Qajkaxkaxj dr + C||a||<ge(§)||u|\m(9)HVHI(m * (xu ))||L2(Q)~ (38)
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On the other hand, it is easy to see that

/ fopdr=— / VI e % ()] V! [ne ¥ (xu')] da
Q Q

(39)
< Cll.f”H@*l(Q)Hv“_l(ne * (Xu)) HL2(Q)'
Summing (37), (38) and (39), we find that
V¢ (ne % (XU‘)Hi?(Q) + AV (ne % (X“))H2L2(Q)
< O[”f”m—l(ﬂ) + ||a||<g£(ﬁ)||u||Hf(Q)} HV”l(m * (xu)) ||L2(Q) ;
therefore, by Young’s inequality,
[V (ne % (X”)H;(Q) + AV (ne % (xu)) ||2Lz(9)
C A .
< 5 (19132 )+ Nl ey + 5 199 [ % O]
which further implies that
C
HVHl(Ue * (Xu))HL2(Q) < 5y {H.fHH“l(Q) + ||a||<gﬂ(ﬁ)||u||m(n)}~ (40)

Since f € H*"1(Q) and a € €*(Q), the assumption that w € H*(2) implies that the right-hand side of
(40) is bounded independent of the smoothing parameter €. Therefore, we can pass to the limit as € — 0
in (40) and obtain that

C
IV 0wz < 5 [1Fllmes ) + lallgr ey el

or
C
||XVH1UHL2(Q) < By {”f”H’f*l(Q) + (||a\|<gé(ﬁ) + )‘)”u”H‘f(Q)} (41)

This implies that u € H.T'(Q). So, we have shown that if w € HY(Q) for 1 < £ < k then, in fact,

loc

u € HEP(Q) and w satisfies (41).

loc
Now, we note that by Theorem 3.2, u € H'(Q2) and hence u € H_
by parts in the variational formulation (34) and find that

/Q [’“* @ij(aj’“(%) ff] pdr =0 YpcE> Q).

(€2). This allows us to integrate

The above identity implies that

ui

o (ajk%

_8733]-

Bxk) =f' ae inQ. (42)

Step 2: (Regularity for tangential derivatives of w in the w-direction near 9§2) We now initiate the
induction procedure. We assume that w € H(Q) for 1 < £ < k — 1, and prove then that u € H* ().
Let {Up }E_o, {9 }E_,, and {r,,}E_, denote the system of local charts given in Proposition 2.1 with
ek 1,and let 0 < G, < 1in €°(U,y,) denote a partition-of-unity subordinate to the open covering U,
as given in Definition 3.4. We fixed m € {1,..., K}, and work with the chart ¥,, : B(0,r,,) — Up,. On

B(0,ry,), we define the new functions

E:Cmoz9m, U=uov,, W=w,o,, }:]"0197”7 g=god, and @ =@ od,.
With A = (Vd,,)" !, we define b"* = (a’* o0 9)A¥ AJ. Then the matrix b is positive-define. In fact, since
VO = 1d| oo 5y < 1,

) A
brsgrfs = (a’]k o ﬂm)AzAggrgs = /\‘AT§|2 > §|£|2 (43)
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Setting & = ¥,,,(y), the change-of-variables formula shows that the variational formulation (34) takes the
form

o ou 0@ ~ o o
/ u-sody+/ e TP gy — f-<pdy+/ g-@dS VoeVny, (44)
B B dys Oyr B BmN{ya=0}

where V,, = {peH' (B})|@¢-w=00n B, N{y. =0}, =00n R NIB,}.

With Ag = Y71 22
8yj

denoting the horizontal Laplace operator, we define
@' = (—1) [(WAAFA(CT- )] 00y,

where A, is the horizontal convolution-by-layers operator given by

Aed(yn,yn) = /}Rnf1 pe(Yn — 20)0(zn, yn)dzn,  for (-, yn) € L'(R™ 1),

where ¥, = (y1,...,Yn_1). Recalling that 0 = (ai, ey ) denotes the horizontal gradient, we note
Y1 Yn—1
that
n—1 n—1 0 4
=t =t 0'v 0w
v -0 w=— ) ’
a1=1 ap=1 8y0¢1 “'8y04g ayal "'ayag
=0-1  =l+1 — — 0w 0" Agw
9 w0  w= Z ) 7
ol sl Yo+ Oary oy Yoy,

and so forth.

Since ¢ -w =0 on 91, ¢ € V and can be used as a test function. The use of ¢ as a test function in
(34) implies that

o ou' 0p'
2 b’l‘Si
(u, @) r20) Jr/Q 9y, 0,

=, e~
dy < C[Hf”m(ﬂ) + ||9||H270«5(as2)} H8 Ac(Cu- W)HHl(B,t)' (45)
Similar to (37), integrating by parts with respect to y, implies that
=0, e )2
(w, @) 12(0) = [|0 AG(CU'W>HL2(B$)'

Now we focus on the second term on the left-hand side of (45). Integrating by parts in the horizontal
direction (using 0) yields

/ b?”s 8'1’11 8801 Y = / nge (bTSZaTnaS . \’)‘\})5[/\6(5& ";‘\})’7‘ dy
B, B
= /B+ OA, (brsgé—l(&j. VT/),S)EZAe(Zﬁ' W), dy
+ g (Zi 1) 5A€ (gz_l_kbrsgk(zﬂ ! VNv)as)geAe (Z’lj . ‘A’{/)ar dy
k=0 k B

- / T A(b = ((W7),0) D A(CTr- W), dy. (46)
B
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For the first term on the right-hand side of (46), as in Step 1, we find that
/B OAD (G ),0)0 Al ), dy
- /B . F[BAD" (Gl W),a |0 Ac(Cr W), dy
+ / @818 G ), )3 Al ), dy
- /B V0 NGl ), 0 NGl W), dy
+ /B . @07 A (Ca- W),s 0 A(Cu- W), dy
+ /B . (O[Ae, 510" (Gt #),0) 3" Ae(Ctir W), y. (47)
The positivity condition (43) and the commutation estimate (29) imply that
/B COA(D" T (@ W), D MG ), dy

A= ~ = ~
> §HazA€v(<u'W)H;(BH_C”“”HZ(Q) [HaéAe(Cu' W)HHl(BﬁL +HUHH’5(Q)] (48)

m

For the remaining terms on the right-hand side of (46), we apply Holder’s inequality and find that

£—2

(0 / N0 G ),0)0 Al ). )
k=0 k7 B
+‘ /B . 541\6(bTSﬁi(Zwi),s)éer(Za-W),Tdy‘
< C”“”H[(Q) [ngAev(Z'E' \"VV)HLz(B;;) + ”uHH[(Q)} ) (49)

where C depends on |[al[4e (g, [[Wllge+1 @) and [0Q]4er1(q). As a consequence, Young’s inequality together
with (45)—(48) implies that
=4 T~ (12 =4 T~ (2
& AE(CU'W)HL2(3¢1)+)‘H8 AEV(CU'W)HB(B;Q
=0 T2
< Cs [HUH%IZ(Q)—'_ ||f||§{e71(9)+ ”gH%{l*lﬁ(aQ)} +0)|0° AV (Cu- W)HLz(B;rL)a

which, by choosing § > 0 sufficiently small, shows that

=0, e~
Hé) Ac(Cu- W)HHl(B%) < C[Hf”mfl(sz) + gl ze-o0500) + H’“‘HHZ(Q):|
for a constant C' = C([|allge ), [Wllge1 @y, [0Qgerr).

Since the estimate above is independent of the smoothing parameter e, by passing to the limit as
€ — 0 we conclude that

~=l,
HCa (u- W)HHl(B;z) < C[HUHHZ(Q) + I flle-1) + HQHH“f’ﬁ(aQ)]
Since both w and 1,,, are €**! in the support of Z, it follows that

HZVA"f'gé’ﬁHHl(Bm < C[HfHHﬂ—l(Q) + gl zre-o500) + ||U||Hf(ﬂ)}~ (50)
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Step 3: (Regularity for tangential derivatives of w in the w-directions near Q) Estimate (50) provides
regularity for the vector ¢ & Vi - w. Next, we establish the regularity of (8 Va x w. We define

= (-1t {ZAGASAC(&T) (CW- AASA(Ca)) |V:V|22]

~ ~ ~ . WIw
= (1) [CAAfA(Ca) — (CAeAﬁAe(CuJ))W]

Note that ¢ is the projection of the vector gAGAf;Ae (Zﬁ) onto the affine space with normal w, so ¢ € V

and can be used as a test function in (44). Following the similar computation in Step 2 above, we have
that

H8 Ac(Ca) HL2 B,

m

=t o2
<Cs |:H.fHH"'—1(Q) + ||9||He—1-5(aQ) + ||U||%1@(Q)} +4][@ AeV(CU)HLz(Bm

H8 AV (Ca) HL?(B*)
_1\¢+1 rs~1 v T~ """/.j""’vz
e [ [CaiaGa) o]
Cs {Hf”%réfl(g) + ||9||§1271~5(39 + JulFe 9)} + 25||5£A6V(Zﬂ)||22(3$)
14+
He0 [
< Cs 1=y + 91350 + Ialrecey | + 300 AT )|

_/B 9 (Gt W) (AD A(CH )W dy.

5 W[

U,y (AAGA(CT )W dy

Applying estimate (50) and Young’s inequality,
bs g o~ B o ~ . .
[ 30 e ) (AD NG ),
B

5wl

< O G - V)| g [0 ACT D)1

=0, mee 12
< Cs [”f“?{f*l(ﬂ) + HgHiﬂ*1-5(aQ) + ||u|\12qg(9)} +4]|o AG(CV“)HL'Z(Q) ;
thus by choosing § > 0 sufficiently small, we conclude that
19 A Gy 5 < © [Nelrocay + 1 Ve + e 150 |
Again, due to the e-independence of the right-hand side, we conclude that
~=l
18l 1y < O [lllrecay + 1F =22 + lgllsecos o | (51)

for a constant C' = C(||all4e ). [|Wllwer1 @), [0Qger).

Step 4: (Regularity for normal derivatives of uw near 9€2) Multiplying (42) by (,, and then composing
with 9,,, by the Piola identity (30) we obtain that

Cu— Z(brsﬁ,s )= E(f 0d,,) ae. in B}.
Letting 3777V7 act on the equation above, we find that
zbrsgeflfj
for some F(, ;) € L*(Q) satisfying

V.= F; ae. in B (52)

1Pz < CIFlmeri + lullme)
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where the constant C' depends on ||a||4: g *). Using (43), b"* > 0; thus (52) further implies that

A W PRI DI o )
(r,5)#(n,n)
Now we argue by induction on 0 < j < £ — 1. When j =0, (51) shows that
F5

Ico

which, combined with (51), provides the estimate

1—1—j

wn Ly < C Il + 1 F sy + gl me-oso0)]

oy NPy
|¢o VQUHLQ(B;L) < C[”U”HE(Q) + 1 Fllee-10) + Hg”H““ﬁ(aQ)}
Repeating this process for j = 1,...,¢ — 1, we conclude that
||5VH117HL2(B¢L) S C{H’“’”HZ(Q) + 1 flle-1 o) + ||g||HZ—0-5(BQ)}~ (53)

The combination of (41) and (53), as well as the induction process, proves the theorem. ]

3.2. The Case that the Coefficients a7* are of Sobolev Class

We are now in position to study the regularity of solution w to (31) when the coefficient a’* and the
domain §2 is of Sobolev class. We first prove the following rather technical

Theorem 3.6 (Regularity for the case that a/* € H¥(Q) and Q € €>). Let Q@ C R™ be a bounded
€ >°-domain. Suppose that for an integer k > g and 1 < £ < k, a/* € H¥(Q) satisfies the positivity
condition

a* €6, = NEP VEERD,

and w € H>{H1(Q) (or w € H™oxU2.033(9Q)) such that w vanishes nowhere on Q. Then for
all f € H'=Y(Q) and g € H*=95(9Q), the weak solution w to (31) belongs to H*(Q), and satisfies

el ey < C[IF s + lglme-os@a + Pllallmy) (1f 2@ + lgla-ocoa)]  (54)
Jor a constant C = C(||W|| gmaxw.e+11(qy) and a polynomial P.

Proof. Let {Up,,9m}E_; be a collection of charts of 9 given in Proposition 2.1, {(,,}£_, a partition-
of-unity subordinate to {U,,}X_, given in Definition 3.4, and let E : H*"1(Q) — H*1(R") denote a
Sobolev extension operator. We define a. = n. % (Ea), f. = n. * (Ef), we = 1 * (Ew). Finally, let g,
denote a smooth regularization of g defined by

Z\/CTn Cmg 019 )]019;11.

It follows that for ¢ < 1 sufficiently small7
, A
al* (2)&&k > 5 €7 VEER", z e (55)

Hence by Theorem 3.5, the solution u° to the variational problem

/u godx—i—/ ékau acpdx—/fewpdw—i-/ g.-pdS YeeV
Q Oy Ow; Q a0

satisfies u® € H*(Q2) for all k > 1. We next establish an e-independent upper bound for [|uf|| ge+1(q).
Step 1: (Regularity for tangential derivatives of w in the w-direction near 02) We fix m € {1,..., K}
and set

Z:Cmoﬁnfm U=u0Vy, W=WwW oy, }:feoﬁmv g=g.0oUy, and ¢ =¢od,



392 C. H. A. Cheng and S. Shkoller JMFM

With A = (VJ)~!, we define b]* = (af* o 9)A; A7, Then, as [|[Vi) — Id|| o (psy < 1, the matrix be is
positive-definite since using (55),

, A A
V& &, = (2" 0 D) ALATE L, > SIATE > TIE® VEER™ (56)

Setting = 9J,,(y), and using the change-of-variables formula, we find that the variational formulation
(34) can be written as

/ a.qoder/ b:sgu Z‘P dy:/ f~¢dy+/ g-@dS V@ eV, (57)
+ B Ys Oyr B Bm M {yn=0}

where V,, = {¢ € H'(B})|@ W =0o0n By, N {yn = 0}, = 0 on R} NI B, }. With Ay denoting
the horizontal Laplace operator and 0 denoting the horizontal gradient defined in Step 2 in the proof of
Theorem 3.5, we define

@' = (-1 WA (Cu-w),
so that

_ L 0U 0P
(u7¢)L2(B’t)+/B:rn € ays 6?!7» Yy

< C[H?HH@—l(B;q) + ||§||H[*”-5(Bmﬂ{yn:0})] ng(aﬁ ) W)HHl(B;Q)
< C[If oy + gl o500 |19 (%) 1 (58)

where we have used Young’s inequality for convolution to conclude the last inequality. We focus now on
the left-hand side of (58). As in the proof of Theorem 3.5, we have that

(W, @) 21,y = HEZ@@"T’)H;(B%)'

Moreover,

ou' 0@’ e/ i it e~
b dy = (—1 e, [Cwi AL (Ca- W), d
G Gy = 0 [ (G A G )y
=/ L Te o~ =0, 7 ~
:/ 0 [b:é(Cu-w),s]a (Cu-w),,dy
B
Al rrs~i/ Fei 7~ ~
- [ 9 ]9 G ). dy

£+1

- [ A G 18 G (59)

For the first term on the right-hand side of (59), we make use of the positivity condition (56) and Young’s
inequality to conclude that

s e~y 1R e~
[ 8" G000 Gy
B
=l oy wh e =0 oy 1wl e~
— [ w90 Ca oy [ (105G ).0 10" G ) dy
B, B,
A =l e (2 —t e 12
2 (3~ )0 V(Ca-W) oy = Csl[107, 6l V(€T W) | o 51 (60)
Then, Corollary 2.9 with ¢ = é shows that

s e oy 1mE e ~ A Sl e 12 .
L$a [be (C’LLW),S]3 (C’U,W)W dy P (g _5)”8 V(CUW)HLQ(B;;) _O(SHCL”%P‘(Q)”U ||2HZ+§(Q)
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For the second and the third terms on the right-hand side of (59), we use the inequality (16), and find
that

]/B+ [brea'(Cw').s |0 “(Ca-w ,rdy\ ]/B+ b” L (W), ]5£+1(Zﬁ-v~\/)dy

< Cllalpeqanlu e oy + 011 V(G2 (61)
for a constant Cs depending on [[W/|| grmax(.e413 (@)
Choosing ¢ > 0 sufficiently small in (60) and (61), we conclude that
=l e
&2 (Cu'W)HLQ(Bfg) +|o V(CU‘W)HB(B:;) (62)

<O[If o) + Igllme-osco0) + llallreqon 1wl s

for a constant C' = C(||w|

Hlnax{k,£+1}(ﬂ)).

Step 2: (Regularity for tangential derivatives of w in the w*-directions near 92) Now we estimate u¢ in
the directions perpendicular to w. Similar to Step 3 in the proof of Theorem 3.5, we use

as a test function in (57) and find that
)\
Ha ||L2(B + )Hé) V( C“ HL2(B,,L
[wmum+mmowﬂ+awmmwmﬁ

o

+(-1) /Bm
_1\4+1 rs~1 TANL (F~] wiw?

DT (AN T dy

()
W;<<u W)AL(Ca) dy

Integrating by parts in the horizontal direction (using ), by Corollary 2.9 and (62) we obtain that

(1) [ (G 0™ ) dy

< [0 (R )]y 0 Gy
(wum“>+wakumw) (63)
and
ewﬂﬁmw”[wﬁc>wgww
(19" VD[ o gy + 160 V(G )|
bV (G )| s | [0V s,
<%M%®wﬁwq—wwvawwwy (64)

in which the constant Cs also depends on ||[W|| grmax(x,e+1} (). Therefore, choosing ¢ > 0 sufficiently small
n (63) and (64), we conclude that
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=l =l i
[Co HLz‘(B:; +][¢o vu HLz(B;)

< C[HUE”HLH(Q) 1 F o1 + 19l me-0500) + HaHHk(Q)HUE”HHg(Q) (65)

for a constant C' = C(||W/| grmaxx.e41) (q)) -
Step 3: (Regularity for normal derivatives of u near 9€2) In this step, we follow the procedure of Step 4
in the proof of Theorem 3.5. Since u€ is a strong solution, it follows that
0 o 0us
€ _ ik ) _ in Q-
w07 G ) = g me

thus the Piola identity (30) implies that

C(bzsaas)ﬂ“zc(ﬂi(feo’ﬁ)) in B;?i;

N 9
With w,, and u,,, denoting gu and Z—g, respectively, we have that
Yn yn
O = C [ = (fo00) =BT~ > WG~ > Wl | WmBL (66)

(r,8)7(n,n) (r,8)#(n,n)
Let G = Z[ﬁ = (feo ) = &MU — X (1 ) 2 (nm) b:;’d,s}, and for 0 < j < £ — 1 we define

—0—1—j

01—
Gujy =9 !

VIiG - [0 VI 0 [, g -

Letting 3777V act on (66), we obtain that

Ebémgl*l*jvjﬁmn — G([,j) _ Z Eb:sgeilijvjaars (67)

(7,8)7(n,m)
Now we estimate G(q,;) in L?(B}}). First we note that

18 (€@~ £ 0 9] || oy < I liremsoy + 1 ey .

Moreover, since ¢ < k, by Proposition 2.7 with ¢ = % we find that

(8 @) gy = 2 18IV e,
(r,5)#(n,n)
-1 4
SOY IV aV T a2 o) = C ) |VVaV | 12 )
Jj=0 j=1

< C||a||Hk(Q)||u||He+g(Q)-

Finally, by Corollary 2.9 with o = é,

109 o i [ oy + > N0V BT

(r,8)#(n,n)

TS HLZ(B;R)
< Cellall ey 1wl e+ -

Therefore, G, ;) satisfies

HG(e,j)||L2(B,+n) < Clllullge-@) + 1 Fllae-10) + Ha||Hk(Q)||U€||Hz+g(Q)}-
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Now we argue by induction on 0 < j < ¢ — 1. By the positivity condition (55), b > = so that when

J =0, the inequalities (65) and (67) show that

>

||65Z71a7nn“L2(3$)<||G(Z,J')||L2(B;*;L)+ Z Hb:s”Loo(BJr)Hzgzi

(r,5)(n,m)

1~
e oy

<c|

lullge—1(0) + 1 Fllme-10) + 19l me-0.500) + Ha”Hk(Q)”uenHlJr%(Q)]

which, combined with (65), provides the estimate
Ica™

¢a VQ'H’HL?(B;*,;)
<O|lullesioy + 1l + lgleoson + lall e ul ez g |-
Repeating this process for j = 1,...,¢ — 1, we conclude that

T g+ 1T

< Cllwlae-r() + Fllesoy + lgllar-os@a + lallmxoy [l g g
for a constant C' = C(||W/| grmaxi.e+1) (q))-

Step 4: (Completing the regularity theory) Let x > 0 be a smooth cut-off function so that spt(x)cC Q.
Arguing as in Step 1 of the proof of Theorem 3.5, we find that

7 0l 20 + Iy < I ey + lallreca ol e g ] (69)
Combining (68) and (69) establishes the inequality

lwllsress ) < C[IF 1oy + Igllme-osgom) + (1 + lall o) 1l e g g (70)
for a constant C = C(||w||me{k,z+1}(Q)). Since the interpolation inequality provides

€ ell-se e|| 5z
[l ||He+g(m <Ollu ||Hf~§§(g)”u ”;fl(g)a
Young’s inequality further shows that
[ e (9) < Cs [||f||H€—1(Q) +llgllze-os00) + P(”a”Hk(Q))”'U'e”Hl(Q)} + 0l e a) (71)

for a polynomial function P. Finally, choosing § > 0 sufficiently small and then passing to the limit as
€ — 0, by the fact that

al® — o/F in H(Q),

W, — W in H“‘“"X{k’”l}(ﬁ)7
£ —f inH7YQ),
g.—g in H-9%(00),

we find that u® converges to the unique weak solution u to (31), and the inequality (36) is established
by substitution of the H'-estimate (35) in the inequality (71). O

Having established the regularity theory for the case that a’* € H¥(Q) and Q € ¥, we can now
prove the following

Corollary 3.7 (Regularity for the case that a/* € H¥(Q) and Q € H¥'1). Let Q C R" be a bounded
H**'_domain for an integer k > g Suppose that a’* € HX(Q) satisfies the positivity condition

€€, > NEPP VEER?,
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and for 1 <€ <k, w € H™>H13(Q) (or w € H™x{k=2.0423(9Q)) such that w vanishes nowhere on
Q. Then for all f € H*=Y(Q) and g € H*=%5(0Q), the weak solution u to (31) belongs to H1(Q),
and satisfies

lull sy < C[IF ey + llglme-osoa)

+ P(lallm) (120 + lgll-os00))]

Jor a constant C = C(||W| grmaxti.e+13 (), [0Q grsos) and a polynomial P.

(72)

Proof. Using Definition 2.2, we let 1) : O — Q be an H**!-diffeomorphism, where O is a bounded
¢ >°-domain. Making the change-of-variables = 9(y), with A denoting (V4)~! we can rewrite (31) as

9 ou = s OAT O
T Jjk AT s _ —jkAs 7]
u a0 ( A ay ) f+a"Aj 3y, 9. in O,
U W= on 00,
Pgt ((’zj’“A;A‘fC g; N, — g) =0 on 00,

where we use the bar notation to denote the variable defined on O through the composition with ):
d=aotd, w=uod, W=wod, f=foih, g=go,

and N is the outward-pointing unit normal to O. By Proposition 2.7, Corollaries 2.10, and 2.11, we find

that
1a7* A7 A | 0y < C109Q] grivos)[lall mrx (),

<C
< C(|aQ|Hk+O.5)HW||Hmax{k,£+l}(Q)7
C

([ W] pmas, L1} (Q)
1 £l zre=1 0y + 1]l re—0.590y < C(10Q gravos) [”f”Hl*l(Q) + HQHHZ*D-E’((?Q)]
Theorem 3.6 then implies that
@l getr 0y < C{Hf“m—l(o) + 19l 520500y
+ P(IAGAT [ 1x(0)) (IFllz20) + 18110500 )]
ClI 1110y + Igll o300

+ P(lall oy 190 ) (1220 + lgla-osom) )]
for a constant C' = C (||W|| gmaxti.e+1) (), |02 ge+o.5). Estimate (72) then follows from Corollary 2.11. [

Corollary 3.8 (Regularity for the classical Dirichlet and Neumann problems). Let Q@ C R™ be a bounded
H**1_domain for an integer k > g, and a’* € H*(Q) satisfies the positivity condition
a"€;8), > NEP VEER™
Let £ be an integer such that 1 < £ < k. Then
1. For any f € H*"1(Q), the weak solution u € H}(Q) to the Dirichlet problem

_;%(ajkaa;;) =f inQ,

u=0 ondQ,
belongs to HF1(Q), and satisfies
||U||Hf+1(9) Cllf Nl e~ 1) (73)
for a constant C = C(||al| gre(q), |[0Q riros).
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2. For any f € H1(Q) and g € H*=°°(0Q), the weak solution v € H*(Q) to the Neumann problem
0 i 0V .
v — —(aJk—> =f inQ,
65Cj

oy
ajkaab:kNj =g ond,
belongs to H1(Q), and satisfies
ol ey < ClIf sy + gl o300y (74)

Jor a constant C = C(||al| g (q), |09 gi+os) .

Proof. Tt suffices to prove the case that u and v are both scalar functions.

1. Let w = (1,0,...,0), and u be the solution to

0 2 0u
- (" =—) = '
3xj(a 8mk) (f +u,0,...,0) in €,
u-w=>0 on 01,
o O0u
RN =
PWJ_(G, kaN]) 0 on 0f).

Then v = u; (in fact, w = (u,0,...,0)); thus (72) implies that
lull et o) < CNf +ullge-10) < C{Hf”m—l(m +lJull ge-10)
for a constant C' = C’(Ha”Hk(Q), |8Q|Hk+0.5). By interpolation and Young’s inequality,

ull grer ) < Cllfllme-1(0) + Csllull ) + ollull geri ) ;

thus (73) follows from choosing § > 0 sufficiently small and the estimate for the weak solution.
2. Let w = (0,1,0,...,0), and v be the solution to

v7i<ajka—v) ~(0,,0,...,0) inQ,

Ox; oxy,
v-w=0 on 0,
e 0v
Py (ajka—xk j> =(0,¢,0,...,0) on 0N.
Then v = vy (in fact, v = (0,v,0,...,0)); thus (74) follows from (72). O

In general, elliptic estimates with Sobolev class coefficients a’* have a nonlinear dependence on the
Sobolev norm of a’*. There are, however, situations when the estimate becomes linear with respect to
the Sobolev norm of a’*.

Theorem 3.9 (Regularity estimate which is linear in the coefficient matrix a/ k). Suppose that the assump-
tions of Theorem 3.6 are satisfied with ¢ =k, and that furthermore

||a — IdHLoo(Q) <ek 1.
Then the solution uw € H<t1(Q) to (31) satisfies
|w] g1y < C[HfHHk—l(Q) + gl zre-o0500) + (1 + Ha'”Hk(Q))”V'UJHLOC(Q)} (75)

Jor a constant C = C (||| g1 (q)) - (Recall that w is an H<(Q) vector field defined in a neighborhood
of 0) which vanishes nowhere on 0€.)



398 C. H. A. Cheng and S. Shkoller JMFM

Proof. By Theorem 3.6 we know that u € H**1(Q) so Eq. (31) holds in the pointwise sense. We rewrite
(31) as

0 ou
_— Jk jk ;
(9:10]- <(a =0 )(%ck) +f m Q7

u-w=0 on 0,

P, (%) —e=P,. (((wk - aﬂf)g—;;Nj + g) on HQ.

We then conclude from Theorem 3.6 that

u—Au="f

el sy < C[UEll sy + gl o scom |

<C[IF s sy + lglim—oso + | 5o (8 =) 525 s

+ HPWJ_ ((6jk —a’®) %Ng) Hkao.s(ag)}

for a constant C' = C(||w|| grx+1(q)). By Theorem 2.14,

1o} . . ou
ik _ ik el
((5 a ) o

4]
P der)

ik jk
‘kal(n) S H(éf —a”)

Oxy, H%(Q)
< C[16 = all =@ Vull o) + 118 = all oy | Vul o)

< Cellull sy + C(1+ Jall e o) Vel = o).

Similarly, by the trace estimate ( (n—1) is the dimension of 9Q),

ou

HPWL((aﬂ_aM) ouN) @) 5
k

8£Ek J

<cfo* -

Hk—=0.5(9(Q) Y Hk—=0.5(9(Q)
C'[||5 = a| Lo (@) |Vl gr-os@a) + 16 — allmosa0) [Vl L= @)
< Cellul| grrr o) + C(1 4+ llall ge@)) IVul L= a0

for a constant C' = C(||w|| g+1(q))- The embedding H 2 (Q) < €%*(Q2) for some a > 0 further suggests
that Vu is uniformly Hélder continuous; thus ||V r=@q) < [[Vul[p~(q). (75) then follows from the
assumption that e < 1. O

Remark 3.10. As we noted, inequality (75) is linear with respect to the highest-order norms. This permits
the use of linear interpolation to extend this inequality to fractional-order Sobolev spaces.

In the same way that we proved Theorem 3.6, we can prove the following complimentary result:

Theorem 3.11. Let Q C R™ be a bounded H*t'-domain for an integer k > g Suppose that a’* € H*()
satisfies the positivity condition
a/*€;8, > NEP  VEER,

and for 1 <€ <k, w € H™>H13(Q) (or w € H™x{k—2.0+33(9Q)) such that w vanishes nowhere on
Q. Then for all f € H*=Y(Q) and g € H*=°5(0Q), there exists a solution u to

0 4 0u’ ;
_ T (RN pl .
u 9z, (a axk) ffoin Q, (76a)
uxw=0 ondQ, (76D)
Jkau Nw' =g ondQ, (76¢)
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and salisfies
el ey < C[IF s + lglme-os@0 + Pllallmxey) (1£ 2@ + lgla-oca)]  (77)

for a constant C = C’(||w||Hmax{k,e+1}(Q), 0Q| grr+0.5) and a polynomial P.

4. Regularity Theory: The Proof of Theorem 1.3

In this section, we prove our main regularity result given by Theorem 1.3. We first establish the following
lemma which is also fundamental to the proof of Theorem 1.1.

Lemma 4.1. Let Q C R? be a bounded H*T'-domain with outward-pointing unit normal N. Then for
every differentiable vector field w : Q — R3, the following identities hold:

aw oQ
Pt (87N) = (curlw x N) + V*w - N on 011, (784a)
divw = g—; ‘N + 2H(w - N) + div**(Pyrw)  on 09, (78Db)
curlw - N = div?*(w x N) on 99, (78¢)

where H is the mean curvature of 9 (in local chart (U, ), H is given by H = %ga'@b(w).
Proof. We define

O(y) = J(y1,v2,0) +y3(N 0 9)(y1, y2,0),

and G;; = ©,;-0,; with inverse G. Let N = (N oz9)|y3:o, and } = fo0Oif f #N. Since ©,1, 0,5 | N,

for every vector v € R?, ¥ can be expressed as the linear combination of ©,;, 0,5 and N. In particular,
we have

¥ =@ N)N' + (G°P07 53 37)0,, = 53N + 5,0, (79a)
and
f,kO@ = }.53 N3 +gaﬁ}.7[3 @kva' (79b)

To see (78a), we first note that

dw'’ ~ i O ~  Gi P N
ON o= [w3N +wa® ;a]aS y3=0 = [WS,SN +'wa,3® 7Oé+wocN aa] yg:O; (80>
thus, since N - O,n = N - 1(1,,1 =0,
P (87“’)019— (W3, 5N' + W50 0 + o N, ]
N1 ON — 3,3 a,3 bl a Yot y3=0
- [1773,31%]C + W, 30", +ﬂ:aﬁk7a] Oﬁkﬁi
Y=
= Wy 300 +Wa N, . (81)

Moreover, by the identity

(Curlw X 1\]-)Z = Eijkgjrswsyr Nk = (5is§kr - §ir6ks)wsyr Nk = (wiﬂc _wkai )Nka
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we find that
(curlw x N) ot = (@' 3N* + G’ 50, —w" ;N — g2 ;,07,,)NF]

y3=0
= [@'s -N'w" s N - 270, ",y N']

y3=0
= (@3N + @,0", )3 N (w3N* + @, 0", ),; N*
— gaﬁ@i’a (,&33&1@ + ﬁ}'y@kw )7[3 ﬁk]

y3=0
= 'ﬂ}alea +ﬁ'}(x,3ﬂiaa 7906,8197;’()4 (17]37[3 - /&}’Yb’)’ﬁ)
= ﬂ]aﬁiﬂl “Fﬁ}a,?)ﬁiaa _gaﬁﬁiaa (ﬂ},ﬁ . N) (82)

Combining (81) and (82), we conclude (78a).
Now we proceed to the proof of identity (78b). Using (79) we obtain that

divw|,, 09 = [N*(w3NF + 0", )5 +G*7 0%, (wsNF + w,0F ) 5]

y3=0
= W33 + PO o (W5 9%, +w., 9% 5, +NF 5 w3 + NFw3,5)
= W33+ Wy + I Wy + 2Hibs,

where T') 5 is the Christoffel symbol defined by

1
g = 5 9" (9as.5 + 9gs.0 — Gaps) = 970 ap Vs -

Q

Since g,, = gg”‘sgws,a = gfgﬁ, we find that the surface divergence operator div®” in Definition 2.4 can

also be given by
(div*?v) o) = v,y 4 + ngﬂy Yo € T(Q) (or equivalently, ¥ = v,9",, ).
As a consequence,
divw = [W3,3 +div’? (P, @) + 2Hw3] 09~ on 99,
where we recall that Pr1 denotes the projection of a vector onto the tangent plane of 92. With the help
of (80), in local chart (U, ) we have
[% : N} 0 = [Wa,3 N + Wy 30,0 +Wa g™’ N 5 [N = 3,3 ; (83)
thus (78b) is valid.
Finally, by the divergence theorem we obtain that
/E)Q(curlw ‘N)pdS = /chrlw -Vodr = /Em(N x w)-VedS Ve H(Q).

Since (Vi)' = p,3 N* + g%, ¥ 5= %Ni + (V??p)? and (N x w) L N, we conclude that

/ (curlw - N)p dS = (N x w) - V*pdS = div??(w x N)pdS Ve e H(Q);
00 00 00
thus we verify (78c). O

With Lemma 4.1, we can now prove Theorem 1.3 with n = 3; we note that the case n = 2 follows
from the more general case by considering vector fields of the type u = (u'(z1, 22), u? (21, 12),0).

Proof of Theorem 1.3. Let u € H*T'(Q), and curlu = f, divu = g, V?®u - N = h. By the well-known
identity
— Awu = curleurlu — Vdivu in €, (84)
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we find that if y is a smooth cut-off function with spt(x) CC €, then yu satisfies
—A(xu) = —ulAx — 2Vyx - Vu + x(curl f — Vg) in O,
xu =20 on 00,

for some smooth domain O CC 2 (choose O to be a smooth domain so that spt(y) cCOcC ). Standard
interior elliptic estimates then show that

Ixwl s oy < C[lullieoy + 1oy + gl (85)
Now we proceed to the estimates near the boundary. Let {(,,}2X_; and {0,,}£_, be a partition of unity
(subordinate to U,,) and charts satisfying

(1) 9y, : B(0,7,,) — Uy, belongs to H*(B(0,7,,));
(2) Y Bi(0,70) — QN Up;
(3)  Im: B0, 1) N{ys =0} = QN U,

and ¢,, and b,, denote the induced metric tensor and second fundamental form, respectively. Then
—A(Cmu) = Gu(curl f —Vg) — uA¢y, — 2V - Vu in Uy,
(CmV??u) - N = (b on Uyy,.
In each local chart, we define the functions
U =woVm, Cn=0CnoUm, N=Nod,,
A= (V)™ J=det(VI,), gm = det(gn).

Taking the composition of the equations above with map ¥,,, by the Piola identity (30), we find that
—[JALAEConin) ] = T [{m(curl F—Vg) — uACrm — 2V - Vu] 0¥y inU, (862)
(@)oo N = Gty N -6, (B 0 0, on 9U, (86D)

for some smooth domain U satisfying that spt((,) € U and spt(&,) NOU C {ys = 0}.

The function ({;,Um),s, where o = 1,...,n — 1, will be the fundamental (dependent) variable that
we are going to estimate; however, in order to apply Theorem 3.6 we need to transform the boundary
condition (86b) to a homogeneous one. This is done by introducing the function ¢, which is the solution
to the elliptic equation

¢0’ - (‘]A%Alg(b(ﬂk )7] =0 n U,
Gook ALTAING = G Ul J AT+ \/Z Cn(h 0 0,) om0 DU,

in which m is the outward-pointing unit normal to U, and then defining w! = (Zmﬁjn),g —Ald, . as
the new dependent variable of interest. Since /g, N = JATn on B(0,r,,) N {y3 = 0},

. P AT AN,

wy - N = gmﬁm,U~N— =0 ondU;
( ) V8m

thus w, satisfies a homogeneous boundary condition.
Differentiating (86a) with respect to y,, with a/* denoting .J AZ,A@c we find that w, satisfies

0 o 0w
]k g = F i
Wy — —yj (a —yk ) s in U, (87a)

w, - N=0 ondU, (87b)
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where F',, is given by
F = [J(Gulewl £ = Vg) — wAGp = 2V - Vi) 0 0] o
w + [(JALAE) o (Gt ) ]+ [TALAE (AT Dy k]
Moreover, by Lemma 4.1,

e (2252580 oo,

= [curl(w, 0 ¥,;') x N] 0 ¥,, + 900 (Wo,5-N)
= [curl(wy 0 9,,') x N 09y + g2 010 (wo - N).5 =92 g0 (wy - 0,5 )by U, ;
thus using (87b) in the second term of the right-hand side, we obtain that

Px. (ajkawg nj) =./Sm [curl(wg ) 19;1) X N] oUm — /Em g%ﬁggf(wg -,5 )by ¥,e on OU.

6$k

Since
[curl(w, 0 9;,") x N]i 0 Oy = eijuEjrs Al o N¥
= AL[(CnTn,) o =AT Boor ]t NF = AL [(Gnty )0 —Af o |0 NF
= AL(Cnin)ae NF = AL (€)oot N* = AL (AT @ ). N+ AL(Af b1 ) NP
and
[Zm (curlu X N) 0 V] 0 = €€ jrs (EmAfiﬂan,e I(Ik),(,
= [AL (Gt ) e N = AL (g, )0 N0 =[Af e 3, N* = Al NF
= A4 (Cniyy) e N = AL (Eman, ) a0 N — (ALNF) 5 (6, e
— (ASNFY o (Gl ) oo —[Af oot Conot U N* — ALC 0l NF]
we find that
[curl(wg o 19;11) X N]i oWy, — [Zm (curlu X N) o ﬁm] .
= AL (A7 ) NF + AL(Af by )0 NP + (AN (G, ) e
+ (ANF) o (G, ) +(ALEm ot Conot Ty, NF) g+ (AL Wy, NF) 5
thus (88) implies that

ow,

A nj) =2m G, on 0U,

PT\TL (ajk
where G, is given by
Go = [Cn(f X N) 0 U)o —AL(A] By v ) N* + AL (A}, 1 ), NF
+ (AN (G, ) e +(AIN) 5 (Gt )t +(Af Gt Uy, NF)
+ (Al Uy N®) o =902 070 (et ) s O — AL br Doy | by s -

JMFM

(87¢)

As a consequence, w, is the solution to Eq. (87), and Theorem 3.6 (with ¢ = k — 1 and w = n) then

implies that (Zmﬂm),g satisfies

lwoll vy < C[I1F sz + Gl sov)|

for a constant C = C(||all gx(50.r s 1A 1% (B0.rm s IN I x-0501))-
We focus on the estimate of F', first. By Corollary 2.10,

1| 5 (B(0,rm)) + 1Al EE(BOrm)) T 8mll Hx-0500) < C(|0Q grtos) ;

(89)

(90)
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thus Corollary 3.8 shows that
H¢0||Hk+1(U) < C'(”af”Hk(U)v |aQ|Hk+0'5)||Emml~lfszA§nl + VEm Zm(h o ﬁm)Hkaoﬁ(aU)

C(10QUspwr05) [l ey + Bl wi—os0m)) (91)
Moreover, by Corollary 2.11, we also have that
lall g oy + ”N”Hk*f’ﬁ(ﬁU) < C(|09Q] grevos). (92)
As a consequence,
[ Fo | mne—2(uy < CU1OQ gicros ) |1 F | e () + |9l ) + 12l -0 0 0) + HuHHk(Q)] (93)

As for the estimate of Gy, the highest order terms are (ALNF),, (Cn@th,) e, (AYNF),, (Cniil,),e and
2P G (Emtn,)so U215 byp U0, and we apply (18) to obtain, for example, that

H(Aiﬁk)vo' (gmai )af HHk 1.5(6U) CH AZNk acf (Cmﬁfn)vf ’kal(U)
< Cl\ﬁ(AN)HHk—1<U>IIV(Cmum)IIHsm) < C(109]2.5) lull ra+1(0),

where s = max {k — 1, - + } is chosen so that (18) can be applied (since s > ) Therefore,

1Goll 1500y < C(10Q grtos) [HfHHk—l(Q) + ||l gr-0500) + HUHHSH(Q)] (94)
Combining estimates (89-94), we find that
”(ZmﬁM)m |l vy < llwel| vy + HATV¢U||H1<(U)
C(|09Q| geros) [”f”Hk(Q) + gl zx ) + Al ar-050) + ||U||Hs+1(ﬂ)}~ (95)
Finally, following the same procedure of Step 4 in the proof of Theorem 3.5 (that is, using (86a) to
obtain an expression of ¢, 17/ Vi Um,33) and then arguing by induction on j, we find that
[ || 1.0y < C109Q o5 MfHHk(Q) + 9l ) + 1Al me-o0s00) + ”u”HSH(Q)]

The estimate above and estimate (85) provide us with

|wll g vy < C(10Q2] grsos) [H.fHHk(Q) + gl e ) + 1Bl o055 0) + HuHHsH(Q)]-
Since 0 < s +1 < k+ 1, by interpolation and Young’s inequality,
ullr:0) < Csllullr2(o) + dllull i) V6 >0,
so by choosing § > 0 small enough we conclude (8). O

By studying the vector-valued elliptic equation (31), with the help of Theorem 3.11 we can also
conclude (9).

Remark 4.2. Suppose that € is a bounded H**2-domain for k > g Since V*?u-N = V¢ (u-N)— VN u,
by interpolation we find that

[V??u - N[ o5 90) <[l N merosgo) +[[VN - vl me-osp0)

NN //\

|
lw - N geros o) + C(10Q] s [ul (e
[w - N gicro.s ) + C(10Q gictrs, 6)[|ul 2 (o) + 0| w e (o).

Hence, by choosing § > 0 small enough we conclude that there exists a generic constant C' = C'(|0Q| grx+1.5)
such that

[w]l ety < [||U||L2(Q) + [Jeurlul| gy + [|divel| gr o) + [Ju - N gerosaq) |-
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Similarly, we also have that
||UHH1‘+1(Q) <C ||u||L2(Q) -+ HCUI‘IU”Hk(Q) + ||d1VUHHk(Q) + ||u X N||Hk+0.5(aQ)

for a constant C' = C(|0Q|grr1.5). We thus recover the classical elliptic estimates for u € H*T1(Q)
whenever the unit normal N has H**9%(9Q) regularity.

5. Existence and Uniqueness Theory: The Proof of Theorem 1.1

We begin with the following problem: find a vector field v such that

curlv = f in (96a)
divo =¢ in Q, (96b)
v-N=h ondQ. (96¢)

From the divergence theorem and the fact that div curl = 0 , we must require that
divf=0 and / gdr = hdS. (97)
Q 29

Since g and h satisfy the solvability condition (97), there exists a solution ¢ to the Poisson equation
with Neumann boundary conditions:

Ap=g in Q, (98a)
¢
Let u = v — V¢. Then u satisfies
curlu = f in Q, (99a)
divu =0 in Q, (99b)
u-N=0 ondQ. (99c¢)

Hence, if (99) is solvable, then there exists a solution to (96).

5.1. Uniqueness of the Solution

We show that under the assumptions of Theorem 1.1, the solution to (96) is unique. We first assume that
Q2 is a bounded convex domain. (Note that a convex set must be simply connected.) If ¢ € €2(Q)NE" (Q),
then for all u € H'(Q),

/ curlu - curlp dr = / u - curlcurley dz + / (N x u) - curlp dS
Q Q 20

= /u (—Ap + Vdivey) dx +/ (N x u) - curlp dS
Q Elo)

:/u-(—Ago—kaivgo)dw—k/ [g—(p-u—ukstoj,k}dS
Q oo LON

= / (Vu: Ve — divudive) dz + /
Q

o [(u -N)dive — u"N;p? } ds.
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Using the notation introduced in the proof of Lemma 4.1, in any local chart (U, }) we have on 92,
(u*Nj@l 1) 0 = u'NY (@7 NF + g°7%7 0" 5)
=<ﬂ-Nx¢%nﬁn+¢ﬂwu-aﬁxa-ﬁxa—¢“r<ﬂ¢ﬂia¢
= (@ N)@ wN) + g°P (@ 0,5 ) (@ N)ao =997 by (- 0,5 ) (@ - V.5,
so that using (78b),
/Q curlu - curlp dx = /Q(Vu : Vi — divudive) dx

+ /8 (ueN) [divan(PNup) +2H(ep - N)}ds

K

+ Z / C’H’L [ggnﬁg?;fbma'y ((’LL o ﬂm) : ﬂmaﬁ )) ((SO © 19'm) : 197n76 )] o 19;116{5
m=1 " 0QNUp
—Z/ G 92 (w0 D) V) (9 - N) 0U) 0 | 007, (100)
OQN U,

Therefore, if v1,vo € HY() are two solutions to (96), then v = v; — vy satisfies

||CU.I‘1’U||%2 Q) + ||d1V'U||%2 (©2)
= ”V'UHL2(Q) + Z / gm g’ﬂsbma"/((v o 19771) : ﬁmvﬁ )) ((U © 197") Vmos )] ° 19;11dS.

Since Q is convex, g2 g bmo,y is non-negative definite for all m; thus the Poincaré inequality (26) shows
that for a constant ¢ > 0,

cllvltn ) < IVolizg) < llewlv]Zsq) + [divolli:q) =0

which implies that v = 0. In other words, the H!-solution to (96) must be unique if Q is bounded and
convex.

Now we assume the more general case that (2 is a simply connected open set, and that there are two
solutions v; and v, in Hl(Q). Then v = v, — vy satisfies curlv = 0 in €. By the simple connectedness
of Q, v must be of the form v = Vp for some scalar potential p. Then the equation

curlv =0 in , (101a)
dive =0 in Q, (101b)
v-N=0 on0f, (101c)

has only the trivial solution v = 0. In other words, if ) is the disjoint union of simply connected open
sets, then Eq. (2) with boundary condition (4) has a unique solution.

5.2. Existence of Solutions

We solve (99) by finding a solution w of the form w = curlw for a divergence-free vector field w. Indeed,
if such a w exists, then using (84), w must solve

—Aw=Ff inQ, (102a)
divw =0 in Q, (102b)
curlw-N =0 on 9Q. (102c¢)
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We note that if w is sufficiently smooth, then the divergence-free condition (102b) can instead be treated
as a boundary condition
diviw =0 on 9. (102b)
In fact, taking the divergence of (102a) we find that
Adivw =divf =0 in Q,

where we use the solvability condition (97) to establish the last equality; thus if w satisfies (102a, b’), w
automatically has zero divergence in Q. In other words, we may instead assume that w satisfies (102a,
b’, ¢). Our goal next is to find a suitable boundary condition to replace (102b’; ¢).

5.2.1. The Case that @ = B(0, R). Now we assume that Q = B(0, R) for some R > 0. Having obtained
(78b) and (78¢), in order to achieve (102b’; ¢) it is natural to consider the case Pniw = 0. In other
words, we consider the following elliptic problem (with a non-standard boundary condition)

—Aw=f in{, (103a)

Pniw =0 on0Q, (103b)

a—w-N—&—QH(uwN):O on 05} (103c)
ON ’

where we remark that H = R~ is a positive constant. We also note that (102b’) and (102c) are direct
consequence of (103b, ¢), and (83) shows that (103c) is in fact a Robin boundary condition for ws. The
goal is to find a solution to (103) in the Hilbert space

HY Q) = {w €H1(9)|PNL'w:Oon(’99} = {weHl(Q)‘w x N =0on dQ}.

In order to solve (103), we find the weak formulation first, and this amounts to computing / g—: .
Joa

pdS. If p € H(Q), then ¢ = (¢ - N)N; thus, if w satisfies (103c), then for all ¢ € H1(Q),

dw Jw
- —-godsz—/m [a—N~N}(<p~N)dS:2/89H(w-N)(cp~N)dS. (104)

Using (104), we can state the following

Definition 5.1. A vector-valued function w € H1(f2) is said to be a weak solution of (103) if
/Vw:Vgoder?/ H(w N)(¢-N)dS=(f,¢)12(0) Y € HQ), (105)
Q Gl9)

where Vw : Vo = w',; ¢°,;.

Since H > 0, the left-hand side of (105) obviously defines a bounded, coercive bilinear form on
HI(Q) x HL(Q). In fact, using Poincaré’s inequality (26) we find that for a generic constant ¢ > 0,

/V'w:deaH—Q/ H(w~N)('w-N)dS>c||w\|?ql(9) we HY(Q);
Q o0

hence by the Lax-Milgram theorem, there exists a unique w € H(Q) satisfying the weak formulation
(105) and the basic energy estimate

lwll g (@) < ClFllL2@)- (106)
Before proceeding, we establish the corresponding regularity theory for Eq. (103).

Lemma 5.2. Let Q = B(0,R) C R? for some R > 0. Then for all f € H"Y(Q) for £ > 1, the weak
solution w to (103) in fact belongs to H*1(Q), and satisfies

lwl geriy < Cllfllme-1(0)- (107)
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Proof. As the proof of Theorem 3.5 we prove this lemma by induction. The weak solution w indeed

belongs to H!(£2) and satisfies (106). Assume that w € H7(Q) for j < £. If y is a smooth cut-off function
so that spt(x) CC (2, the same computation as in the proof of Theorem 3.5 (with a’* = §7%) shows that

IV w200y < C|IF 1oy + [0l |, (108)

where the constant C' depends on the distance between the support of x and 0f.

Now we focus on the estimate of w near 9. Let {(m,Um,9m}E_; be defined as in the proof of
Theorem 1.3, and gog = ¥p,q - ¥m,g. Define

@1 = (—1)uN[AD 7 A (Gt - N)] 0 01,

where Em = (m 0V, Wy = w o ¥ and N = N o ¥. Since Pnigy; =0, ¢ can be used as a test function
in (105). Similar to the computations in Step 2 in the proof of Theorem 3.5, we find that

1 i ~ ~ i ~ ~
/vavﬁald‘r>§“va]Ae(<mwmN)HQLQ(Bx)*C”u”Hﬂ(Q) [H(?JAE(memN)||H1(B:rn)+”u’”Hﬂ(Q)

1 . ~ . ~ .
= 5 ||V8]A€(<mwm' N)Hiz(3$) - C5||w||§{J(Q) _6H83A6(<mwm' N)HHl(B;;)) (109)

Now we focus on the term [ H(w - N)(¢; - N)dS. Making a change of variable and integrating by
o9
parts, we find that

[ N Nas = [ 3N [VEHG N0 (A G N) dS
e} {ys=0}

- / IA[VEHD (G - N)] D (MG - N)) dS
{y3=0}

e A VR G NP (A N
k=1

y3=0}
Using the commutator notation [A, B]f = A(Bf) — B(Af),
| T N, -N)as
oQ
- / VEH[I A (G, -N)[PdS
{ys=0}

i /{ 3=0} [5<\/gH)gj_1Ae(zmﬁ}m ’ N)]EJ (Ae(gm'&’m : N)) ds

+/ 9 [[Ae, vEH]D' ™ (G - N)] 0’ A (Gt - N) dS
{y3=0}

i1 j—k N3 (A (C N
+ Z <‘7;1)/{ A, @k(\/gH)gjik(Cmﬁ’m'N)]aJ (Ae(cmfum.N)) a5
k=1

y3=0}
J—1 . . . _ ~ ~
+Z<];1)/{ O}Ae@’““<¢§H>5J‘l"“<<m@m~N)]@"(Ae<<mfvm~N>>dS~ (110)
k=1 Y3=
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The commutator estimate (29) and interpolation, as well as Young’s inequality, show that

/ 3[[Ac, VEH]T " G- N)] A, i - N dS
{ys=0}

= _CHa] Ac(Cmwm - N) HLQ({yS:O}) HajAe(mem -N) HL2({y3:0})

> —Csl|wll3: 0y = 31107 AcCnrm N[ 311 0

Using Holder’s inequality to estimate the other terms we obtain that
/ H(w - N)(¢; - N)dS > / VEH[D A (i, - W) PdS
20 {ys=0}

— Csllw|[310) — 8]|0” Ac(Cn o -

Moreover, integration by parts and Holder’s inequality show that

| £ 010 < Qw0 AN 2o,

=i+l 7 o~ 52

< C(S”,f”%ﬂ(Q) + (5”(9] Ae(gmwm .N)HL2(B(O,T‘M))'

Combining (109), (111) and (112),

vajAe(Zmﬁ’m . N) HiZ(Bfﬁ) * { 0}\/gH’5jA€(ZmﬂJm : N) |2ds
Ys=

J— ~ — ~ 2
<GCs [”]‘.H%Z(Q)Jr Hw”%{a(ﬂ)} +5||8]A5(mem 'N)HHl(B(O,Tm))'

Using Poincaré’s inequality, there exists a constant ¢ > 0 such that

C”ngE(ZmﬂJm' N)”%ﬂ(ﬂ) < HVEJAE(Zm'a’m 1’\VI)Hig(BJr + \/ngnge(Em&mﬁ>’2dsv

m

{ys=0}

so by choosing § > 0 small enough we find that

97 Aot M) 15 < C[1F e + ol o]

(12
N)HHI(B(O,rm))'

JMFM

(111)

(112)

(113)

Since the right-hand side of the estimate above is independent of €, we can pass € to the limit and obtain

that
ng(zm'&’m' ﬁ)HHl(B;rn < C[||f||L2(Q) + ||wHHJ’(Q)]

The estimate above provides the regularity of w in the normal direction.

(114)

To see the regularity of the tangential component of w, an alternative test function has to be employed.

Define

@3 = (=1)CGuN X [AD 7 Ao x N)] 09,

We note that since w x N = 0 on 99, ¢, = 0 on 912 so ¢, may be used as a test function. Since
u-(vxw) = (uxv) w, with J and A denoting det(V¥,,) and (Vd,,) ! respectively, using b™* to denote

JAA] we find that
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/vw : Vipydr = (_1)1‘/ b [CnN X A A (G x N)]' dy
Q B

m

= (_l)j / bm(gmﬂ)ims XN)iAegsze(Zm@m X N)iﬂ" dy
B
SV [ 5 (G A TN, G <)y
B+
[ A G x NPT A G <N
B

— | AL (s B XN (G $N L)) A (G X N, dy
B

—+ 8 A brs[ W, s X (Cm )a'r' ]ngE(gmﬁm X N)Zdy
B+

Similar to the procedure of deriving (46), by Leibniz’s rule,

DA (G X Ny 07 Ae(Conrm % NP, dy

B,
_ / b0 A (Gt X Ny D A (G x N, dy
B
[ T T A G % N,y 07 Ae(Contonm x N)1,, dy
B,

4 / B0, AT G x N2 5 Ae(Conom x NYF,, dy

+ Z( )/B+ A T TG Gt x N 4]0 Al (Gt x N dy.

Since {1,,}M_, is chosen so that A ~ Id, b"* is positive-definitive. As a consequence, by the commutator
estimate (29) and Young’s inequality,

/ Vw : Vi, dz > % 187 VAo X N |75
Q

— C|J77 T VA X N) | 2yt 07 VA G x N

(BH) (B)
> 310 O %Ny~ Clol
On the other hand,
[ 562t < Clfllsol0 Ao N
C5||f||L2 @ T 5”6 Ac(Cn®Wpm x N H2L2(B(077‘m)) ;

thus using ¢, as a test function in (105) and choosing 6 > 0 small enough, by the fact that H(w -
00
N) (5 - N)dS = 0 we conclude that

187 Ac(Conm N g ) < C [1F 220 + Il sy | (115)

Since the right-hand side is e-independent, we can pass € to the limit and obtain that

H8 (Wi x N) HHl(Brﬂ) < C[||f||L2(Q) + ||w||HJ(Q)] (116)

The estimate above provides the regularity of w in the tangential direction.
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Since every vector u can be expressed as u = N x (u x N) + (u - N)N, the combination of (114) and
(116) then shows that

1608 @ g ey < C[1F a2 + awllras e |

Finally, we follow Step 4 of Theorem 3.5 or Step 3 of Theorem 3.6 to conclude that

|GVl 1 5y < C 112200 + llzsce)- (117)
Estimate (107) is concluded from combining the H!-estimate (106), the interior estimate (108) and the
boundary estimate (117). O

5.2.2. The Case that Q is a General H¥*!-Domain. If  is a general H¥*!-domain, the mean curvature
H can be negative on some portion of 9€, leading to a problematic Robin boundary condition (103c),
with the wrong sign. To overcome this difficulty, we instead consider a similar problem defined on a ball
containing 2.

Let B(0, R) be an open ball so that QcC B(0, R), and let F denote a divergence-free vector field on
B(0, R) such that F = f in Q; that is, F is a divergence-free extension of f. For a vector field f € L?(f),
such an F' (in B(0, R)\Q2) can be obtained by first solving the elliptic equation

Ap=0 in B(0, R)\Q, (118a)
Qo
IN - f-N on0Q, (118b)
29
T =0 on dB(0, R), (118¢)

and setting F' = V¢ on B(0, R)\2. We note that (118) is solvable if the solvability condition (3) holds.
To see this, let £2; be one of the connected components of €2, and let O; be one of bounded connected
components of QE with boundary I';. Then T'; must be one of the connected components of 9€2, and (118)
implies that in particular,

A¢ =0 in 01‘7

% =f-N onlj.
Therefore, (3) has to be satisfied in order for the above equation to be solvable. We also note that
F € L?(B(0,R)) even if f € H*"1(Q); thus F must be less regular than f due to the lack of continuity
of the derivatives of F' across 0.

Next, consider the following elliptic system:

—~Aw=F in B(0,R), (119a)
Pniw =0 on dB(0,R), (119b)
ZT‘i’I ‘N+2Hw-N)=0 ondB(0,R). (119¢)

By Lemma 5.2, there exists a strong solution w € H?(B(0, R)) to (119) (so that (119) also holds in a
pointwise sense).

Now we show that w has zero divergence. Let d = divw € H'(B(0, R)). We claim that d is a weak
solution to

Ad=0 in B(0,R), (120a)
d=0 on0dB(0,R); (120b)
that is, d € H}(B(0, R)) and d satisfies

/ Vd-Veodr=0 Y¢¢c Hj(B(0,R)). (121)
B(0,R)
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The boundary condition d = 0 on 9 B(0, R) is obvious because of (78b) and (119b, c). To see (121), we
note that it suffices to show that Ad = 0 in the sense of distribution, since €>°(B(0, R)) is dense in
HY(B(0,R)). Let ¢ € €°(B(0, R)), and define ¥ = V. Then v € €>°(B(0, R)), and

—/ Aw-'z/:dx:/ F~1/de:/ F-Vgpdm+/f~V<pdx
B(0,R) B(0,R) B(0,R)\Q Q

_ 9¢ _
_/Bﬂ(f-N—aN> pdS = 0.

On the other hand, since w € H?(B(0, R)), we have d € H'(B(0, R)) and

—/ Aw~¢dw=/ Vw:V1pd$c:/ wi,jap,ijda:
B(0,R) B(0,R) B(0,R)

:—/ d,jap,jdx:—/ Vd-Vedx;
B(0,R) B(0,R)

thus we conclude (121). Therefore, d is the weak solution to (120) and so d must vanish in € which implies
that divew = 0 in Q. Finally, since w € H?(Q), applying (84), we find that v = curlw € H*(f) satisfies
curlv = f in Q.

So far, we have shown that there exists v € H'(B(0, R)) satisfying

curlv = F in B(0, R),
divo =0 in B(0, R),
v-N=0 ondB(0,R),
which in particular shows that curlv = f in €. It is not clear that if v possesses better regularity; however,

since v has been constructed using a non-smooth forcing function F. Let p be the H?-solution to the
elliptic equation

Ap=0 in Q,
dp
aiN——'U'N 0118527

and define u = v + Vp; then, u is a solution to (99). We note that w € H'(Q2) and satisfies

vl a1 ) + VRl a1 () < C10Q grtos) |w 52(0)
C(10Q grros)|| fllz2(0)- (122)

lull g ) <
<

In the following lemma, we show that while v and Vp both have low regularity, in fact, their sum, w,
possesses H'-regularity if f € H'='(Q) for £ > 2.

Lemma 5.3. Let Q C R? be a bounded H*t'-domain for k > g Then for all f € H1(Q) for 1 <1<k,
there exists a solution uw € H*(Q) to (99) satisfying

[ullze@) < C(10Q] grros) | Fll -1 () (123)

Proof. We again show that w € H*(Q2) by induction. We have shown the validity of the lemma for the
case that ¢ = 1. Now suppose that £ > 2 and u € H’(Q) for j < £ — 1. Since u = curlw € H*(Q) satisfies
(99b,c), using (100) we find that u satisfies

/curlu~cur1<pd;v:/Vu:VLpd:r—/ h-@dS Ve H\(Q),
Q Q a0
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where in local chart (U, 9) h is given by h o = —g*P¢7[(w oY) - J,5 |bay V,5. On the other hand,
/ f-curlpdr = / einflt,jde = —/ ety rdr +/ e f'N;p"dS
Q Q Q o0
= / curlf~<pdx+/ (f xN)-@dS VeecH(Q).
Q a0
Using (99a), we find that u satisfies

/Vu:chdx:/curlf-godac—i—/ (fxN+h) @dS VecH(Q);
Q Q a0

thus, u is a weak solution of the following elliptic system:

—Au=cuwlf in (124a)
u-N=0 on 0€Q, (124b)
ou
Pne (87N ~fxN- h) on 9. (124c)

Let us first assume that k > 3. Then k— 1.5 > 1= ; Moreover, 7 — 0.5 < k — 1.5; thus Proposition
2.7 shows that
1]l zi-05a0) < C(10Q gicros)[|bl| -1 ({ys=op) [ wll zri-0500) < C(1OQ meros)||wl i (0)- (125)
Therefore, by Corollary 3.7 (with a’* = §7% and w = N) we conclude that

||u||H.7+1(Q) < C(‘@Q‘ero,s) |:||Cur1f||Hj—1(Q) +|If x N+ h||H-7—0-5(aQ)
C(10Q o) [1 £l 110y + el

which implies w € H/T(Q). Estimate (123) then is concluded from estimate (122), interpolation and
Young’s inequality.

The case that k = 2 (and ¢ = 2) is a bit tricky. In this case (125) cannot be applied since b, u both
belong to H%%(92) while H®-5(9Q) is not a multiplicative algebra. To see why u indeed belongs to H?((2)
if € HY(Q), let u¢ to be the solution to

A€ — Au® =curl f + Adu in (126a)
u®-N =0 on 0Q), (126b)
Pns (% _fxN- he) —0 on 9O, (126c)

where u on the right-hand side of (126a) is the solution to (99), h. is a smooth version of h given by

Zc (952928 (w0 V) - D ) Acbinar) Vs | 0 03!

in which A, is the horizontal convolution defined in Sect. 2.5, and A > 1 is a big constant so that the
bilinear form

B(u®, ) = Mu‘, @) 2(q) + (Vu, Vo) 20 +/8 he - dS
)
is coercive on H}(Q2) x H(Q). Since Ab,, is smooth, we find that h. € H*?(9Q) satisfying
lhellos0) < C(10Qg25) [Ha Dol 31125 (B0, ) fys=0p) 1 Aedm L 125 (B0, ) (g =o0p) 4 | 110 o(ag)}

< Ccluf|lgra) < Ce [||f||L2(Q) + )‘HUHL%Q)} < Cellfllz2 ),
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where the dependence on € in the constant C. is due to the horizontal convolution A.. As a sequence,
u® € H%(Q), and this fact further shows that h. satisfies

[hellos o) < C10Q g25) [Hayﬁm||?{1-25(B(0,rm)ﬂ{y320})Hbm”HO'E’(B(OJ‘m)ﬁ{yS»:O})HuE”Hl'z‘r’(aQ)
1 3
< CUI 25 [ 175 ) < IR o)l | s g a1 s -
By Young’s inequality, we find that that u® satisfies

(9 [llewlf 2oy + 1F X N+ hell oo
(0L s25. )11 + 3l 1020y

Choosing 6 > 0 small enough, we conclude that «¢ has a uniform H? upper bound and possesses an H*
convergent subsequence ©% with limit v. This limit ¥ must be w since w is also a weak solution to (126)
and the strong solution to (126) is unique (by the Lax-Milgram theorem). Moreover, u satisfies (123) (for
{=2). O

w2 (o)

NN

Lemma 5.3 together with the elliptic estimate

IVl vy < Clllgllai ) + bl mi-os@a)]
for the solution ¢ to (98) then concludes the first part of Theorem 1.1.

5.3. Solutions with Prescribed Tangential Trace

Having considered the boundary condition v - N = h, we now establish the existence and uniqueness of
the following problem:

curlv = f in Q, (127a)
divov =g in Q, (127b)
vxN=h ondQ, (127¢)

in which (127c) prescribes the tangential trace of v. We impose the following conditions on the forcing
functions f and h:

divf =0 in Q, f satisfies (3), and h-N =0 on 0Q. (128a)

Moreover, using (78¢c) and the identity N x (v x N) = v — (v - N)N on 99, we find that f and h must
have the relation

£ N =div’®h on 09Q. (128b)

For (127) to have a solution, one additional solvability condition has to be imposed. Let u be a solution
to (99), and ¢ be the solution to

Ap=g inQ,
¢=0 on 9.
Then w = v — u — V¢ satisfies
curlw =0 in €, (129a)
divew = 0 in Q, (129b)
wxN=h—uxN ondQ. (129¢)
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Taking the cross product of N with (129¢), we find that
w—(w-N)N=Nxh—[u—(u-N)N| ond.

If C is a closed curve on 92 enclosing a surface ¥ C Q so that C = ¥ with a parametrization r and n
is the unit normal on ¥ compatible with the orientation of C, then the Stokes theorem implies that

O:/Ecurl'w-ndS:fcw-drzfc[w—(w-N)N]-dr:f (Nxh—u)-dr

C

:%C(Nxh)~dr—/2curlu-ndS=7§C(Nxh)-dr—/zf~nd5,

AS a consequence,
/f~ndS: (Nxh)-dr VS C0,0%CoN. (128¢)
3 ox

Conditions (128a), (128b) and (128¢) constitute the solvability conditions for equation (127). We remark
that (128c) follows from (128b) if € is simply connected; however, if € is not simply connected, then
(128c) is not necessarily true even if (128b) holds.

5.3.1. Uniqueness of Solutions. The kernel of the tangential trace problem (127) has been well studied
in [2,5,6,13-15,17] and references therein. We shall establish uniqueness for the case that Q is of class

H*! for k > g Without loss of generality, we can assume that €) is a connected bounded open set.
We let {I';}_, denote the connected components of 9§ in which I'g is the boundary of the unbounded

connected component of QF. To establish uniqueness of solutions to (127), we look for solutions to the
equation

curlv =0 in Q, (130a)
divo =0 in Q, (130b)
vxN=0 ondf. (130c)

If I > 1 (which means 9 has multiple connected components), let {r;}/_, solve

—Ar; =0 in €, (131a
r; =0 on Iy, (131b)
r; is constant on I'; V1< j <1, (131c)
or; or;
LdS = 6, LdS = —1, (131d)
/pj ON Y r, ON
whose existence is guaranteed by the Lax-Milgram theorem applied to the variational problem
/ Vr; - Vodr = ‘P|p
o i
Ve {q c H'Y(Q) |q\p0 = 0 and ¢ is constant on each I'; for all 1 < i < I}. (132)

In fact, let r; be the solution to the variation problem above. Define C’f = Ti|rz7 and let g; be the solution

to (7). Then ¢; € H**1(Q) by Corollary 3.8. Moreover, r; — Cfq, € H}(2) can be used as a test function
in (132); thus

/ Vri - V(ri — Clqp)dz = 0.
Q
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As a consequence,
/V CJq] V(ri — Clqp)d :—Cj/ Vg; -V — Clqp)dx

dq j 0q; dq
= — ‘7 eV d ‘7 Z J d = — e jd
C’l/(maerS+C’lC’Z aNq S CC’/FFaN S

+oict / 945 46
Fe
hence r; — Cij gj is a constant. This constant must be zero since r; and ¢; both vanish on I'y; thus we
establish the identity
=Clg V1<i<I. (133)
Therefore, r; € H*1(Q). Integrating by parts shows that

or;
/@Arldﬂc—i—Zw!F Fva;IdS:go“i

j=1
Ve {q S H |q|p0 =0 and ¢ is constant on each I'; for all 1 < i < I}.
Choosing ¢ € Hg (2) arbitrarily, we conclude that r; satisfies (131a). Since ¢ can be chosen as an arbitrary
constant on 'y, we must have that / Ors dS = 0;5; thus
ar; or; or; or;
~dS = ldS ’d5_1: “dS —1= [ Aridz —1=—1.
N / - Z / 0o ON /Q i

In other words, r; satisfies (131d); hence r; is a strong solution to (131). We note that Vr; is not identically
zero in €) since r; cannot be constant in €.
Let v € H'(Q) be a solution to (130). Define F' € H*(Q) by

I

F:U—Z(/Fi'u-NdS)Vri.

i=1
Then curl F' = 0 in . Using (131b, ¢), we find that
I

I
FxN:va—Z(/ v-NdS)(VrlxN Z(/ v-NdS) (V%; x N) =0 on Q.
T

i=1 i=1
Moreover, for 1 < k < 1,

I
or;

F-NdS = v-NdS — /v-NdS)/ LdS = 0.
T Ty ;( r; r, ON

Since divF =0 in €,

I
/F-NdS:/ F~NdS+Z/ F.NdS = F . NdS = divFdz = 0;
o Ty — JIy o0 9]

hence, F satisfies (3). Lemma 5.3 then guarantees the existence of a vector 1 € H?(Q) satisfying
curly = F  in Q,
divi) =0 in 9,
¥ -N=0 on 0.

As a consequence,

||F||2L2(Q) = /QF-curhbdx:/

curlF~1pdx+/ (Nx F)-1dS=0
Q

oQ
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which implies that F' = 0. In other words, if v is a solution to (130), then
I

v:Z(/Fi'u-NdS)Vri in Q; (134)

i=1
that is, {Vr;}._, spans the solution space of (130). Therefore, as long as the boundary of a connected

component of € has only one connected component, then only the trivial solution to (130) exists, and
uniqueness is established.

Remark 5.4. The identities (133) and (134) show that {Vg;}/_; span the solution space of (130); see, for
example, [2,5,6,14,15,17].

5.3.2. Existence of Solutions. Let the pair (w,p) denote the solutions to the following elliptic problems:
Aw =0 in Q,
w=Nxh ond,
and

Ap =g —divw in Q,

p=0 on 0.
Then (w, p) satisfies
[wll ey + Pl aev @) < CUOQ meros) [lgll e (@) + Rl ae-os @) (135)
We note that if w is a solution to the equation
curlu = f —curlw in Q, (136a)
diva = 0 in Q, (136b)
uxN=0 on 01, (136¢)

then v = u + w + Vp is a solution to (127).

We first establish existence of an H!() solution to (136), and then employ our regularity theory
on Sobolev class domains to show that solutions to (127) have the desired H*(Q)-regularity stated in
Theorem 1.1. We use the following lemma, which is Theorem 3.17 in [2], to establish the existence of a
u € H'(Q) solving (136).

Lemma 5.5. Suppose that Q C R® is a Lipschitz domain, and {Ej}jzl are cuts of §; that is, ¥; C Q for
all j € {1,...,J} are connected smooth 2-manifolds with unit normal n such that Q° = Q\ U'j]:1 X, is

simply connected, where J is the minimal number of cuts required. Then a function F € H'(Q) satisfies
divF =0inQ, F-N =0 on 0%, and

/ F-ndS=0 foreach cut £;, 1 < j < J;
Zj

if and only if there exists a unique a vector potential uw € H(Q) satisfying
curlu =F in §,
divu =0 n Q,
uxXxN=0 ond,

/ u-NdS =0 for each connected component I' of 02.
r

Now we prove the existence of a solution w € H*(2) to (136). First, noting that our domain ( is of
class H**t! with k > g, by the Sobolev embedding theorem, € is a Lipschitz domain. Let F = f — curlw.
It is clear that divF = 0 in 2. By the fact that

h-N=0, w=Nxh and f-N=div’’h on 99,
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(78c) implies that
F-N=f N—div"®(wxN) = f-N —div"®h =0 on 9.

Finally, let t denote the unit tangent vector on 0% such that n = ¢ x n is the outward pointing unit
normal to X;. Since f satisfies (128¢c), using (78c) again we conclude that

/FndS /f ndS — /leg(wxndS /f ndS — /Eaz(wxn) nds

/ f-ndS — w - (nxﬁ)ds—/ f-ndS — w - tds

P )
/ f-ndS — (N x h) -
0%,

Therefore, F' satisfies all the conditions of Lemma 5.5, and so we have established the existence of a
solution w € H*(£2) to (136). We next establish the regularity of this solution.

5.3.3. Regularity of Solutions. We follow the proof of Lemma 5.3 to establish the following

Lemma 5.6. Let Q C R® be a bounded H*'-domain for k > g Then for all (f,w) € H*1(Q) x H(Q)
for 1 < £ <k, there exists a solution uw € H*(Q) to (136) satisfying

lull ey < CU1OQ mros) [ Fllmre-10) + lwllme(y]- (137)
Proof. Tt suffices to prove the case ¢ > 2. Using (100) we find that if ¢ € H(9),

/ curl(f — cwrlw) - pda = / curlu - curley dx
Q Q

:/Vu:Vgo+/ (u-N) {diVBQCP+2H((p'N) as
Q 20

:/Vu:Vgoder/ 2H(u - N)(¢p - N) dS.
Q aQ

In other words, u is a weak solution of the following elliptic system:

—Au=curl f+ Aw in Q, (138a)

uxN=0 on 09, (138b)

Ju N+2H(u-N) =0 on 0€Q. (138¢)
ON

Similar to the proof of Lemma 5.3, by induction we conclude that u € H*(9) satisfies
[wll ey < Clleurl £+ Aw| ge-2(q)

which concludes the lemma. O

The regularity of u together with the inequality (135) concludes the proof of regularity of the tangential
trace problem, hence we have finished the proof of Theorem 1.1.

6. Fractional-Order Regularity: The Proof of Theorem 1.6

Now we proceed to the proof of Theorem 1.6. We only prove (12) since the proof of (13) is similar.
By assumption 0 is in a small tubular neighborhood of the normal bundle over 0D; hence, there is a
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height function h(z,t) such that each point on 9 is given by x + h(z)n(z), x € D, where n is the
outward-pointing unit normal to dD. Let ¢ : D — R? solve

Ay =0 in D,
Yv=e+hn ondD,

where e is the identity map. Then ¢ : 9D — 0, and standard elliptic estimates show that for a constant
C =C(|0D|gxro5),
VY — IdHHk(’D) < C||h||Hk+o.5(aD) <Cex1 (139)

which further shows that ¢ : D — Q is an H*"!-diffeomorphism since ||h|| gpero.59p) < € < 1. We note
that according to the proofs of Corollary 2.10 and Theorem 2.13, there exist generic constants ¢; and C
independent of |0Q|gr+0s such that if j < k+ 1,

a(l=e)fllai@ <Ifotllaimy < Cr(l+ ol flas Ve H (Q). (140)

As a consequence, letting A = (V¢)~! we obtain that
[(curlu) o || gr(py = llesn AT (W 0 ), | ax(py = lleijn(A] = 67) (6" 0 ), +eiji(u” 0 ), |l (p)
2 [[eurl(w 0 ¥)[| gi(py — CllA = 1d|| gy 1w © Y[ i1 (),
where the constant C' = C(|0D|gw+o.5). Therefore,
[|curl(w o 7J’)HHk(D) < [[(curlu) o 1/’||Hk(1>) + Cel|luo 1/J||Hk+1(D)
< C1||Cur1u||Hk(Q) + (Cl + C)EHUHHkJrl(Q)- (1418.)

Similarly,

[div(w o ¥)| me(py < Crlldival o) + (C1 + C)ellu e (). (141Db)

T
Let n be the outward-pointing unit normal to @D. Then by the identity N o ¢ = |iT7n|, we find that
n

[(N'ov) = n| gr-o05(5p) < C2(|0D|picros e,
Therefore, in addition to estimate (141a,b), we also have
Nop (w0 9) - nf| pi-vs9p) < [Van(wod) - (N o) gr-osop) + Caellullmtiaq)
< Ci(1+¢)[[V*?u - N gr-os(90) + Caellul gt (q)
< C1||V*u - N o590y + (C1 + C)el|ul| gres (g
Finally, by Theorem 1.3, there exists a generic constant C3 = C3(|0D|gx+o.5) such that
[0l () < Cs | l|v]| L2 () + [lcurlv || g p) + | dive|| o) + [|Vopv - n”Hk*Oﬁ(aD)] Vo e HYY(D).
Letting v = w o 1), using (140) and (141) we find that
e1(1 = ] pess ) < CoCr [l 2oy + lewrtul ey + ldives] ey + V7w - Nl| o o |
+C5(CL+ Ca + O)ellull gy Vu € HTHQ).
Since € < 1, the last term on the right-hand side can be absorbed by the left-hand side, yielding a linear

inequality. The conclusion of Theorem 1.6 then follows by linear interpolation.
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Appendix A. Proofs of the Inequalities in Sect. 2.3

Proof of Proposition 2.1. Let p € Q. Since € is a ¢*-surface, there exists a tangent space 7,01 to the
boundary 02 at p, and in a neighborhood of p 92 can be view as a graph of a function ¢ defined on that
neighborhood. In other words, there exist an ((n — 1)-dimensional) ball D(p, R) C T,,0Q and a €*-map
¢ : D(p, R) — 0% such that

{(,0(y)) eR"|y' € D(p,R)} C 0.

Choose an othornormal basis {e1,...,e,_1} on the tangent space 7,09 such that every 3y’ € 7,09 can
be written as ¥’ = (y1,...,yn—1) in the sense that y' = y1e1 4+ yn_16n—1, and let N denote the inward-
pointing unit normal to the tangent plane T,,0€. Then {es,...,eyn—1, N} as the orthonormal basis in R".

We define 9 : B(0, R) — R", where B(0, R) is a n-dimensional ball, by
O yn) =y + (ya + 6(y))N  Vy' € D(p.R), (¥, yn) € B(0, R),
or equivalently,

Dy yn) = (Y1, Yno1, U0 + 0(Y)).

Since 7,0 is a tangent space, ¥,, (0) - N = 0 for all 1 < o < n — 1; thus ¢,,(0) = 0 for all
1 < @ < n— 1. By the continuity of V¢, there exists > 0 such that

|60 (y')| <& whenever [|y|<randl<a<n-1.

It is clear that 9 is injective on B(0,r), and the inverse function theorem implies that ¥ : B(0,7) — U :=
9(B(0,7)) is a €’*-diffeomorphism between open sets B(0, ) and U. Moreover, 9 : B(0,7)N{y, = 0} — 9Q
and by the choice of N, 9 : B(0,7) N {y, > 0} — €. Finally, since

1 0 .- 0
0 . . :
0 - 0 1 0
G (y) - o dma(y) 1

we immediately conclude that det(VY) = 1 and [|[VY — Id|| 1~ (p(0,r)) < €. Therefore, we establish that
for each p € 99, there exist ¥ : B(0,r) — U satisfying

(1) 9 : B(0,r) — U is a €*-diffeomorphism;

(2) 9:B(0,7)N{y, =0} = UNOIY

(3) ¥:B(0,r)N{yn >0} = UNQ;

(4) det(V9) = 1;

(5) [IVY —Id|| L (p(0,m) < &
The proposition is concluded by the fact that 92 is compact. O

Proof of Proposition 2.7. We estimate V7 fV*~7g for j = 1,...,¢ as follows:
(1) If1<5< g, by the Sobolev inequalities

ol 72z ) < Collwll yg-iv gy (0 <o <1),
||w||Lﬁ22;——aj(Q)< C”wHH]‘*"(Q)a
we find that
i _ o
IV IV glle2 ) S IVIFIL 725 ) IV 91 s S Collfll g3+ (o 19l e ()
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(2) If j = ¢, by the Sobolev inequality
ol = (@< Gl 340 g
we find that
ijfvé_ngL?(sz) < Co||f||H@(Q)||9||H%+H(Q)-
(3) If g < j < £ (this happens only when g < ¢ < k), we consider the following two sub-cases:
(a) The case £ < n: Similar to the previous case, by the Sobolev inequalities
[0l a1y < Clwllresiey and [l o) < Cllwly-cos
we obtain that
J l—j J =y n
IV 19 gllaiey < IV, s o 19l
< Ol flrecen gl -
(b) The casen < {<k:If j >k — g, by the Sobolev inequalities
[0l iy oy < Cllwlinec sy and il o o) < Cllwlly g vos
we obtain that
IV 19" gllaien < IV, gy o IV 782 g < Cll vyl -vov

Now suppose that g <j<k-— g Note that if 0 < 0 < %,

||w||H%+a(Q)< Collwllwie @) < Collwl mx @),

[wll 5 -1cve gy < Cllwl ge-i () < Cllwl|ge-o(o)-

Therefore, by the Gagliardo-Nirenberg—Sobolev interpolation inequality we obtain that

IV Y gllrz@) < | fllwae @9l me-s @)

1—a; i i 1—ay
< Collf Nt o M N9 e g I

for some «; € (0,1); thus Young’s inequality implies that
IV 19" glz20) < Co (11500 gy 9ll 1= ) + 1F i) 9] g5 -1 -
Summing over all the possible ¢, we conclude that for 0 < o < ;

¢ el OUHfHH%‘*"’(Q)HgHH(*“(Q) if £ < g,
Z V7V gllp2(a) < .
j=1 C, [||f||H%+a(Q)||9||Hefo(9) + ||f||Hk(Q)HgHH%+c(Q)] otherwise.

Estimate (15) is then concluded by the fact that for all o € (0, %),

%—I—a§k and g—kaéf—a if(inaddition)€>g.

Finally, we conclude estimate (16) by an additional estimate

||fveg||L2(0) < ||fHL°°(O)||9||HZ(O) < C'||fHHk(o)||9||Hf(o)~
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Proof of Corollary 2.10. By the definition of determinant, centered (16) shows that
[Tl 0) < CIVY I o)

By the Sobolev embedding H¥(0) C €%(0), we find that .J is uniformly continuous on O. Since J # 0 in
O (since ¢ is a diffeomorphism), |[1/.J|z 0y < 00 and [.J| = 1/|[1/J| g0y > 0. Let 6 = 1/[[1/J| r=(0)-
The cofactor formula for the inverse of matrices then shows that

1
14120 < |5, 0 174N 200 < IVl 1992 o) (142)

Therefore, by interpolation and Young’s inequality, using (15) with o = é we find that

k
IV A L2 (0) < f||Jv“A||Lz<o> [IV*(74) 220 +Z()||Wv“ T Al L2 (0)

Jj=1

[||V¢||Hk(o) + HJHHI‘(O) HAHH]‘*% (O):|

1-4-
< SIIvulatoy + 1o | AN AN o)

< 05,51 (VY[ re0y) + 01l All (o)
Combining the estimate above with (142), by choosing d; > 0 sufficiently small we conclude (21b). O

Proof of Corollary 2.11. We prove (22) by induction. Let J = det(V1) and A = (Vi)~!. With the help
of (21), the case that ¢ = 0 is concluded by

oq\»—*

a0 = [ 1o ORI @] dy < CUTD w0 o V1o (143)
and ) )
I o ¥lEso) = | P ooy o < 51 Mo (144)

where 0 = 1/[|1/J]|p~(0) > 0 is a lower bound for [|.J| 1 (0y. Suppose that (22) holds for £ = j (< k).
Then for £ = j + 1, by (16) and (21) we obtain that

IV flle ) < IV i) < CUVY o) (Y F) o ¥llio)
< CUIVY oD | ATV (f 0 )l 1 (o)
(< holds if j < k) < C([[VY ge o) 1Al e 0y 1P (f © )| i 0y
<

CUIVY[ ax)ILf o Yl (o)
and
||Vj+1(f o w)”LQ(O = ||vj[ Vf) © ¢D¢] ||L2(O) < ||(Vf) 0 ’l/)D’l/)HH](O)
(< holds if j < k) < C[VY | gxo) (V) 0 i (0)
< OV ey IV flls @) < CINVE | aecoy | fll s+
which, together with the (143) and (144), concludes the case that £ = j + 1. O
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