
J. Math. Fluid Mech. 19 (2017), 375–422
c© 2016 Springer International Publishing
1422-6928/17/030375-48
DOI 10.1007/s00021-016-0289-y

Journal of Mathematical
Fluid Mechanics

Solvability and Regularity for an Elliptic System Prescribing the Curl, Divergence, and
Partial Trace of a Vector Field on Sobolev-Class Domains

C. H. Arthur Cheng and Steve Shkoller
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1. Introduction

1.1. Statements of the Main Results

Given a sufficiently smooth Sobolev-class bounded domain Ω ⊆ R
n and forcing functions f and g in Ω

together with boundary data given by either h or h on ∂Ω, we establish the basic elliptic estimates for
the vector elliptic system of Hodge-type:

curl v = f in Ω,

div v = g in Ω,

with boundary conditions given by either

v · N = h or v × N = h on ∂Ω,

where N is the outward-pointing unit normal vector on ∂Ω. When the domain Ω is of class C k+1, elliptic
estimates for solutions v in Hk+1(Ω) are now classical. We extend this well-known theory to the case of
domains Ω of Sobolev class Hk+1.

We first establish the following

Theorem 1.1. Let Ω ⊆ R
3 be a bounded Hk+1-domain with integer k >

3

2
. Given f , g ∈ H�−1(Ω) with

div f = 0, consider the equations

curlv = f in Ω, (2a)

div v = g in Ω. (2b)

(1) If f satisfies ∫
Γ

f · N dS = 0 for each connected component Γ of ∂Ω, (3)

and h ∈ H�−0.5(∂Ω) satisfies
∫

∂ Ω
h dS =

∫
Ω
g dx, then, for 1 � � � k, there exists a solution

v ∈ H�(Ω) to (2) with boundary condition

v · N = h on ∂Ω, (4)

such that

‖v‖H�(Ω) � C(|∂Ω|Hk+0.5)
[
‖f‖H�−1(Ω) + ‖g‖H�−1(Ω) + ‖h‖H�−0.5(∂ Ω)

]
.

The solution is unique if Ω is the disjoint union of simply connected open sets.
(2) If f satisfies (3) and f · N = div∂Ωh on ∂Ω (where div∂Ω denotes the surface divergence operator

defined in Definition 2.4), h ∈ H�−0.5(∂Ω) satisfies h · N = 0 as well as
∫
Σ
f · n dS =

∮
∂ Σ

(N × h) · dr if Σ ⊆ Ω has piecewise smooth boundary ∂Σ ⊆ ∂Ω

with unit normal n, compatible with the orientation of ∂Σ, (5)

then, for 1 � � � k, there exists a solution v ∈ H�(Ω) to (2) with boundary condition

v × N = h on ∂Ω, (6)

such that

‖v‖H�(Ω) � C(|∂Ω|Hk+0.5)
[
‖f‖H�−1(Ω) + ‖g‖H�−1(Ω) + ‖h‖H�−0.5(∂ Ω)

]
.

The solution is unique if each connected component of Ω has a connected boundary.
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Remark 1.2. To explain condition (3), let Ω be a connected bounded open set, and let {Γi}I
i=0 denote

the connected components of ∂Ω in which Γ0 is the boundary of the unbounded connected component
of Ω�. For each i = 0, . . . , I, let qi be the solution to

Δqi = 0 in Ω, (7a)

qi = δij on Γj . (7b)

Then if u satisfies curlu = f in Ω for some divergence-free vector f , applying the divergence theorem
and then integrating by parts, shows that for i = 0, . . . , I,∫

Γi

f · NdS =
∫

Γi

(f · N)qidS =
∫

∂ Ω

(f · N)qidS =
∫

Ω

qidivfdx +
∫

Ω

f · ∇qidx

=
∫

Ω

curlu · ∇qidx =
∫

∂ Ω

(N × u) · ∇qidS =
∫

∂ Ω

(N × u) · ∇∂ΩqidS = 0,

where ∇∂Ω is the tangential derivative defined below in Definition 2.4. Therefore, for curlu = f to be
solvable, it is necessary that ∫

Γi

f · N dS = 0 ∀ i ∈ {0, 1, . . . , I}.

In other words, (3) is a necessary condition for the solvability of (2a). We will show that it is also one of
the sufficient conditions to solve (2) with the boundary conditions (4) or (6).

The problem (2) with either boundary conditions (4) or (6) has been well studied. The characterization
of the kernel of both problems, the solvability conditions, and the existence theory has been developed
in a number of papers; see, for example, [1,2,5,6,13–15,17], and the references therein. The inequalities
given in Theorem 1.1 are new for Sobolev-class domains.

Motivated by the analysis of the free-boundary problems which arise in inviscid fluid dynamics, we
next state a theorem which provides two fundamental elliptic estimates set on Sobolev-class domains:

Theorem 1.3. Let Ω ⊆ R
n, n = 2 or 3, be a bounded Hk+1-domain with integer k >

n

2
. Then there exists

a generic constant C depending on |∂Ω|Hk+0.5 such that for all u ∈ Hk+1(Ω),

‖u‖Hk+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hk(Ω) + ‖divu‖Hk(Ω) + ‖∇∂Ωu · N‖Hk−0.5(∂ Ω)

]
, (8)

‖u‖Hk+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hk(Ω) + ‖divu‖Hk(Ω) + ‖∇∂Ωu × N‖Hk−0.5(∂ Ω)

]
, (9)

where ∇∂Ωu is the tangential derivative on ∂Ω (defined in Definition 2.4).

Remark 1.4. The inequalities (8) and (9) play a fundamental role in the regularity theory of the Euler
equations with moving interfaces; see, for example, [10] for the incompressible setting and [11] for the com-
pressible problem with vacuum. The use of the norm ‖∇∂Ωu ·N‖Hk−0.5(∂ Ω) rather than ‖u ·N‖Hk+0.5(∂ Ω)

is crucial, as the regularity of the normal vector to field to ∂Ω is often worse than the regularity of the
velocity vector u.

On the other hand, if Ω is at least of class Hk+2 then the inequalities (8) and (9) can be replaced,
respectively, by

‖u‖Hk+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hk(Ω) + ‖divu‖Hk(Ω) + ‖u · N‖Hk+0.5(∂ Ω)

]
(10)

‖u‖Hk+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hk(Ω) + ‖divu‖Hk(Ω) + ‖u × N‖Hk+0.5(∂ Ω)

]
(11)

Remark 1.5. Recently, Amrouche and Seloula [5] established the inequalities (10) and (11) in the Lp

framework and for domains Ω of class C k+1; see Corollary 3.5 in [5]. Of course, in the case of a C k+1-
domain Ω, the inequalities (8) and (9) follow immediately from (10) and (11), respectively.

When Ω is very close to a C∞-domain, we can obtain these inequalities for fractional-order Sobolev
spaces, as in the following
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Theorem 1.6. Let Ω ⊆ R
n, n = 2 or 3, be a bounded Hs+1-domain with s ∈ R such that s >

n

2
, and let

D denote a C∞-domain such that the distance between ∂D and ∂Ω in the Hs+0.5-norm is less than ε
for 0 < ε � 1. Then there exists a generic constant C depending only on |∂D|Hs+0.5 , such that for all
u ∈ Hs+1(Ω),

‖u‖Hs+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hs(Ω) + ‖divu‖Hs(Ω) + ‖∇∂Ωu · N‖Hs−0.5(∂ Ω)

]
, (12)

‖u‖Hs+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hs(Ω) + ‖divu‖Hs(Ω) + ‖∇∂Ωu × N‖Hs−0.5(∂ Ω)

]
, (13)

where ∇∂Ωu is the tangential derivative on ∂Ω (defined in Definition 2.4).

The inequalities (12) and (13) set in fractional-order Sobolev spaces are fundamental to the analysis of
Euler-type free-boundary problems. We remark that ∂Ω is assumed to be in a small tubular neighborhood
of the normal bundle over ∂D; hence, there is height function h(x, t) such that each point on ∂Ω is given
by x + h(x)n(x), x ∈ ∂D, where n is the outward-pointing unit normal to ∂D. The assumption that
the distance between ∂D and ∂Ω in the Hs+0.5-norm is less than ε � 1 means that we assume that
‖h‖Hs+0.5(∂D) < ε � 1

1.2. Outline of the Paper

In Sect. 2, we introduce our notation as well as a number of elementary technical lemmas, whose proofs we
include (for completeness) in Appendix A. Section 3 is devoted to the analysis of the vector-valued elliptic
system (31a) with mixed-type boundary conditions (31b) and (31c), which is fundamental to the proof
of our two main theorems; in particular, we prove Theorem 3.6 which establishes the elliptic estimate for
(31) when the coefficients are of Sobolev-class. As a corollary to this theorem, we state in Corollary 3.8
the basic elliptic estimates for both the classical Dirichlet and Neumann problems, again with Sobolev
class regularity. Finally, for coefficients which are close to the identity, we give an improved estimate in
Theorem 3.9 for solutions to (31), which is linear in the highest derivatives of the coefficient matrix. This
latter theorem is essential for estimates in fractional-order Sobolev spaces via linear interpolation.

In Sect. 4, we prove Theorem 1.3, using the elliptic regularity theory developed for the elliptic system
(31). Then, in Sect. 5, we prove Theorem 1.1. Our proof relies on some basic geometric identities involving
the mean curvature of ∂Ω, together with the elliptic regularity theory established in Sect. 3. Finally, in
Sect. 6, we prove Theorem 1.6.

1.3. A Brief History of Prior Results

In addition to the recent work of Amrouche and Seloula [5] noted above, there have been many other
methods and results to study such elliptic systems on smooth domains. The elliptic system (2) can be
viewed as a particular example of the systems studied by Agmon et al. [1], wherein both Schauder-type
estimates and Lp-estimates can be found.

In [19], von Wahl proved that if the normal or the tangential trace of a vector field vanishes, and for
bounded or unbounded Ω, the inequality ‖∇u‖Lp(Ω) � C

(‖divu‖Lp(Ω) + ‖curlu‖Lp(Ω)) holds when the
first Betti number or the second Betti number, respectively, is equal to zero.

Vector potentials and the characterization of the kernel of problem (2) with boundary conditions (4)
or (6) have been obtained by Foias and Temam [13], Georgescu [14], Bendali et al. [6], Amrouche et al.
[2], and Amrouche et al. [3].

Amrouche and Girault [4] derived the Lp-regularity theory of the steady Stokes equation by estab-
lishing the equivalency between the Sobolev space Wm,r and the direct sum of Wm,r by divergence-free
vector fields and the gradients of Wm+1,r functions.

Schwarz [18], studied the Hodge decomposition on manifolds with boundaries and showed that a
differential k-form can be written as the sum of an exact form, a coexact form, and a harmonic form.
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Bolik and von Wahl [7] derived C α-estimates of the gradient of a vector field whose curl, divergence,
and normal or tangential traces are prescribed. Mitrea et al. [16] studied the vector potential theory on
non-smooth domains in R

3 with applications to electromagnetic scattering.
Buffa and Ciarlet [8] and [9] established the Hodge decomposition of tangential vector fields defined

on polyhedron domains, and studied the tangential trace and tangential components of vectors belonging
to the space H(curl,Ω) :=

{
u ∈ L2(Ω;R3)

∣∣ curlu ∈ L2(Ω;R3)
}
.

In [15], Kozono and Yanagisawa proved the decomposition of a divergence-free vector-field as the sum
of the curl of a vector-field and a vector-field which is solenoidal, irrotational and has zero normal trace.

2. Notation and Preliminary Results

The Einstein summation convention is used throughout the paper. In particular, repeated Latin indices
are summed from 1 to n, and repeated Greek indices are summed from 1 to n − 1. For example, figi =∑n

i=1 figi and fαgα =
∑n−1

i=1 fαgα. The gradient operator is denoted by ∇ = (∂ 1, . . . , ∂ n). Below, we
shall also define various tangential derivative operators. When it is not explicitly stated, k, � � 0 denote
integers, and s denotes a real number.

2.1. Definition of a C k-Domain

We recall that a domain Ω ⊆ R
n is said to be of class C k if ∂Ω is an (n − 1)-dimensional C k-manifold;

that is, there exists an open cover {Um}K
m=1 ⊆ R

n of ∂Ω and a collection of C k-maps {φm}K
m=1 such that

for each 1 � m � K,

φm : Um ∩ ∂Ω → Vm ⊆ R
n−1

is one-to-one, onto, and has a C k-inverse map for some open subset Vm of Rn−1. A domain Ω is called a
C∞-domain if it is a C k-domain for all k ∈ N. Equivalently, we shall use the following

Proposition 2.1. Let Ω ⊆ R
n be a C k-domain for some k ∈ N, and ε > 0 be given. Then there exists

a collection of open sets {Um}K
m=0 with each Um ⊆ R

n, a collection of C k-maps {ϑm}K
m=1 and positive

numbers {rm}K
m=1 such that

Ω ⊆
K⋃

m=0

Um and ∂Ω ⊆
K⋃

m=1

Um,

and for each 1 � m � K,

1. ϑm : B(0, rm) → Um is a C k-diffeomorphism;
2. ϑm : B(0, rm) ∩ {yn = 0} → Um ∩ ∂Ω;
3. ϑm : B+

m ≡ B(0, rm) ∩ {yn > 0} → Um ∩ Ω;
4. det(∇ϑm) = 1;
5. ‖∇ϑm − Id‖L∞(B(0,rm)) � ε.

The proof of this proposition is given in Appendix A.

2.2. Definition of an Hs-Domain

In order to make our presentation self-contained, in this section, we collect a number of useful technical
lemmas. These lemmas are well-known when the domains are smooth, but we shall need these basic
results for Sobolev class domains. The proofs will be collected in Appendix A. We use the term domain
to mean an open connected subset of Rn.
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Definition 2.2. Let Ω ⊆ R
n be a bounded domain, and s >

n

2
+ 1 be a real number. Ω is said to be an

Hs-domain, or of class Hs, if there exists a bounded C∞-domain O and a map ψ such that ψ : O → Ω
is an Hs-diffeomorphism; that is,

1. ψ : O → Ω is continuous;
2. ψ : O → Ω is one-to-one and onto, with differentiable inverse map ψ−1 : Ω → O;
3. ψ : ∂O → ∂Ω is one-to-one and onto, with differentiable inverse map ψ−1 : ∂Ω → ∂O;
4. ψ ∈ Hs(O;Ω) and ψ−1 ∈ Hs(Ω;O).

By the trace theorem, ψ|∂ O ∈ Hs−0.5(∂O; ∂Ω) and we shall often denote the value of this norm by
|∂Ω|Hs−0.5 .

Definition 2.3. For s >
n

2
+ 1, given a local chart (U , ϑ) as defined in Proposition 2.1, the induced metric

in the local chart (U , ϑ) is the (0, 2)-tensor gαβ given by

gαβ = ∂ ϑ

∂ yα
· ∂ ϑ

∂ yβ
,

and the induced second-fundamental form in a local chart (U , ϑ) is the (0, 2)-tensor bαβ given by

bαβ = − ∂ 2ϑ

∂ yα∂ yβ
· (N ◦ ϑ),

where N is the outward-pointing unit normal to ∂Ω.

Definition 2.4 (Tangential gradient and surface divergence operators). For s >
n

2
+ 1, let Ω ⊆ R

n be a

bounded Hs-domain. We let ∇∂Ω denote the tangential gradient of a function on ∂Ω. If ϕ : ∂Ω → R is
differentiable, then in local chart (U , ϑ), ∇∂Ωϕ is given by

(∇∂Ωϕ) ◦ ϑ = gαβ ∂ (ϕ ◦ ϑ)

∂ yα

∂ ϑ

∂ yβ
,

where [gαβ ] is the inverse matrix of the induced metric [gαβ ], and
{

∂ ϑ

∂ yβ

}2

β=1
are tangent vectors to ∂Ω.

We define the surface divergence operator div∂Ω to be the formal adjoint of −∇∂Ω; if u is a tangent
vector field on ∂Ω so that u · N = 0 on ∂Ω, then

−
∫

∂ Ω

u · ∇∂ΩϕdS =
∫

∂ Ω

ϕ div∂Ωu dS ∀ ϕ ∈ H1(∂Ω).

In a local chart (U , ϑ),

(div∂Ωu) ◦ ϑ = 1√
g

∂

∂ yα

[√
ggαβ

(
(u ◦ ϑ) · ∂ ϑ

∂ yβ

)]
,

where g = det(g) is the determinant of the induced metric [gαβ ].

Definition 2.5 (Tangential projection of a vector field onto ∂Ω). With N denoting the outward unit normal
vector field to ∂Ω and v : ∂Ω → R

n, we define PN⊥ : Rn → R
n to be the tangential projection operator

given by
PN⊥(v) = v − (v · N)N =

(
Id−N ⊗ N

)
v. (14)

We will also write v for PN⊥(v).

Definition 2.6 (Various tangential derivatives). We let u : ∂Ω → R
n and w : ∂Ω → R

n denote vector-
valued functions, and let w be given by (14).

1. ∇∂Ω
w u denotes the directional derivatives of u in the direction w. In a local chart (U , ϑ),

[∇∂Ω
w u

] ◦ ϑ = gαβ ∂ (u ◦ ϑ)

∂ yα

∂ ϑj

∂ yβ
(wj ◦ ϑ) = gαβ

[
∂ ϑ

∂ yβ
· (w ◦ ϑ)

]
∂ (u ◦ ϑ)

∂ yα
.
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2. ∇∂Ωu = (∇∂Ωu1, . . . ,∇∂Ωun), and ∇∂Ωu · w =
n∑

i=1

wi (∇∂Ωui) , so that ∇∂Ωu · w is a vector in the

tangent space of ∂Ω. In a local chart (U , ϑ),

(∇∂Ωu · w) ◦ ϑ = gαβ ∂ (uj ◦ ϑ)

∂ yα

∂ ϑi

∂ yβ
(wj ◦ ϑ) = gαβ

[
∂ (u ◦ ϑ)

∂ yα
· (w ◦ ϑ)

]
∂ ϑi

∂ yβ
.

The product rule holds:

∇∂Ωu · w = ∇∂Ω(u · w) −∇∂Ωw · u.

3. ∇∂Ωu × w is defined to be the linear map satisfying (at each point of ∂Ω)

(∇∂Ωu × w)v = (∇∂Ω
v u) × w

for all v ∈ R
n. In a local chart (U , ϑ),

(∇∂Ωu × w)ij ◦ ϑ = εirsg
αβ ∂ϑj

∂ yβ

∂ (ur ◦ ϑ)
∂ yα

(ws ◦ ϑ),

where εirs is the permutation symbol, equaling 1 if (i, r, s) is an even permutation of (1, 2, 3), −1 if
(i, r, s) is an odd permutation of (1, 2, 3), and 0 otherwise.

2.3. Basic Inequalities

We now state some basic inequalities, that we use throughout the paper.

Proposition 2.7. For k >
n

2
and 0 � � � k, let Ω ⊆ R

n be a bounded C∞-domain. Then for all σ ∈ (0,
1

4

)
,

there exists a constant Cσ depending on σ such that for all f ∈ Hk(Ω) and g ∈ H�(Ω),
�∑

j=1

‖∇jf∇�−jg‖L2(Ω) � Cσ‖f‖Hk(Ω)‖g‖H�−σ(Ω). (15)

Moreover, for some generic constant C > 0,

‖fg‖H�(Ω) � C‖f‖Hk(Ω)‖g‖H�(Ω) ∀ f ∈ Hk(Ω), g ∈ H�(Ω). (16)

Remark 2.8. Suppose that s >
n

2
and 0 � r � s for some real numbers r and s. Then there exists a

generic constant Cs > 0 such that

‖fg‖Hr(Rn) � Cs‖f‖Hs(Rn)‖g‖Hr(Rn) ∀ f ∈ Hs(Rn), g ∈ Hr(Rn). (17)

By the Sobolev extension argument, we also conclude that

‖fg‖Hr(Ω) � Cs‖f‖Hs(Ω)‖g‖Hr(Ω) ∀ f ∈ Hs(Ω), g ∈ Hr(Ω) (18)

if Ω is a bounded C∞-domain.

The following corollary is a direct consequence of Proposition 2.7 since by Leibniz’s rule,

�∇�, f�g =
�∑

j=1

(�

j

)
∇jf∇�−jg.

Corollary 2.9. Let Ω ⊆ R
n be a bounded C∞-domain for some integer k >

n

2
.

1. Suppose that spt(g)⊂⊂Ω. Then for 0 < σ <
1

4
and 1 � � � k + 1,

∥∥�∇�, f�g
∥∥

L2(Ω)
� Cσ‖f‖Hmax{k,�}(Ω)‖g‖H�−σ(Ω), (19)

where �∇�, f�g = ∇�(fg) − f∇�g.
2. Suppose that ζ is a smooth cut-off function such that

(a) spt(ζ) ⊆ U ;
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(b) there exists a C∞-diffeomorphism ϑ : B(0, 1) → U satisfying
(i) ϑ : B+(0, 1) ≡ B(0, 1) ∩ {yn > 0} → U ∩ Ω;
(ii) ϑ : {yn = 0} → ∂Ω.

Define F = (ζf) ◦ ϑ and G = (ζg) ◦ ϑ. Then for 0 < σ < 1/4, 1 � � � k + 1,
∥∥�∂ �

, F �G
∥∥

L2(B+(0,r))
� Cσ‖f‖Hmax{k,�}(Ω)‖g‖H�−σ(Ω), (20)

where �∂
�
, F �G = ∂

�
(FG) − F∂

�
G and ∂ = (∂ y1 , . . . , ∂ yn−1) denotes the horizontal derivative.

The following two corollaries are direct consequences of Proposition 2.7, and are the foundation of the
study of inequalities on Hs-domains. The proof of these two corollaries can also be found in Appendix A.

Corollary 2.10. Let O ⊆ R
n be a bounded C∞-domain, and ψ : O → Ω ⊆ R

n be a Hk+1-diffeomorphism
for some integer k >

n

2
. If J = det(∇ψ) and A = (∇ψ)−1, then

‖J‖Hk(O) � C
(‖∇ψ‖Hk(O)

)
, (21a)

‖A‖Hk(O) � C
(‖1/J‖L∞(O), ‖∇ψ‖Hk(O)

)
. (21b)

Corollary 2.11. Let O ⊆ R
n be a bounded C∞-domain, and ψ : O → Ω ⊆ R

n be an Hk+1-diffeomorphism
for some integer k >

n

2
. Then for all � � k + 1,

‖f‖H�(Ω) � C(‖∇ψ‖Hk(O))‖f ◦ ψ‖H�(O) ∀ f ∈ H�(Ω), (22a)

‖f ◦ ψ‖H�(O) � C(‖∇ψ‖Hk(O))‖f‖H�(Ω) ∀ f ∈ H�(Ω). (22b)

Remark 2.12. Note that Corollary 2.11 implies that the interpolation inequalities on a Sobolev class
domain are still valid if the domain is bounded and has Hk+1 regularity for some integer k >

n

2
. For

example,

‖f‖H0.5(Ω) � C(|∂Ω|Hk+0.5)‖f ◦ ψ‖H0.5(O) � C(|∂Ω‖Hk+0.5)‖f ◦ ψ‖ 1
2
L2(O)‖f ◦ ψ‖ 1

2
H1(O)

� C(|∂Ω|Hk+0.5)‖f‖ 1
2
L2(Ω)‖f‖

1
2
H1(Ω).

Similar arguments can be applied to prove the following theorem whose proof we omit.

Theorem 2.13. Let Ω ⊆ R
n be a bounded domain of class Hk+1 for an integer k >

n

2
. Then for all

σ ∈ (
0,

1

4

)
, there exists constant Cσ depending on |∂Ω|Hk+0.5 and σ such that for all 0 � � � k + 1,

f ∈ Hmax{k,�}(Ω) and g ∈ H�(Ω),

�∑
j=1

‖∇jf∇�−jg‖L2(Ω) � Cσ‖f‖Hmax{k,�}(Ω)‖g‖H�−σ(Ω). (23)

Moreover, for a generic constant C depending on |∂Ω|Hk+0.5 ,

‖fg‖H�(Ω) � C‖f‖Hmax{k,�}(Ω)‖g‖H�(Ω) ∀ f ∈ Hmax{k,�}(Ω), g ∈ H�(Ω). (24)

By using Theorem 2.13, we can easily establish the following

Theorem 2.14. Let Ω ⊆ R
n be a bounded Hk+1-domain for an integer k >

n

2
. Then for each integers

� ∈ {0, 1} ∪ (n

2
, k + 1

]
, there exists a generic constant C = C(|∂Ω|Hk+0.5) such that

‖fg‖H�(Ω) � C
[
‖f‖L∞(Ω)‖g‖H�(Ω) + ‖f‖H�(Ω)‖g‖L∞(Ω)

]
∀ f, g ∈ H�(Ω) ∩ L∞(Ω). (25)
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2.4. Poincaré-Type Inequalities

We will make use of the following Poincaré-type inequalities, whose proofs are similar to the proof of the
standard Poincaré inequality.

Lemma 2.15. Let k >
n

2
be an integer and Ω ⊆ R

3 be a bounded Hk+1-domain with outward-pointing unit

normal N. We set

H1
τ (Ω) ≡ {

u : Ω → R
3
∣∣u ∈ H1(Ω),u × N = 0 on ∂Ω

}
,

H1
n(Ω) ≡ {

u : Ω → R
3
∣∣u ∈ H1(Ω),u · N = 0 on ∂Ω

}
.

Then
‖u‖L2(Ω) � C‖∇u‖L2(Ω) ∀u ∈ H1

τ (Ω), (26)

and
‖u‖L2(Ω) � C‖∇u‖L2(Ω) ∀u ∈ H1

n(Ω). (27)

2.5. Commutation with Mollifiers

Our proof of elliptic regularity relies on a mollification procedure (rather than the use of difference
quotients).

Definition 2.16 (Standard mollifiers). Let η(x) = C exp
( 1

|x|2 − 1

)
for |x| < 1 and η vanishes outside the

unit ball, where C is chosen so that ‖η‖L1(Rn) = 1. The standard mollifier ηε is defined by

ηε(x) = 1

εn
η
(x

ε

)
.

We will make use of the following

Lemma 2.17. For f ∈ W 1,∞(Ω) and g ∈ L2(Ω) with compact support, there is a generic constant C
independent of ε such that∥∥∇(�ηε˙, f�g

)∥∥
L2(Ω)

=
∥∥∇[ηε ˙ (fg) − fηε ˙ g

]∥∥
L2(Ω)

� C‖f‖W 1,∞(Ω)‖g‖L2(Ω) (28)

for all 0 < ε < min
{
dist

(
∂Ω, spt(f)

)
,dist

(
∂Ω, spt(g)

)}
.

Since we are dealing with problems on domains with boundaries, we make use of the horizontal
convolution-by-layers operator, introduced in [10]. We define the horizontal convolution-by-layers operator
Λε as follows:

Λεf(xh, xn) =
∫
Rn−1

ρε(xh − yh)f(yh, xn)dyh for f(·, xn) ∈ L1(Rn−1),

where ρε(xh) = 1

εn−1
ρ
(xh

ε

)
, and ρ ∈ C∞

c (Rn−1) is given by ρ(x) = C exp( 1

|x|2 − 1
) if |x| < 1 and ρ(x) = 0

if |xh| � 1. The constant C is chosen so that
∫
Rn−1ρ dx = 1. It follows that for ε > 0, 0 � ρε ∈ C∞

c (Rn−1)
with spt(ρε) ⊂ B(0, ε). (Here, spt stands for support.)

It should be clear that Λε smooths functions defined on R
n along all horizontal subspaces, but does

not smooth functions in the vertical xn-direction. On the other hand, we can restrict the operator Λε

to act on functions f : Rn−1 → R as well, in which case Λε becomes the usual mollification operator.
Associated to Λε, we need the following
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Lemma 2.18. For f ∈ W 1,∞(Rn
+) and g ∈ L2(Rn

+), there is a generic constant C independent of ε such
that ∥∥∂ (�Λε, f�g

)∥∥
L2(Rn

+)
=
∥∥∂ [Λε(fg) − fΛεg

]∥∥
L2(Rn

+)
� C

∥∥f∥∥
W 1,∞(Rn

+)

∥∥g∥∥
L2(Rn

+)
(29)

for all ε > 0.

2.6. The Piola Identity

Lemma 2.19 (Piola identity). Let ψ : Ω ⊆ R
n → R

n be a diffeomorphism, and [aij ]n×n be the cofactor
matrix of ∇ψ. Then

∂

∂xj
aji = 0. (30)

The proof can be found in [12].

3. Vector-Valued Elliptic Equations

Let Ω ⊆ R
n denote a bounded domain whose regularity will be specified below. In this section, we study

a vector-valued elliptic equation

(Lu)i = ui − ∂

∂xj

(
ajk ∂ui

∂xk

)
= f i in Ω, (31a)

with special types of boundary conditions, where u = (u1, . . . ,un) and f = (f1, . . . ,fn) are vector-valued
functions, and ajk is a two-tensor satisfying the positivity condition

ajkξjξk � λ|ξ|2 ∀ ξ ∈ R
n (32)

for some λ > 0. Since u ∈ R
n, n boundary conditions are needed to solve the system uniquely. We

consider a mixed-type boundary condition given by

u · w = 0 on ∂Ω, (31b)

Pw⊥

(
ajk ∂u

∂xk
Nj − g

)
= 0 on ∂Ω, (31c)

where w is a uniformly continuous vector field defined in a neighbourhood of ∂Ω which vanishes nowhere
on ∂Ω, N is the outward-pointing unit normal to ∂Ω, g is a vector-valued function defined on ∂Ω, and
Pw⊥ : Rn → R

n is the projection map given by

Pw⊥(v) = v − (v · w)
|w|2 w =

(
Id − w ⊗ w

|w|2
)
v. (33)

The condition (31b) specifies the component of the vector u in the direction of w, while the condition

(31c) specifies the (n − 1) components of the Neumann derivative ajk ∂ ui

∂ xk
Nj .

Integration by parts with respect to xj leads to the following identity:

−
∫

Ω

∂

∂xj

(
ajk ∂ui

∂xk

)
ϕidx =

∫
Ω

ajk ∂ui

∂xk

∂ϕi

∂xj
dx −

∫
∂ Ω

ajk ∂ui

∂xk
Njϕ

idx

=
∫

Ω

ajk ∂ui

∂xk

∂ϕi

∂xj
dx −

∫
∂ Ω

[
gi + ajk ∂ur

∂xk
Nj

wrwi

|w|2
]
ϕidx,

which, in turn, motivates the following
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Definition 3.1. Let V =
{
v ∈ H1(Ω)

∣∣v · w = 0 on ∂Ω
}
. A function u ∈ V is called a weak solution to

(31) if

(u,ϕ)L2(Ω) +
∫

Ω

ajk ∂ui

∂xk

∂ϕi

∂xj
dx = (f ,ϕ)L2(Ω) + 〈g,ϕ〉∂ Ω ∀ϕ ∈ V, (34)

where 〈·, ·〉∂ Ω denotes the duality pairing between distributions in H− 1
2 (∂Ω) and functions in H

1
2 (∂Ω).

With the help of the Lax-Milgram theorem it is easy to conclude the following

Theorem 3.2 (Weak solutions). Suppose that ajk ∈ L∞(Ω) satisfies the positivity condition (32), and w
is a uniformly continuous vector field defined in a neighborhood of ∂Ω which vanishes nowhere on ∂Ω.
Then for all f ∈ L2(Ω) and g ∈ H−0.5(∂Ω), there exists a unique weak solution to (31) in V, and the
weak solution u satisfies

‖u‖H1(Ω) � C
[
‖f‖L2(Ω) + ‖g‖H−0.5(∂ Ω)

]
. (35)

Remark 3.3. Let u ∈ H2(Ω) ∩ V be a weak solution to (31). Integrating by parts with respect to xj , we
find that ∫

Ω

(
ui − ∂

∂ xj

(
ajk ∂ ui

∂ xk

)− f i
)
ϕidx +

∫
∂ Ω

(
ajk ∂ ui

∂ xk
Nj − g

)
ϕidS = 0 ∀ ϕ ∈ V.

Since ϕ ·w = 0 on ∂Ω, the Neumann-type boundary condition (31c) is thus shown to hold.

We next establish the regularity theory for weak solutions satisfying (34).

Definition 3.4 (Partition-of-unity subordinate to an open cover). For a given collection of open sets
{Um}K

m=1 ⊆ R
n, there exists a partition of unity {ζm}K

m=1 subordinate to {Um}K
m=1 such that

√
ζm ∈

C∞
c (Rn) for all 1 � m � K. In fact, if {ξm}K

m=1 is a smooth partition-of-unity subordinate to {Um}K
m=1,

by defining {ζm}K
m=1 by

ζm =
ξ2
m∑K

j=1 ξ2
j

,

then 0 � ζm � 1, spt(ζm) ⊆ Um,
√

ζm ∈ C∞
c (Rn) for all 1 � m � K, and that

∑K
m=1 ζm = 1.

3.1. The Case that the Coefficients ajk are of Class C k

Now we study the regularity of the weak solution u to (31) when the coefficients ajk are of Sobolev class
Hk, k ∈ N, and the domain Ω is C k+1. To do so, we shall first establish this regularity result under the
more restrictive assumption that the coefficients ajk are in C k(Ω).

Theorem 3.5 (Regularity for the case that ajk ∈ C k(Ω) and Ω ∈ C k+1). Suppose that for k ∈ N, Ω ⊆ R
n

is a bounded C k+1-domain, ajk ∈ C k(Ω) satisfies the positivity condition (32), w is C k+1 in an open
neighborhood U of ∂Ω, and |w| > 0 on ∂Ω. Then for all f ∈ Hk−1(Ω) and g ∈ Hk−0.5(∂Ω), the weak
solution u to (31) in fact belongs to Hk+1(Ω), and satisfies

‖u‖Hk+1(Ω) � C
[
‖f‖Hk−1(Ω) + ‖g‖Hk−0.5(∂ Ω)

]
(36)

for a constant C depending on ‖a‖Ck(Ω), ‖w‖Ck+1(U) and |∂Ω|Ck+1 .

Proof. Our goal is to establish the regularity theory for weak solutions u ∈ V to (36). We prove this by
induction and divide the proof into several steps as follows:

Step 1: (Interior regularity) Suppose that u ∈ H�(Ω) for 1 � � � k. Let χ be a smooth function with
spt(χ)⊂⊂Ω, and 0 < ε < dist(spt(χ), ∂Ω). We define

ϕ = (−1)�χ
[
ηε ˙∇2�

(
ηε ˙ (χu)

)]
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with no summation over the index �, and we let {ηε}ε>0 denote a sequence of standard mollifiers given
in Definition 2.16. We note that this choice of test function ϕ is in V, and can hence be used in the
variational formulation (34). First, we see that

(u,ϕ)L2(Ω) =
∥∥∇�ηε ˙ (χu)

∥∥2

L2(Ω)
. (37)

Since convolution is self-adjoint, the product rule shows that∫
Ω

ajk ∂ui

∂xk

∂ϕi

∂xj
dx =

∫
Ω

∇[ηε ˙
(
ajk∇�−1(χui),k

)]∇�
[
ηε ˙ (χui),j

]
dx

+
�−2∑
r=0

(�−1

r

) ∫
Ω

∇[ηε ˙
(
(∇�−1−rajk)∇r(χui),k

)]∇�
[
ηε ˙ (χui),j

]
dx

−
∫

Ω

∇�
[
ηε ˙

(
ajkuiχ,k

)]∇�
[
ηε ˙ (χui),j

]
dx

−
∫

Ω

∇�−1
[
ηε ˙

(
ajkχ,j ui

,k

)]∇�+1
[
ηε ˙ (χui)

]
dx.

Using the commutator notation �A,B�f = A(Bf) − B(Af), the first term on the right-hand side of the
identity above can be rewritten as∫

Ω

∇[ηε ˙
(
ajk∇�−1(χui),k

)]∇�
[
ηε ˙ (χui),j

]
dx

=
∫

Ω

∇[ajkηε ˙∇�−1(χui),k
]∇�

[
ηε ˙ (χui),j

]
dx

+
∫

Ω

[∇�
ηε˙, ajk

�∇�−1(χui),k
]∇�

[
ηε ˙ (χui),j

]
dx

=
∫

Ω

ajk∇�
[
ηε ˙ (χui),k

]∇�
[
ηε ˙ (χui),j

]
dx

+
∫

Ω

(∇ajk)∇�−1
[
ηε ˙ (χui),k

]∇�
[
ηε ˙ (χui),j

]
dx

+
∫

Ω

[∇�
ηε˙, ajk

�∇�−1(χui),k
]∇�

[
ηε ˙ (χui),j

]
dx ;

thus, after rearranging terms, the positivity condition (32) implies that

λ
∥∥∇�+1

(
ηε ˙ (χu)

)∥∥2

L2(Ω)
�
∫

Ω

ajk ∂ui

∂xk

∂ϕi

∂xj
dx −

∫
Ω

(∇ajk)∇�−1
[
ηε ˙ (χui),k

]∇�
[
ηε ˙ (χui),j

]
dx

−
∫

Ω

[∇�
ηε˙, ajk

�∇�−1(χui),k
]∇�

[
ηε ˙ (χui),j

]
dx

−
�−2∑
r=0

(�−1

r

) ∫
Ω

∇[ηε ˙
(
(∇�−1−rajk)∇r(χui),k

)]∇�
[
ηε ˙ (χui),j

]
dx

+
∫

Ω

∇�
[
ηε ˙

(
ajkuiχ,k

)]∇�
[
ηε ˙ (χui),j

]
dx

+
∫

Ω

∇�−1
[
ηε ˙

(
ajkχ,j ui

,k

)]∇�+1
[
ηε ˙ (χui)

]
dx.

The last five integrals on the right-hand side of the inequality above can be estimated using Hölder’s
inequality and the commutation estimate (28), and we obtain that

λ
∥∥∇�+1

(
ηε ˙ (χu)

)∥∥2

L2(Ω)
�
∫

Ω

ajk ∂ui

∂xk

∂ϕi

∂xj
dx + C‖a‖C �(Ω)‖u‖H�(Ω)

∥∥∇�+1
(
ηε ˙ (χui)

)∥∥
L2(Ω)

. (38)
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On the other hand, it is easy to see that∫
Ω

f ·ϕ dx = −
∫

Ω

∇�−1
[
ηε ˙ (χf i)

]∇�+1
[
ηε ˙ (χui)

]
dx

� C‖f‖H�−1(Ω)

∥∥∇�+1
(
ηε ˙ (χu)

)∥∥
L2(Ω)

.
(39)

Summing (37), (38) and (39), we find that∥∥∇�(ηε ˙ (χu)
∥∥2

L2(Ω)
+ λ

∥∥∇�+1
(
ηε ˙ (χu)

)∥∥2

L2(Ω)

� C
[
‖f‖H�−1(Ω) + ‖a‖C �(Ω)‖u‖H�(Ω)

]∥∥∇�+1
(
ηε ˙ (χu)

)∥∥
L2(Ω)

;

therefore, by Young’s inequality,∥∥∇�(ηε ˙ (χu)
∥∥2

L2(Ω)
+ λ

∥∥∇�+1
(
ηε ˙ (χu)

)∥∥2

L2(Ω)

� C

λ

[
‖f‖2

H�−1(Ω) + ‖a‖2
C �(Ω)

‖u‖2
H�(Ω)

]
+

λ

2

∥∥∇�+1
[
ηε ˙ (χui)

]∥∥
L2(Ω)

which further implies that
∥∥∇�+1

(
ηε ˙ (χu)

)∥∥
L2(Ω)

� C

λ

[
‖f‖H�−1(Ω) + ‖a‖C �(Ω)‖u‖H�(Ω)

]
. (40)

Since f ∈ Hk−1(Ω) and a ∈ C k(Ω), the assumption that u ∈ H�(Ω) implies that the right-hand side of
(40) is bounded independent of the smoothing parameter ε. Therefore, we can pass to the limit as ε → 0
in (40) and obtain that

‖∇�+1(χu)‖L2(Ω) � C

λ

[
‖f‖H�−1(Ω) + ‖a‖C �(Ω)‖u‖H�(Ω)

]

or

‖χ∇�+1u‖L2(Ω) � C

λ

[
‖f‖H�−1(Ω) +

(‖a‖C �(Ω) + λ)‖u‖H�(Ω)

]
. (41)

This implies that u ∈ H�+1
loc (Ω). So, we have shown that if u ∈ H�(Ω) for 1 � � � k then, in fact,

u ∈ H�+1
loc (Ω) and u satisfies (41).

Now, we note that by Theorem 3.2, u ∈ H1(Ω) and hence u ∈ H2
loc(Ω). This allows us to integrate

by parts in the variational formulation (34) and find that∫
Ω

[
u − ∂

∂xj

(
ajk ∂u

∂xk

)
− f

]
·ϕ dx = 0 ∀ϕ ∈ C∞

c (Ω).

The above identity implies that

ui − ∂

∂xj

(
ajk ∂ui

∂xk

)
= f i a.e. in Ω. (42)

Step 2: (Regularity for tangential derivatives of u in the w-direction near ∂Ω) We now initiate the
induction procedure. We assume that u ∈ H�(Ω) for 1 � � � k − 1, and prove then that u ∈ H�+1(Ω).
Let {Um}K

m=0, {ϑm}K
m=1, and {rm}K

m=1 denote the system of local charts given in Proposition 2.1 with
ε � 1, and let 0 � ζm � 1 in C∞

c (Um) denote a partition-of-unity subordinate to the open covering Um

as given in Definition 3.4. We fixed m ∈ {1, . . . , K}, and work with the chart ϑm : B(0, rm) → Um. On
B(0, rm), we define the new functions

ζ̃ = ζm ◦ ϑm, ũ = u ◦ ϑm, w̃ = wε ◦ ϑm, f̃ = f ◦ ϑm, g̃ = g ◦ ϑm and ϕ̃ = ϕ ◦ ϑm.

With A = (∇ϑm)−1, we define brs = (ajk ◦ ϑ)Ak
sAj

r. Then the matrix b is positive-define. In fact, since
‖∇ϑm − Id‖L∞(B+

m) � 1,

brsξrξs = (ajk ◦ ϑm)As
kAr

jξrξs � λ|ATξ|2 � λ

2
|ξ|2. (43)
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Setting x = ϑm(y), the change-of-variables formula shows that the variational formulation (34) takes the
form ∫

B+
m

ũ · ϕ̃ dy +
∫

B+
m

brs ∂ ũi

∂ ys

∂ ϕ̃i

∂ yr
dy =

∫
B+

m

f̃ · ϕ̃ dy +
∫

Bm∩{yn=0}
g̃ · ϕ̃ dS ∀ ϕ̃ ∈ Ṽm, (44)

where Ṽm =
{
ϕ̃ ∈ H1(B+

m)
∣∣ ϕ̃ · w̃ = 0 on Bm ∩ {yn = 0}, ϕ̃ = 0 on R

n
+ ∩ ∂Bm

}
.

With Δ0 =
∑n−1

α=1
∂ 2

∂ y2
j

denoting the horizontal Laplace operator, we define

ϕi = (−1)�
[
ζ̃w̃iΛεΔ�

0Λε(ζ̃ũ · w̃)
] ◦ ϑ−1

m ,

where Λε is the horizontal convolution-by-layers operator given by

Λεφ(yh, yn) =
∫
Rn−1

ρε(yh − zh)φ(zh, yn)dzh for φ(·, yn) ∈ L1(Rn−1),

where yh = (y1, . . . , yn−1). Recalling that ∂ =
( ∂

∂ y1
, . . . ,

∂

yn−1

)
denotes the horizontal gradient, we note

that

∂
�
v · ∂ �

w =
n−1∑
α1=1

· · ·
n−1∑
α�=1

∂ �v

∂ yα1 · · · ∂ yα�

· ∂ �w

∂ yα1 · · · ∂ yα�

,

∂
�−1

v · ∂ �+1
w =

n−1∑
α1=1

· · ·
n−1∑

α�−1=1

∂ �−1v

∂ yα1 · · · ∂ yα�−1

· ∂ �−1Δ0w

∂ yα1 · · · ∂ yα�−1

,

and so forth.
Since ϕ ·w = 0 on ∂Ω, ϕ ∈ V and can be used as a test function. The use of ϕ as a test function in

(34) implies that

(ũ, ϕ̃)L2(Ω) +
∫

Ω

brs ∂ ũi

∂ ys

∂ ϕ̃i

∂ yr
dy � C

[
‖f‖H�(Ω) + ‖g‖H�−0.5(∂ Ω)

]∥∥∂ �
Λε(ζ̃ũ · w̃)

∥∥
H1(B+

m)
. (45)

Similar to (37), integrating by parts with respect to yh implies that

(u,ϕ)L2(Ω) =
∥∥∂ �

Λε(ζ̃ũ · w̃)
∥∥2

L2(B+
m)

.

Now we focus on the second term on the left-hand side of (45). Integrating by parts in the horizontal
direction (using ∂ ) yields

∫
B+

m

brs ∂ ũi

∂ yr

∂ϕi

∂ ys
dy =

∫
B+

m

∂
�
Λε

(
brsζ̃ũm,s · w̃

)
∂

�
Λε(ζ̃ũ · w̃),r dy

=
∫

B+
m

∂Λε

(
brs∂

�−1
(ζ̃ũ · w̃),s

)
∂

�
Λε(ζ̃ũ · w̃),r dy

+
�−2∑
k=0

(�−1

k

)∫
B+

m

∂Λε

(
∂

�−1−k
brs∂

k
(ζ̃ũ · w̃),s

)
∂

�
Λε(ζ̃ũ · w̃),r dy

−
∫

B+
m

∂
�
Λε

(
brsũi(ζ̃w̃i),s

)
∂

�
Λε(ζ̃ũ · w̃),r dy. (46)
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For the first term on the right-hand side of (46), as in Step 1, we find that
∫

B+
m

∂Λε

(
brs∂

�−1
(ζ̃ũ · w̃),s

)
∂

�
Λε(ζ̃ũ · w̃),r dy

=
∫

B+
m

∂
[
brsΛε∂

�−1
(ζ̃ũ · w̃),s

]
∂

�
Λε(ζ̃ũ · w̃),r dy

+
∫

B+
m

(
∂ �Λε, b

rs�∂
�−1

(ζ̃ũ · w̃),s
)
∂

�
Λε(ζ̃ũ · w̃),r dy

=
∫

B+
m

brs∂
�
Λε(ζ̃ũ · w̃),s ∂

�
Λε(ζ̃ũ · w̃),r dy

+
∫

B+
m

(∂ brs)Λε∂
�−1

(ζ̃ũ · w̃),s ∂
�
Λε(ζ̃ũ · w̃),r dy

+
∫

B+
m

(
∂ �Λε, b

rs�∂
�−1

(ζ̃ũ · w̃),s
)
∂

�
Λε(ζ̃ũ · w̃),r dy. (47)

The positivity condition (43) and the commutation estimate (29) imply that
∫

B+
m

∂Λε

(
brs∂

�−1
(ζ̃ũ · w̃),s

)
∂

�
Λε(ζ̃ũ · w̃),r dy

� λ

2

∥∥∂ �
Λε∇(ζ̃ũ · w̃)

∥∥2

L2(B+
m)

−C‖u‖H�(Ω)

[∥∥∂ �
Λε(ζ̃ũ · w̃)

∥∥
H1(B+

m)
+‖u‖H�(Ω)

]
. (48)

For the remaining terms on the right-hand side of (46), we apply Hölder’s inequality and find that

∣∣∣
�−2∑
k=0

(�−1

k

) ∫
B+

m

∂Λε

(
∂

�−1−k
brs∂

k
(ζ̃ũ · w̃),s

)
∂

�
Λε(ζ̃ũ · w̃),r dy

∣∣∣

+
∣∣∣
∫

B+
m

∂
�
Λε

(
brsũi(ζ̃w̃i),s

)
∂

�
Λε(ζ̃ũ · w̃),r dy

∣∣∣
� C‖u‖H�(Ω)

[∥∥∂ �
Λε∇(ζ̃ũ · w̃)

∥∥
L2(B+

m)
+ ‖u‖H�(Ω)

]
, (49)

where C depends on ‖a‖C �(Ω), ‖w‖C �+1(U) and |∂Ω|C �+1(Ω). As a consequence, Young’s inequality together
with (45)–(48) implies that

∥∥∂ �
Λε(ζ̃ũ · w̃)

∥∥2

L2(B+
m)

+ λ
∥∥∂ �

Λε∇(ζ̃ũ · w̃)
∥∥2

L2(B+
m)

� Cδ

[
‖u‖2

H�(Ω)+ ‖f‖2
H�−1(Ω)+ ‖g‖2

H�−1.5(∂ Ω)

]
+ δ

∥∥∂ �
Λε∇(ζ̃ũ · w̃)

∥∥2

L2(B+
m)

,

which, by choosing δ > 0 sufficiently small, shows that
∥∥∂ �

Λε(ζ̃ũ · w̃)
∥∥

H1(B+
m)

� C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + ‖u‖H�(Ω)

]

for a constant C = C(‖a‖C �(Ω), ‖w‖C �+1(U), |∂Ω|C �+1).
Since the estimate above is independent of the smoothing parameter ε, by passing to the limit as

ε → 0 we conclude that
∥∥ζ̃ ∂

�
(ũ · w̃)

∥∥
H1(B+

m)
� C

[
‖u‖H�(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]
.

Since both w and ϑm are C k+1 in the support of ζ̃, it follows that
∥∥ζ̃w̃ · ∂ �

ũ
∥∥

H1(B+
m)

� C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + ‖u‖H�(Ω)

]
. (50)
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Step 3: (Regularity for tangential derivatives of u in the w⊥-directions near ∂Ω) Estimate (50) provides
regularity for the vector ζ̃ ∂

�∇ũ · w. Next, we establish the regularity of ζ̃ ∂
�∇ũ × w. We define

ϕ̃i = (−1)�
[
ζ̃ΛεΔ�

0Λε(ζ̃ũi) − (
ζ̃w̃ · ΛεΔ�

0Λε(ζ̃ũ)
) w̃i

|w̃|2
]

= (−1)�
[
ζ̃ΛεΔ�

0Λε(ζ̃ũi) − (
ζ̃ΛεΔ�

0Λε(ζ̃ũj)
)w̃jw̃i

|w̃|2
]
.

Note that ϕ is the projection of the vector ζ̃ΛεΔ�
0Λε(ζ̃ũ) onto the affine space with normal w, so ϕ ∈ V

and can be used as a test function in (44). Following the similar computation in Step 2 above, we have
that ∥∥∂ �

Λε(ζ̃ũ)
∥∥2

L2(B+
m)

+
λ

4

∥∥∂ �
Λε∇(ζ̃ũ)

∥∥2

L2(B+
m)

� Cδ

[
‖f‖2

H�−1(Ω) + ‖g‖2
H�−1.5(∂ Ω) + ‖u‖2

H�(Ω)

]
+ δ

∥∥∂ �
Λε∇(ζ̃ũ)

∥∥2

L2(B+
m)

+ (−1)�+1

∫
B+

m

brsũi,s

[(
ζ̃ΛεΔ�

0Λε(ζ̃ũj
m)
)w̃jw̃i

|w̃|2
]

,r
dy

� Cδ

[
‖f‖2

H�−1(Ω) + ‖g‖2
H�−1.5(∂ Ω) + ‖u‖2

H�(Ω)

]
+ 2δ

∥∥∂ �
Λε∇(ζ̃ũ)

∥∥2

L2(B+
m)

+ (−1)�+1

∫
B+

m

brs

|w̃|2 ζ̃w̃ · ũ,s
(
ΛεΔ�

0Λε(ζ̃ũj ,r )
)
w̃j dy

� Cδ

[
‖f‖2

H�−1(Ω) + ‖g‖2
H�−1.5(∂ Ω) + ‖u‖2

H�(Ω)

]
+ 3δ

∥∥∂ �
Λε∇(ζ̃ũ)

∥∥2

L2(B+
m)

−
∫

B+
m

brs

|w̃|2 ∂
�
(ζ̃ũm,s · w̃)

(
Λε∂

�
Λε(ζ̃ũj ,r )

)
w̃j dy.

Applying estimate (50) and Young’s inequality,

−
∫

B+
m

brs

|w̃|2 ∂
�
(ζ̃ũm,s · w̃)

(
Λε∂

�
Λε(ζ̃ũj

m,r)
)
w̃j

m dy

� C
∥∥∂ �

(ζ̃w̃ · ∇ũ)
∥∥

L2(Ω)

∥∥∂ �
Λε(ζ̃∇ũ)

∥∥
L2(Ω)

� Cδ

[
‖f‖2

H�−1(Ω) + ‖g‖2
H�−1.5(∂ Ω) + ‖u‖2

H�(Ω)

]
+ δ

∥∥∂ �
Λε(ζ̃∇ũ)

∥∥2

L2(Ω)
;

thus by choosing δ > 0 sufficiently small, we conclude that

‖∂ �
Λε(ζ̃ũ)‖2

H1(B+
m)

� C
[
‖u‖2

H�(Ω) + ‖f‖2
H�−1(Ω) + ‖g‖2

H�−1.5(∂ Ω)

]
.

Again, due to the ε-independence of the right-hand side, we conclude that

‖ζ̃ ∂
�
ũ‖H1(B+

m) � C
[
‖u‖H�(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]
(51)

for a constant C = C(‖a‖C �(Ω), ‖w‖C �+1(U), |∂Ω|C �+1).

Step 4: (Regularity for normal derivatives of u near ∂Ω) Multiplying (42) by ζm and then composing
with ϑm, by the Piola identity (30) we obtain that

ζ̃ũ − ζ̃
(
brsũ,s

)
,r = ζ̃(f ◦ ϑm) a.e. in B+

m.

Letting ∂
�−1−j∇j act on the equation above, we find that

ζ̃brs∂
�−1−j∇jũ,rs = F (�,j) a.e. in B+

m (52)

for some F (�,j) ∈ L2(Ω) satisfying

‖F (�,j)‖L2(Ω) � C
[
‖f‖H�−1(Ω) + ‖u‖H�(Ω)

]
,
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where the constant C depends on ‖a‖C �(Ω). Using (43), bnn > 0; thus (52) further implies that

ζ̃ ∂
�−1−j∇jũ,nn =

1
bnn

[
F (�,j) − ζ̃

∑
(r,s) �=(n,n)

brs∂
�−1∇jũ,rs

]
.

Now we argue by induction on 0 � j � � − 1. When j = 0, (51) shows that
∥∥ζ̃ ∂

�−1
ũ,nn

∥∥
L2(B+

m)
� C

[
‖u‖H�(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]

which, combined with (51), provides the estimate∥∥ζ̃ ∂
�−1∇2ũ

∥∥
L2(B+

m)
� C

[
‖u‖H�(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]
.

Repeating this process for j = 1, . . . , � − 1, we conclude that

‖ζ̃∇�+1ũ‖L2(B+
m) � C

[
‖u‖H�(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]
. (53)

The combination of (41) and (53), as well as the induction process, proves the theorem. �

3.2. The Case that the Coefficients ajk are of Sobolev Class

We are now in position to study the regularity of solution u to (31) when the coefficient ajk and the
domain Ω is of Sobolev class. We first prove the following rather technical

Theorem 3.6 (Regularity for the case that ajk ∈ Hk(Ω) and Ω ∈ C∞). Let Ω ⊆ R
n be a bounded

C∞-domain. Suppose that for an integer k >
n

2
and 1 � � � k, ajk ∈ Hk(Ω) satisfies the positivity

condition

ajkξjξk � λ|ξ|2 ∀ ξ ∈ R
n,

and w ∈ Hmax{k,�+1}(Ω) (or w ∈ Hmax{k− 1
2 ,�+ 1

2}(∂Ω)) such that w vanishes nowhere on ∂Ω. Then for
all f ∈ H�−1(Ω) and g ∈ H�−0.5(∂Ω), the weak solution u to (31) belongs to H�+1(Ω), and satisfies

‖u‖H�+1(Ω) � C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + P(‖a‖Hk(Ω)

)(‖f‖L2(Ω) + ‖g‖H−0.5(∂ Ω)

)]
(54)

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω)

)
and a polynomial P.

Proof. Let {Um, ϑm}K
m=1 be a collection of charts of ∂Ω given in Proposition 2.1, {ζm}K

m=1 a partition-
of-unity subordinate to {Um}K

m=1 given in Definition 3.4, and let E : Hk+1(Ω) → Hk+1(Rn) denote a
Sobolev extension operator. We define aε = ηε ˙ (Ea), fε = ηε ˙ (Ef), wε = ηε ˙ (Ew). Finally, let gε

denote a smooth regularization of g defined by

gε =
K∑

m=1

√
ζm

[
Λε

(
(
√

ζm g) ◦ ϑm

)] ◦ ϑ−1
m .

It follows that for ε � 1 sufficiently small,

ajk
ε (x)ξjξk � λ

2
|ξ|2 ∀ ξ ∈ R

n, x ∈ Ω. (55)

Hence by Theorem 3.5, the solution uε to the variational problem∫
Ω

uε · ϕ dx +
∫

Ω

ajk
ε

∂uε

∂xk
· ∂ϕ

∂xj
dx =

∫
Ω

fε · ϕ dx +
∫

∂ Ω

gε · ϕ dS ∀ϕ ∈ V

satisfies uε ∈ Hk(Ω) for all k � 1. We next establish an ε-independent upper bound for ‖uε‖H�+1(Ω).
Step 1: (Regularity for tangential derivatives of u in the w-direction near ∂Ω) We fix m ∈ {1, . . . , K}
and set

ζ̃ = ζm ◦ ϑm, ũ = uε ◦ ϑm, w̃ = wε ◦ ϑm, f̃ = fε ◦ ϑm, g̃ = gε ◦ ϑm and ϕ̃ = ϕ ◦ ϑm.
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With A = (∇ϑ)−1, we define brs
ε = (ajk

ε ◦ ϑ)As
kAr

j . Then, as ‖∇ϑ − Id‖L∞(B+
m) � 1, the matrix bε is

positive-definite since using (55),

brs
ε ξrξs = (ajk

ε ◦ ϑ)As
kAr

jξrξs � λ

2
|ATξ|2 � λ

8
|ξ|2 ∀ ξ ∈ R

n. (56)

Setting x = ϑm(y), and using the change-of-variables formula, we find that the variational formulation
(34) can be written as∫

B+
m

ũ · ϕ̃ dy +
∫

B+
m

brs
ε

∂ ũi

∂ ys

∂ ϕ̃i

∂ yr
dy =

∫
B+

m

f̃ · ϕ̃ dy +
∫

Bm∩{yn=0}
g̃ · ϕ̃ dS ∀ ϕ̃ ∈ Ṽm, (57)

where Ṽm =
{
ϕ̃ ∈ H1(B+

m)
∣∣ ϕ̃ · w̃ = 0 on Bm ∩ {yn = 0}, ϕ̃ = 0 on R

n
+ ∩ ∂Bm

}
. With Δ0 denoting

the horizontal Laplace operator and ∂ denoting the horizontal gradient defined in Step 2 in the proof of
Theorem 3.5, we define

ϕ̃i = (−1)�ζ̃w̃iΔ�
0(ζ̃ũ · w̃),

so that

(ũ, ϕ̃)L2(B+
m) +

∫
B+

m

brs
ε

∂ ũi

∂ ys

∂ ϕ̃i

∂ yr
dy

� C
[
‖f̃‖H�−1(B+

m) + ‖g̃‖H�−0.5(Bm∩{yn=0})
]∥∥∂ �

(ζ̃ũ · w̃)
∥∥

H1(B+
m)

� C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]∥∥∂ �
(ζ̃ũ · w̃)

∥∥
H1(B+

m)
, (58)

where we have used Young’s inequality for convolution to conclude the last inequality. We focus now on
the left-hand side of (58). As in the proof of Theorem 3.5, we have that

(ũ, ϕ̃)L2(B+
m) =

∥∥∂ �
(ζ̃ũ · w̃)

∥∥2

L2(B+
m)

.

Moreover, ∫
Ω

brs
ε

∂ ũi

∂ ys

∂ ϕ̃i

∂ yr
dy = (−1)�

∫
B+

m

brs
ε ũi,s

[
ζ̃w̃iΔ�

0(ζ̃ũ · w̃)
]
,r dy

=
∫

B+
m

∂
�[

brs
ε (ζ̃ũ · w̃),s

]
∂

�
(ζ̃ũ · w̃),r dy

−
∫

B+
m

∂
�[

brs
ε ũi(ζ̃w̃i),s

]
∂

�
(ζ̃ũ · w̃),r dy

−
∫

B+
m

∂
�−1[

brs
ε ũi,s (ζ̃w̃i),r

]
∂

�+1
(ζ̃ũ · w̃)

]
dy. (59)

For the first term on the right-hand side of (59), we make use of the positivity condition (56) and Young’s
inequality to conclude that∫

B+
m

∂
�[

brs
ε (ζ̃ũ · w̃),s

]
∂

�
(ζ̃ũ · w̃),r dy

=
∫

B+
m

brs
ε ∂

�
(ζ̃ũ · w̃),s ∂

�
(ζ̃ũ · w̃),r dy +

∫
B+

m

[
�∂

�
, brs

ε �(ζ̃ũ · w̃),s
]
∂

�
(ζ̃ũ · w̃),r dy

�
(λ
8
− δ

)∥∥∂ �∇(ζ̃ũ · w̃)
∥∥2

L2(B+
m)

− Cδ

∥∥�∂ �
, bε�∇(ζ̃ũ · w̃)

∥∥2

L2(B+
m)

. (60)

Then, Corollary 2.9 with σ = 1

8
shows that

∫
B+

m

∂
�[

brs
ε (ζ̃ũ · w̃),s

]
∂

�
(ζ̃ũ · w̃),r dy �

(λ
8
− δ

)∥∥∂ �∇(ζ̃ũ · w̃)
∥∥2

L2(B+
m)

− Cδ‖a‖2
Hk(Ω)‖uε‖2

H�+ 7
8 (Ω)

.
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For the second and the third terms on the right-hand side of (59), we use the inequality (16), and find
that

∣∣∣
∫

B+
m

∂
�[

brs
ε ũi(ζ̃w̃i),s

]
∂

�
(ζ̃ũ · w̃),r dy

∣∣∣+
∣∣∣
∫

B+
m

∂
�−1[

brs
ε ũi,s (ζ̃w̃i),r

]
∂

�+1
(ζ̃ũ · w̃) dy

∣∣∣
� Cδ‖a‖2

Hk(Ω)‖uε‖2
H�(Ω) + δ

∥∥∂ �∇(ζ̃ũiw̃i)
∥∥2

L2(B+
m)

(61)

for a constant Cδ depending on ‖w‖Hmax{k,�+1}(Ω).
Choosing δ > 0 sufficiently small in (60) and (61), we conclude that

∥∥∂ �
(ζ̃ũ · w̃)

∥∥
L2(B+

m)
+
∥∥∂ �∇(ζ̃ũ · w̃)

∥∥
L2(B+

m)

� C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + ‖a‖Hk(Ω)‖uε‖

H�+ 7
8 (Ω)

] (62)

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω)

)
.

Step 2: (Regularity for tangential derivatives of u in the w⊥-directions near ∂Ω) Now we estimate uε in
the directions perpendicular to w. Similar to Step 3 in the proof of Theorem 3.5, we use

ϕ̃i = ζ̃Δ�
0(ζ̃ũ) − (

ζ̃w̃ ·Δ�
0(ζ̃ũ)

) w̃

|w̃|2

as a test function in (57) and find that

∥∥∂ �
(ζ̃ũ)

∥∥2

L2(B+
m)

+
(λ
8
− δ

)∥∥∂ �∇(ζ̃ũ)
∥∥2

L2(B+
m)

� C
[
‖f‖2

H�−1(Ω) + ‖g‖2
H�−0.5(∂ Ω)

]
+ Cδ‖a‖2

Hk(Ω)‖uε‖2

H�+ 7
8 (Ω)

+ (−1)�
∫

B+
m

w̃j

|w̃|2 (ζ̃ũ · w̃)Δ�
0(ζ̃ũj) dy

+ (−1)�+1
∫

B+
m

brs
ε ũi,s

[
ζ̃Δ�

0(ζ̃ũj) w̃
jw̃i

|w̃|2
]
,r dy.

Integrating by parts in the horizontal direction (using ∂ ), by Corollary 2.9 and (62) we obtain that

(−1)�
∫

B+
m

w̃j

|w̃|2 (ζ̃ũ · w̃)∂ 2�(ζ̃ũj) dy

�
∥∥∥∂ �−1

(
w̃j

|w̃|2 (ζ̃ũ · w̃)
)∥∥∥

L2(B+
m)

∥∥∂ �+1
(ζ̃ũj)

∥∥2

L2(B+
m)

� Cδ‖uε‖2
H�−1(Ω) + δ‖∂ �∇(ζ̃ũj)

∥∥2

L2(B+
m)

(63)

and

(−1)�+1

∫
B+

m

brs
ε ũi,s

[
ζ̃∂ 2�(ζ̃ũj) w̃

jw̃i

|w̃|2
]
,r dy

� C
[∥∥∂ �

(bε∇ũ)
∥∥

L2(B+
m)

+
∥∥bε∂

�∇(ζ̃ũ · w̃)
∥∥

L2(B+
m)

+
∥∥�∂ �

, bε�∇(ζ̃ũ · w̃)
∥∥

L2(B+
m

]∥∥∂ �∇(ζ̃ũ)
∥∥

L2(B+
m)

� Cδ‖a‖2
Hk(Ω)‖uε‖2

H�+ 7
8 (Ω)

+ δ
∥∥∂ �∇(ζ̃ũ)

∥∥2

L2(B+
m)

, (64)

in which the constant Cδ also depends on ‖w‖Hmax{k,�+1}(Ω). Therefore, choosing δ > 0 sufficiently small
in (63) and (64), we conclude that
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∥∥ζ̃ ∂
�
ũi
∥∥

L2(B+
m)

+
∥∥ζ̃ ∂

�∇ũi
∥∥

L2(B+
m)

� C
[
‖uε‖H�−1(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + ‖a‖Hk(Ω)‖uε‖

H�+ 7
8 (Ω)

]
(65)

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω)

)
.

Step 3: (Regularity for normal derivatives of u near ∂Ω) In this step, we follow the procedure of Step 4
in the proof of Theorem 3.5. Since uε is a strong solution, it follows that

uε − ∂

∂xj

(
ajk

ε

∂uε

∂xk

)
= fε in Ω ;

thus the Piola identity (30) implies that

ζ̃
(
brs
ε ũ,s

)
,r = ζ̃

(
ũ − (fε ◦ ϑ)

)
in B+

m.

With ũ,n and ũ,nn denoting ∂ ũ

∂ yn
and ∂ 2ũ

∂ y2
n

, respectively, we have that

ζ̃bnn
ε ũ,nn = ζ̃

[
ũ − (fε ◦ ϑ) − bnn

ε,nũ,n −
∑

(r,s) �=(n,n)

brs
ε,rũ,s −

∑
(r,s) �=(n,n)

brs
ε ũ,sr

]
in B+

m. (66)

Let G = ζ̃
[
ũ − (fε ◦ ϑ) − bnn

ε,nũ,n −
∑

(r,s) �=(n,n) brs
ε,rũ,s

]
, and for 0 � j � � − 1 we define

G(�,j) = ∂
�−1−j∇jG − �∂

�−1−j∇j , brs
ε �ũ,sr .

Letting ∂
�−1−j∇j act on (66), we obtain that

ζ̃bnn
ε ∂

�−1−j∇jũ,nn = G(�,j) −
∑

(r,s) �=(n,n)

ζ̃brs
ε ∂

�−1−j∇jũ,rs (67)

Now we estimate G(�,j) in L2(B+
m). First we note that

∥∥∂ �−1−j∇j
[
ζ̃(ũ − fε ◦ ϑ)

]∥∥
L2(B+

m)
� C

[
‖uε‖H�−1(Ω) + ‖f‖H�−1(Ω)

]
.

Moreover, since � � k, by Proposition 2.7 with σ = 1

8
we find that

∥∥∂ �−1−j∇j(ζ̃bnn
,n ũ,n )

∥∥
L2(B+

m)
+

∑
(r,s) �=(n,n)

∥∥∂ �−1−j∇j(brs
ε,rũ,s )

∥∥
L2(B+

m)

� C
�−1∑
j=0

‖∇j+1a∇�−1−juε‖L2(Ω) = C
�∑

j=1

‖∇ja∇�−juε‖L2(Ω)

� C‖a‖Hk(Ω)‖u‖H�+ 7
8 (Ω)

.

Finally, by Corollary 2.9 with σ = 1

8
,

∥∥�∂ �−1−j∇j , ζ̃bnn
ε �ũ,nn

∥∥
L2(B+

m)
+

∑
(r,s) �=(n,n)

∥∥�∂ �−1−j∇j , ζ̃brs
ε �ũ,rs

∥∥
L2(B+

m)

� Cε‖a‖Hk(Ω)‖uε‖
H�+ 7

8 (Ω)
.

Therefore, G(�,j) satisfies

‖G(�,j)‖L2(B+
m) � C

[
‖u‖H�−1(Ω) + ‖f‖H�−1(Ω) + ‖a‖Hk(Ω)‖uε‖

H�+ 7
8 (Ω)

]
.
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Now we argue by induction on 0 � j � � − 1. By the positivity condition (55), bnn
ε � λ

4
so that when

j = 0, the inequalities (65) and (67) show that
∥∥ζ̃ ∂

�−1
ũ,nn

∥∥
L2(B+

m)
� ‖G(�,j)‖L2(B+

m)
+

∑
(r,s) �=(n,n)

‖brs
ε ‖

L∞(B+
m)

∥∥ζ̃ ∂
�−1

ũ,rs

∥∥
L2(B+

m)

� C
[
‖u‖H�−1(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + ‖a‖Hk(Ω)‖uε‖

H
�+ 7

8 (Ω)

]

which, combined with (65), provides the estimate
∥∥ζ̃ ∂

�−1∇2ũ
∥∥

L2(B+
m)

� C
[
‖u‖H�−1(Ω) + ‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + ‖a‖Hk(Ω)‖uε‖

H�+ 7
8 (Ω)

]
.

Repeating this process for j = 1, . . . , � − 1, we conclude that∥∥ζ̃∇�ũi
∥∥

L2(B+
m)

+
∥∥ζ̃∇�+1ũi

∥∥
L2(B+

m)

� C
[
‖uε‖H�−1(Ω) + f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + ‖a‖Hk(Ω)‖uε‖

H�+ 7
8 (Ω)

] (68)

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω)

)
.

Step 4: (Completing the regularity theory) Let χ � 0 be a smooth cut-off function so that spt(χ)⊂⊂Ω.
Arguing as in Step 1 of the proof of Theorem 3.5, we find that

‖χ∇�uε‖L2(Ω) + ‖χ∇�+1uε‖L2(Ω) � C
[
‖f‖H�−1(Ω) + ‖a‖Hk(Ω)‖uε‖

H�+ 7
8 (Ω)

]
. (69)

Combining (68) and (69) establishes the inequality

‖uε‖H�+1(Ω) � C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) +

(
1 + ‖a‖Hk(Ω)

)‖uε‖
H�+ 7

8 (Ω)

]
(70)

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω)

)
. Since the interpolation inequality provides

‖uε‖
H�+ 7

8 (Ω)
� C‖uε‖1− 1

8�

H�+1(Ω)
‖uε‖ 1

8�

H1(Ω),

Young’s inequality further shows that

‖uε‖H�+1(Ω) � Cδ

[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + P(‖a‖Hk(Ω)

)‖uε‖H1(Ω)

]
+ δ‖uε‖H�+1(Ω) (71)

for a polynomial function P. Finally, choosing δ > 0 sufficiently small and then passing to the limit as
ε → 0, by the fact that

ajk
ε → ajk in Hk(Ω),

wε → w in Hmax{k,�+1}(Ω),

fε → f in H�−1(Ω),

gε → g in H�−0.5(∂Ω),

we find that uε converges to the unique weak solution u to (31), and the inequality (36) is established
by substitution of the H1-estimate (35) in the inequality (71). �

Having established the regularity theory for the case that ajk ∈ Hk(Ω) and Ω ∈ C∞, we can now
prove the following

Corollary 3.7 (Regularity for the case that ajk ∈ Hk(Ω) and Ω ∈ Hk+1). Let Ω ⊆ R
n be a bounded

Hk+1-domain for an integer k >
n

2
. Suppose that ajk ∈ Hk(Ω) satisfies the positivity condition

ajkξjξk � λ|ξ|2 ∀ ξ ∈ R
n,
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and for 1 � � � k, w ∈ Hmax{k,�+1}(Ω) (or w ∈ Hmax{k− 1
2 ,�+ 1

2}(∂Ω)) such that w vanishes nowhere on
∂Ω. Then for all f ∈ H�−1(Ω) and g ∈ H�−0.5(∂Ω), the weak solution u to (31) belongs to H�+1(Ω),
and satisfies

‖u‖H�+1(Ω) � C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

+ P(‖a‖Hk(Ω)

)(‖f‖L2(Ω) + ‖g‖H−0.5(∂ Ω)

)] (72)

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω), |∂Ω|Hk+0.5

)
and a polynomial P.

Proof. Using Definition 2.2, we let ψ : O → Ω be an Hk+1-diffeomorphism, where O is a bounded
C∞-domain. Making the change-of-variables x = ψ(y), with A denoting (∇ψ)−1 we can rewrite (31) as

ū − ∂

∂ yr

(
ājkAr

jA
s
k

∂ ū

∂ ys

)
= f̄ + ājkAs

k

∂Ar
j

∂ yr

∂ ū

∂ ys
in O,

ū · w̄ = 0 on ∂O,

Pw̄⊥

(
ājkAr

jA
s
k

∂ ū

∂ ys
N̄r − ḡ

)
= 0 on ∂O,

where we use the bar notation to denote the variable defined on O through the composition with ψ:

ā = a ◦ ψ, ū = u ◦ ψ, w̄ = w ◦ ψ, f̄ = f ◦ ψ, ḡ = g ◦ ψ,

and N̄ is the outward-pointing unit normal to O. By Proposition 2.7, Corollaries 2.10, and 2.11, we find
that

‖ājkAs
kAr

j‖Hk(O) � C(|∂Ω|Hk+0.5)‖a‖Hk(Ω),

‖w̄‖Hmax{k,�+1}(Ω) � C(|∂Ω|Hk+0.5)‖w‖Hmax{k,�+1}(Ω),

‖f̄‖H�−1(O) + ‖ḡ‖H�−0.5(∂ O) � C(|∂Ω|Hk+0.5)
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]
.

Theorem 3.6 then implies that

‖ū‖H�+1(O) � C
[
‖f̄‖H�−1(O) + ‖ḡ‖H�−0.5(∂ O)

+ P(‖AāAT‖Hk(O)

)(‖f̄‖L2(O) + ‖ḡ‖H−0.5(∂ O)

)]

� C
[
‖f‖H�−1(O) + ‖g‖H�−0.5(∂ Ω)

+ P(‖a‖Hk(Ω), |∂Ω|Hk+0.5

)(‖f‖L2(Ω) + ‖g‖H−0.5(∂ Ω)

)]

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω), |∂Ω|Hk+0.5

)
. Estimate (72) then follows from Corollary 2.11. �

Corollary 3.8 (Regularity for the classical Dirichlet and Neumann problems). Let Ω ⊆ R
n be a bounded

Hk+1-domain for an integer k >
n

2
, and ajk ∈ Hk(Ω) satisfies the positivity condition

ajkξjξk � λ|ξ|2 ∀ ξ ∈ R
n.

Let � be an integer such that 1 � � � k. Then
1. For any f ∈ H�−1(Ω), the weak solution u ∈ H1

0 (Ω) to the Dirichlet problem

− ∂

∂xj

(
ajk ∂u

∂xk

)
= f in Ω,

u = 0 on ∂Ω,

belongs to H�+1(Ω), and satisfies

‖u‖H�+1(Ω) � C‖f‖H�−1(Ω) (73)

for a constant C = C
(‖a‖Hk(Ω), |∂Ω|Hk+0.5

)
.
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2. For any f ∈ H�−1(Ω) and g ∈ H�−0.5(∂Ω), the weak solution v ∈ H1(Ω) to the Neumann problem

v − ∂

∂xj

(
ajk ∂ v

∂xk

)
= f in Ω,

ajk ∂u

∂xk
Nj = g on ∂Ω,

belongs to H�+1(Ω), and satisfies

‖v‖H�+1(Ω) � C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω)

]
(74)

for a constant C = C
(‖a‖Hk(Ω), |∂Ω|Hk+0.5

)
.

Proof. It suffices to prove the case that u and v are both scalar functions.

1. Let w = (1, 0, . . . , 0), and u be the solution to

u − ∂

∂xj

(
ajk ∂u

∂xk

)
= (f + u, 0, . . . , 0) in Ω,

u ·w = 0 on ∂Ω,

Pw⊥

(
ajk ∂u

∂xk
Nj

)
= 0 on ∂Ω.

Then u = u1 (in fact, u = (u, 0, . . . , 0)); thus (72) implies that

‖u‖H�+1(Ω) � C‖f + u‖H�−1(Ω) � C
[
‖f‖H�−1(Ω) + ‖u‖H�−1(Ω)

]

for a constant C = C
(‖a‖Hk(Ω), |∂Ω|Hk+0.5

)
. By interpolation and Young’s inequality,

‖u‖H�+1(Ω) � C‖f‖H�−1(Ω) + Cδ‖u‖H1(Ω) + δ‖u‖H�+1(Ω) ;

thus (73) follows from choosing δ > 0 sufficiently small and the estimate for the weak solution.
2. Let w = (0, 1, 0, . . . , 0), and v be the solution to

v − ∂

∂xj

(
ajk ∂v

∂xk

)
= (0, f, 0, . . . , 0) in Ω,

v ·w = 0 on ∂Ω,

Pw⊥

(
ajk ∂v

∂xk
Nj

)
= (0, g, 0, . . . , 0) on ∂Ω.

Then v = v2 (in fact, v = (0, v, 0, . . . , 0)); thus (74) follows from (72). �

In general, elliptic estimates with Sobolev class coefficients ajk have a nonlinear dependence on the
Sobolev norm of ajk. There are, however, situations when the estimate becomes linear with respect to
the Sobolev norm of ajk.

Theorem 3.9 (Regularity estimate which is linear in the coefficient matrix ajk). Suppose that the assump-
tions of Theorem 3.6 are satisfied with � = k, and that furthermore

‖a − Id‖L∞(Ω) � ε � 1.

Then the solution u ∈ Hk+1(Ω) to (31) satisfies

‖u‖Hk+1(Ω) � C
[
‖f‖Hk−1(Ω) + ‖g‖Hk−0.5(∂ Ω) +

(
1 + ‖a‖Hk(Ω)

)‖∇u‖L∞(Ω)

]
(75)

for a constant C = C
(‖w‖Hk+1(Ω)

)
. (Recall that w is an Hk+1(Ω) vector field defined in a neighborhood

of ∂Ω which vanishes nowhere on ∂Ω.)
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Proof. By Theorem 3.6 we know that u ∈ Hk+1(Ω) so Eq. (31) holds in the pointwise sense. We rewrite
(31) as

u − Δu = f ≡ ∂

∂xj

((
ajk − δjk

) ∂u

∂xk

)
+ f in Ω,

u · w = 0 on ∂Ω,

Pw⊥

( ∂u

∂N

)
= g ≡ Pw⊥

((
δjk − ajk

) ∂u

∂xk
Nj + g

)
on ∂Ω.

We then conclude from Theorem 3.6 that

‖u‖Hk+1(Ω) � C
[
‖f‖Hk−1(Ω) + ‖g‖Hk−0.5(∂ Ω)

]

� C
[
‖f‖Hk−1(Ω) + ‖g‖Hk−0.5(∂ Ω) +

∥∥ ∂

∂ xj

((
δjk − ajk

) ∂ u

∂ xk

)∥∥
Hk−1(Ω)

+
∥∥Pw⊥

((
δjk − ajk

) ∂ u

∂ xk
Nj

)∥∥
Hk−0.5(∂ Ω)

]

for a constant C = C
(‖w‖Hk+1(Ω)

)
. By Theorem 2.14,∥∥∥ ∂

∂ xj

((
δjk − ajk

) ∂ u

∂ xk

)∥∥∥
Hk−1(Ω)

�
∥∥∥(δjk − ajk

) ∂ u

∂ xk

∥∥∥
Hk(Ω)

� C
[
‖δ − a‖L∞(Ω)‖∇u‖Hk(Ω) + ‖δ − a‖Hk(Ω)‖∇u‖L∞(Ω)

]

� Cε‖u‖Hk+1(Ω) + C
(
1 + ‖a‖Hk(Ω)

)‖∇u‖L∞(Ω).

Similarly, by the trace estimate (and the fact that k− 0.5 >
n − 1

2
, where (n− 1) is the dimension of ∂Ω),

∥∥∥Pw⊥
((

δjk − ajk
) ∂ u

∂ xk
Nj

)∥∥∥
Hk−0.5(∂ Ω)

� C
∥∥∥(δjk − ajk

) ∂u

∂xk
Nj

∥∥∥
Hk−0.5(∂ Ω)

� C
[
‖δ − a‖L∞(Ω)‖∇u‖Hk−0.5(∂ Ω) + ‖δ − a‖Hk−0.5(∂ Ω)‖∇u‖L∞(∂ Ω)

� Cε‖u‖Hk+1(Ω) + C
(
1 + ‖a‖Hk(Ω)

)‖∇u‖L∞(∂ Ω)

for a constant C = C
(‖w‖Hk+1(Ω)

)
. The embedding H

n
2 +δ(Ω) ↪→C 0,α(Ω) for some α > 0 further suggests

that ∇u is uniformly Hölder continuous; thus ‖∇u‖L∞(∂ Ω) � ‖∇u‖L∞(Ω). (75) then follows from the
assumption that ε � 1. �

Remark 3.10. As we noted, inequality (75) is linear with respect to the highest-order norms. This permits
the use of linear interpolation to extend this inequality to fractional-order Sobolev spaces.

In the same way that we proved Theorem 3.6, we can prove the following complimentary result:

Theorem 3.11. Let Ω ⊆ R
n be a bounded Hk+1-domain for an integer k >

n

2
. Suppose that ajk ∈ Hk(Ω)

satisfies the positivity condition

ajkξjξk � λ|ξ|2 ∀ ξ ∈ R
n,

and for 1 � � � k, w ∈ Hmax{k,�+1}(Ω) (or w ∈ Hmax{k− 1
2 ,�+ 1

2}(∂Ω)) such that w vanishes nowhere on
∂Ω. Then for all f ∈ H�−1(Ω) and g ∈ H�−0.5(∂Ω), there exists a solution u to

ui − ∂

∂xj

(
ajk ∂ui

∂xk

)
= f i in Ω, (76a)

u×w = 0 on ∂Ω, (76b)

ajk ∂ui

∂xk
Njwi = g on ∂Ω, (76c)
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and satisfies

‖u‖H�+1(Ω) � C
[
‖f‖H�−1(Ω) + ‖g‖H�−0.5(∂ Ω) + P(‖a‖Hk(Ω)

)(‖f‖L2(Ω) + ‖g‖H−0.5(∂ Ω)

)]
(77)

for a constant C = C
(‖w‖Hmax{k,�+1}(Ω), |∂Ω|Hk+0.5

)
and a polynomial P.

4. Regularity Theory: The Proof of Theorem 1.3

In this section, we prove our main regularity result given by Theorem 1.3. We first establish the following
lemma which is also fundamental to the proof of Theorem 1.1.

Lemma 4.1. Let Ω ⊆ R
3 be a bounded Hk+1-domain with outward-pointing unit normal N. Then for

every differentiable vector field w : Ω → R
3, the following identities hold:

PN⊥

(∂w

∂N

)
= (curlw×N) + ∇∂Ωw · N on ∂Ω, (78a)

divw =
∂w

∂N
· N + 2H(w · N) + div∂Ω(PN⊥w) on ∂Ω, (78b)

curlw · N = div∂Ω(w × N) on ∂Ω, (78c)

where H is the mean curvature of ∂Ω (in local chart (U , ϑ), H is given by H = 1

2
gαβbαβ).

Proof. We define

Θ(y) = ϑ(y1, y2, 0) + y3(N ◦ ϑ)(y1, y2, 0),

and Gij = Θ,i ·Θ,j with inverse Gij . Let Ñ ≡ (N ◦ ϑ)
∣∣
y3=0

, and f̃ ≡ f ◦ Θ if f �= N. Since Θ,1, Θ,2 ⊥ Ñ,

for every vector v ∈ R
3, ṽ can be expressed as the linear combination of Θ,1, Θ,2 and Ñ. In particular,

we have

ṽi = (ṽ · Ñ)Ñi + (GαβΘj ,β ṽj)Θi,α ≡ ṽ3Ñi + ṽαΘi,α (79a)

and

f ,k ◦Θ = f̃ ,3 Ñ3 + Gαβ f̃ ,β Θk,α . (79b)

To see (78a), we first note that

∂wi

∂N
◦ ϑ=

[
w̃3Ñi+ w̃αΘi,α

]
,3

∣∣∣
y3=0

=
[
w̃3,3Ñi+ w̃α,3Θi,α+w̃αÑi,α

]∣∣∣
y3=0

; (80)

thus, since Ñ · Θ,α = Ñ · Ñ,α = 0,

PN⊥

(∂w

∂N

)
◦ ϑ =

[
w̃3,3Ñi + w̃α,3Θi,α +w̃αÑi,α

]∣∣∣
y3=0

− [
w̃3,3Ñk + w̃α,3Θk,α +w̃αÑk,α

]∣∣∣
y3=0

ÑkÑi

= w̃α,3ϑ
i,α +w̃αÑi,α . (81)

Moreover, by the identity

(curlw × N)i = εijkεjrsw
s,r Nk = (δisδkr − δirδks)ws,r Nk = (wi,k −wk,i )Nk,
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we find that

(curlw×N)i ◦ϑ =
[
(w̃i,3Ñk + Gαβw̃i,β Θk,α−w̃k,3Ñi− Gαβw̃k,β Θi,α)Ñk

]∣∣∣
y3=0

=
[
w̃i,3 −Ñiw̃k,3 Ñk − GαβΘi,α w̃k,β Ñk

]∣∣∣
y3=0

=
[
(w̃3Ñi + w̃αΘi,α ),3 −Ñi(w̃3Ñk + w̃αΘk,α ),3 Ñk

− GαβΘi,α (w̃3Ñk + w̃γΘk,γ ),β Ñk
]∣∣∣

y3=0

= w̃αÑi,α +w̃α,3ϑ
i,α −gαβϑi,α (w̃3,β − w̃γbγβ)

= w̃αÑi,α +w̃α,3ϑ
i,α −gαβϑi,α (w̃,β · Ñ). (82)

Combining (81) and (82), we conclude (78a).
Now we proceed to the proof of identity (78b). Using (79) we obtain that

divw
∣∣
∂ Ω

◦ ϑ =
[
Ñk(w̃3Ñk + w̃αΘk,α ),3 +GαβΘk,α (w̃3Ñk + w̃γΘk,γ),β

]∣∣∣
y3=0

= w̃3,3 + gαβϑk,α (w̃γ ,β ϑk,γ +w̃γϑk,βγ +Ñk,β w̃3 + Ñkw̃3,β )

= w̃3,3 + w̃γ,γ + Γβ
βγw̃γ + 2Hw̃3,

where Γγ
αβ is the Christoffel symbol defined by

Γγ
αβ =

1
2

gγδ(gαδ,β + gβδ,α − gαβ,δ) = gγδϑ,αβ · ϑ,δ .

Since g,α = ggγδgγδ,α = gΓβ
αβ , we find that the surface divergence operator div∂Ω in Definition 2.4 can

also be given by

(div∂Ωv) ◦ ϑ = ṽγ,γ + Γβ
βγ ṽγ ∀ v ∈ T(∂Ω) (or equivalently, ṽi = ṽγϑi,γ).

As a consequence,

divw =
[
w̃3,3 +div∂Ω(P

Ñ⊥w̃) + 2H̃w̃3

] ◦ ϑ−1 on ∂Ω,

where we recall that PN⊥ denotes the projection of a vector onto the tangent plane of ∂Ω. With the help
of (80), in local chart (U , ϑ) we have

[∂w

∂N
· N

]
◦ ϑ =

[
w̃3,3 Ñi + w̃α,3ϑ

i,α +w̃αgαβÑi,β
]
Ñi = w̃3,3 ; (83)

thus (78b) is valid.
Finally, by the divergence theorem we obtain that∫

∂ Ω

(curlw · N)ϕdS =
∫

Ω

curlw · ∇ϕdx =
∫

∂ Ω

(N × w) · ∇ϕdS ∀ ϕ ∈ H1(Ω).

Since (∇ϕ)i = ϕ,3 Ni + gαβϕ,α ϑi,β = ∂ ϕ

∂N
Ni + (∇∂Ωϕ)i and (N × w) ⊥ N, we conclude that

∫
∂ Ω

(curlw · N)ϕdS =
∫

∂ Ω

(N × w) · ∇∂ΩϕdS =
∫

∂ Ω

div∂Ω(w × N)ϕdS ∀ ϕ ∈ H1(Ω) ;

thus we verify (78c). �

With Lemma 4.1, we can now prove Theorem 1.3 with n = 3; we note that the case n = 2 follows
from the more general case by considering vector fields of the type u = (u1(x1, x2),u2(x1, x2), 0).

Proof of Theorem 1.3. Let u ∈ Hk+1(Ω), and curlu = f , divu = g, ∇∂Ωu · N = h. By the well-known
identity

− Δu = curlcurlu −∇divu in Ω, (84)
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we find that if χ is a smooth cut-off function with spt(χ)⊂⊂Ω, then χu satisfies

−Δ(χu) = −uΔχ − 2∇χ · ∇u + χ(curlf −∇g) in O,

χu = 0 on ∂O,

for some smooth domain O⊂⊂Ω (choose O to be a smooth domain so that spt(χ)⊂⊂O⊂⊂Ω). Standard
interior elliptic estimates then show that

‖χu‖Hk+1(O) � C
[
‖u‖Hk(O) + ‖f‖Hk(Ω) + ‖g‖Hk(Ω)

]
. (85)

Now we proceed to the estimates near the boundary. Let {ζm}K
m=1 and {ϑm}K

m=1 be a partition of unity
(subordinate to Um) and charts satisfying

(1) ϑm : B(0, rm) → Um belongs to Hk+1(B(0, rm));
(2) ϑm : B+(0, rm) → Ω ∩ Um;
(3) ϑm : B(0, rm) ∩ {y3 = 0} → ∂Ω ∩ Um,

and gm and bm denote the induced metric tensor and second fundamental form, respectively. Then

−Δ(ζmu) = ζm(curlf −∇g) − uΔζm − 2∇ζm ·∇u in Um,

(ζm∇∂Ωu) · N= ζmh on Um.

In each local chart, we define the functions

ũm = u ◦ ϑm, ζ̃m = ζm ◦ ϑm, Ñ = N ◦ ϑm,

A = (∇ϑm)−1, J = det(∇ϑm), gm = det(gm).

Taking the composition of the equations above with map ϑm, by the Piola identity (30), we find that

−[JAj
�A

k
� (ζ̃mũm),k

]
,j = J

[
ζm(curlf −∇g) − uΔζm − 2∇ζm · ∇u

]
◦ ϑm in U, (86a)

(ζ̃mũi
m),σ Ñi = ζ̃m,σ ũi

mÑi +ξm(h ◦ ϑm) on ∂U, (86b)

for some smooth domain U satisfying that spt(ζ̃m) ⊆ U and spt(ξm) ∩ ∂U ⊆ {y3 = 0}.
The function (ζ̃mũm),σ, where σ = 1, . . . ,n − 1, will be the fundamental (dependent) variable that

we are going to estimate; however, in order to apply Theorem 3.6 we need to transform the boundary
condition (86b) to a homogeneous one. This is done by introducing the function φσ which is the solution
to the elliptic equation

φσ − (JAj
�A

k
� φσ,k ),j = 0 in U,

φσ,k Ak
� JAj

�nj = ζ̃m,σ ũi
mJAj

�nj +
√

gm ζ̃m(h ◦ ϑm) on ∂U,

in which n is the outward-pointing unit normal to ∂U, and then defining wi
σ = (ζ̃mũi

m),σ −Ar
i φσ,r as

the new dependent variable of interest. Since
√

gm Ñ = JATn on B(0, rm) ∩ {y3 = 0},

wσ · Ñ = (ζ̃mũm),σ ·Ñ − φσ,k Ak
� JAj

�nj√
gm

= 0 on ∂U ;

thus wσ satisfies a homogeneous boundary condition.
Differentiating (86a) with respect to yσ, with ajk denoting JAj

�A
k
� we find that wσ satisfies

wσ − ∂

∂ yj

(
ajk ∂wσ

∂ yk

)
= F σ in U, (87a)

wσ · Ñ = 0 on ∂U, (87b)
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where F σ is given by

F i
σ =

[
J
(
ζm(curlf −∇g) − uΔζm − 2∇ζm · ∇u

) ◦ ϑm

]i

,σ

+ wi
σ +

[
(JAj

�A
k
� ),σ (ζ̃mũi

m),k
]
,j +

[
JAj

�A
k
� (Ar

i φσ,r ),k
]
,j

Moreover, by Lemma 4.1,
[
PN⊥

(∂ (wσ ◦ ϑ−1
m )

∂N

)]
◦ ϑm

=
[
curl(wσ ◦ ϑ−1

m ) × N
] ◦ ϑm + gαβ

m ϑm,α (wσ,β ·Ñ)

=
[
curl(wσ ◦ ϑ−1

m ) × N
] ◦ ϑm + gαβ

m ϑm,α (wσ · Ñ),β −gαβ
m gγδ

m (wσ · ϑ,δ )bγβ ϑ,σ ;

thus using (87b) in the second term of the right-hand side, we obtain that

P
Ñ⊥

(
ajk ∂wσ

∂xk
nj

)
=

√
gm

[
curl(wσ ◦ ϑ−1

m ) × N
] ◦ ϑm −√

gm gαβ
m gγδ

m (wσ · ϑ,δ )bγβ ϑ,σ on ∂U. (88)

Since [
curl(wσ ◦ ϑ−1

m ) × N
]i ◦ ϑm = εijkεjrsA

�
rw

s
σ,� Ñk

= A�
k

[
(ζ̃mũi

m),σ−Ar
i φσ,r

]
,� Ñk −A�

i

[
(ζ̃mũk

m),σ−Ar
kφσ,r

]
,� Ñk

= A�
k(ζ̃mũi

m),α� Ñk −A�
i(ξmũk

m),α� Ñk −A�
k(Ar

i φσ,r ),� Ñk +A�
i(A

r
kφσ,r ),� Ñk

and [
ζ̃m

(
curlu × N

) ◦ ϑm

]
,σ = εijkεjrs

(
ζ̃mA�

rũ
s
m,� Ñk

)
,σ

=
[
A�

k(ζ̃mũi
m),� Ñk −A�

i(ζ̃mũk
m),� Ñk

]
,σ−

[
A�

kξm,� ũi
mÑk −A�

iξm,� ũk
mÑk

]
,σ

= A�
k(ζ̃mũi

m),α� Ñk −A�
i(ξmũk

m),α� Ñk − (A�
kÑ

k),σ (ξmũi
m),�

− (A�
iÑ

k),σ (ζ̃mũi
m),�−

[
A�

kξm,� ζ̃m,� ũi
mÑk −A�

i ζ̃m,� ũk
mÑk

]
,σ ,

we find that [
curl(wσ ◦ ϑ−1

m ) × N
]i ◦ ϑm − [

ζ̃m

(
curlu × N

) ◦ ϑm

]
,σ

= −A�
k(Ar

i φσ,r ),� Ñk + A�
i(A

r
kφσ,r ),� Ñk + (A�

kÑ
k),σ (ζ̃mũi

m),�

+ (A�
iÑ

k),σ (ζ̃mũi
m),� +(A�

kξm,� ζ̃m,� ũi
mÑk),σ +(A�

i ζ̃m,� ũk
mÑk),σ ;

thus (88) implies that

P
Ñ⊥

(
ajk ∂wσ

∂xk
nj

)
=

√
gm Gσ on ∂U, (87c)

where Gσ is given by

Gσ =
[
ζ̃m(f × N) ◦ ϑm

]
,σ −A�

k(Ar
i φσ,r ),� Ñk + A�

i(A
r
kφσ,r ),� Ñk

+ (A�
kÑ

k),σ (ζ̃mũi
m),� +(A�

iÑ
k),σ (ζ̃mũi

m),� +(A�
k ζ̃m,� ũi

mÑk),σ

+ (A�
i ζ̃m,� ũk

mÑk),σ −gαβ
m gγδ

m

[
(ξmũi

m),σ ϑi
m,δ −Ar

i φσ,r ϑi
m,δ

]
bγβ ϑ,σ .

As a consequence, wσ is the solution to Eq. (87), and Theorem 3.6 (with � = k − 1 and w = n) then
implies that (ζ̃mũm),σ satisfies

‖wσ‖Hk(U) � C
[
‖F σ‖Hk−2(U) + ‖Gσ‖Hk−1.5(∂ U)

]
(89)

for a constant C = C
(‖a‖Hk(B(0,rm)), ‖A‖Hk(B(0,rm)), ‖Ñ‖Hk−0.5(∂ U)

)
.

We focus on the estimate of F σ first. By Corollary 2.10,

‖J‖Hk(B(0,rm)) + ‖A‖Hk(B(0,rm)) + ‖gm‖Hk−0.5(∂ U) � C(|∂Ω|Hk+0.5) ; (90)
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thus Corollary 3.8 shows that

‖φσ‖Hk+1(U) � C(‖a‖Hk(U), |∂Ω|Hk+0.5)
∥∥ζ̃m,σ ũj

mJA�
jn� +

√
gm ζ̃m(h ◦ ϑm)

∥∥
Hk−0.5(∂ U)

� C(|∂Ω|Hk+0.5)
[
‖u‖Hk(Ω) + ‖h‖Hk−0.5(∂ Ω)

]
. (91)

Moreover, by Corollary 2.11, we also have that

‖a‖Hk(U) + ‖Ñ‖Hk−0.5(∂ U) � C(|∂Ω|Hk+0.5). (92)

As a consequence,

‖F σ‖Hk−2(U) � C(|∂Ω|Hk+0.5)
[
‖f‖Hk(Ω)+‖g‖Hk(Ω)+‖h‖Hk−0.5(∂ Ω) + ‖u‖Hk(Ω)

]
. (93)

As for the estimate of Gσ, the highest order terms are (A�
kÑ

k),σ (ζ̃mũi
m),�, (A�

iÑ
k),σ (ζ̃mũi

m),� and
gαβ

m gγδ
m (ξmũi

m),σ ϑi
m,δ bγβ ϑ,σ, and we apply (18) to obtain, for example, that∥∥(A�

kÑ
k),σ (ζ̃mũi

m),� ‖Hk−1.5(∂ U) � C
∥∥(A�

kÑ
k),σ (ζ̃mũi

m),�
∥∥

Hk−1(U)

� C‖∂ (AÑ)‖Hk−1(U)‖∇(ζ̃mũm)‖Hs(U) � C(|∂Ω|2.5)‖u‖Hs+1(Ω),

where s = max
{
k − 1,

k

2
+

n

4

}
is chosen so that (18) can be applied (since s >

n

2
). Therefore,

‖Gσ‖Hk−1.5(∂ U) � C(|∂Ω|Hk+0.5)
[
‖f‖Hk−1(Ω) + ‖h‖Hk−0.5(∂ Ω) + ‖u‖Hs+1(Ω)

]
. (94)

Combining estimates (89–94), we find that

‖(ζ̃mũm),σ ‖Hk(U) � ‖wσ‖Hk(U) + ‖AT∇φσ‖Hk(U)

� C(|∂Ω|Hk+0.5)
[
‖f‖Hk(Ω) + ‖g‖Hk(Ω) + ‖h‖Hk−0.5(∂ Ω) + ‖u‖Hs+1(Ω)

]
. (95)

Finally, following the same procedure of Step 4 in the proof of Theorem 3.5 (that is, using (86a) to
obtain an expression of ζ̃m∂ k+1−j∇jũm,33) and then arguing by induction on j, we find that

‖ζ̃mũm‖Hk+1(U) � C(|∂Ω|Hk+0.5)
[
‖f‖Hk(Ω) + ‖g‖Hk(Ω) + ‖h‖Hk−0.5(∂ Ω) + ‖u‖Hs+1(Ω)

]
.

The estimate above and estimate (85) provide us with

‖u‖Hk+1(U) � C(|∂Ω|Hk+0.5)
[
‖f‖Hk(Ω) +‖g‖Hk(Ω) +‖h‖Hk−0.5(∂ Ω) +‖u‖Hs+1(Ω)

]
.

Since 0 < s + 1 < k + 1, by interpolation and Young’s inequality,

‖u‖Hs(Ω) � Cδ‖u‖L2(Ω) + δ‖u‖Hk+1(Ω) ∀ δ > 0,

so by choosing δ > 0 small enough we conclude (8). �

By studying the vector-valued elliptic equation (31), with the help of Theorem 3.11 we can also
conclude (9).

Remark 4.2. Suppose that Ω is a bounded Hk+2-domain for k >
n

2
. Since ∇∂Ωu·N = ∇∂Ω(u·N)−∇∂ΩN·u,

by interpolation we find that

‖∇∂Ωu · N‖Hk−0.5(∂ Ω) � ‖u · N‖Hk+0.5(∂ Ω) +‖∇∂ΩN · u‖Hk−0.5(∂ Ω)

� ‖u · N‖Hk+0.5(∂ Ω) +C(|∂Ω|Hk+1.5)‖u‖Hk(Ω)

� ‖u · N‖Hk+0.5(∂ Ω) +C(|∂Ω|Hk+1.5 , δ)‖u‖L2(Ω) +δ‖u‖Hk+1(Ω).

Hence, by choosing δ > 0 small enough we conclude that there exists a generic constant C = C(|∂Ω|Hk+1.5)
such that

‖u‖Hk+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hk(Ω) + ‖divu‖Hk(Ω) + ‖u · N‖Hk+0.5(∂ Ω)

]
.
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Similarly, we also have that

‖u‖Hk+1(Ω) � C
[
‖u‖L2(Ω) + ‖curlu‖Hk(Ω) + ‖divu‖Hk(Ω) + ‖u × N‖Hk+0.5(∂ Ω)

]

for a constant C = C(|∂Ω|Hk+1.5). We thus recover the classical elliptic estimates for u ∈ Hk+1(Ω)
whenever the unit normal N has Hk+0.5(∂Ω) regularity.

5. Existence and Uniqueness Theory: The Proof of Theorem 1.1

We begin with the following problem: find a vector field v such that

curlv = f in Ω, (96a)

divv = g in Ω, (96b)

v · N = h on ∂Ω. (96c)

From the divergence theorem and the fact that div curl = 0 , we must require that

divf = 0 and
∫

Ω

g dx =
∫

∂ Ω

h dS. (97)

Since g and h satisfy the solvability condition (97), there exists a solution φ to the Poisson equation
with Neumann boundary conditions:

Δφ = g in Ω, (98a)
∂φ

∂N
= h on ∂Ω. (98b)

Let u = v −∇φ. Then u satisfies

curlu = f in Ω, (99a)

divu = 0 in Ω, (99b)

u · N = 0 on ∂Ω. (99c)

Hence, if (99) is solvable, then there exists a solution to (96).

5.1. Uniqueness of the Solution

We show that under the assumptions of Theorem 1.1, the solution to (96) is unique. We first assume that
Ω is a bounded convex domain. (Note that a convex set must be simply connected.) If ϕ ∈ C 2(Ω)∩C 1(Ω),
then for all u ∈ H1(Ω),

∫
Ω

curlu · curlϕ dx =
∫

Ω

u · curlcurlϕ dx +
∫

∂ Ω

(N × u) · curlϕ dS

=
∫

Ω

u · (−Δϕ + ∇divϕ) dx +
∫

∂ Ω

(N × u) · curlϕ dS

=
∫

Ω

u · (−Δϕ + ∇divϕ) dx +
∫

∂ Ω

[ ∂ϕ

∂N
· u − ukNjϕ

j ,k

]
dS

=
∫

Ω

(∇u :∇ϕ − divudivϕ) dx +
∫

∂ Ω

[
(u · N)divϕ − ukNjϕ

j ,k

]
dS.
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Using the notation introduced in the proof of Lemma 4.1, in any local chart (U , ϑ) we have on ∂Ω,

(ukNjϕ
j ,k ) ◦ ϑ = ũkÑj

(
ϕ̃j ,n Ñk + gαβϕ̃j ,α ϑk,β

)
= (ũ · Ñ)(ϕ̃j ,n Ñj) + gαβ(ũ · ϑ,β )(ϕ̃ · Ñ),α −gαβ(ũ · ϑ,β )Ñ,α ·ϕ̃
= (ũ · Ñ)(ϕ̃j ,n Ñj) + gαβ(ũ · ϑ,β )(ϕ̃ · Ñ),α −gαβgγδbαγ(ũ · ϑ,β )(ϕ̃ · ϑ,δ ),

so that using (78b),∫
Ω

curlu · curlϕ dx =
∫

Ω

(∇u : ∇ϕ − divudivϕ) dx

+
∫

∂ Ω

(u · N)
[
div∂Ω(PN⊥ϕ) + 2H(ϕ · N)

]
dS

+
K∑

m=1

∫
∂ Ω∩Um

ζm

[
gαβ

m gγδ
m bmαγ

(
(u ◦ ϑm) · ϑm,β )

)(
(ϕ ◦ ϑm) · ϑm,δ )

] ◦ ϑ−1
m dS

−
K∑

m=1

∫
∂ Ω∩Um

ζm

[
gαβ

m

(
(u ◦ ϑm) · ϑm,β

)(
(ϕ · N) ◦ ϑm

)
,α
] ◦ ϑ−1

m dS. (100)

Therefore, if v1,v2 ∈ H1(Ω) are two solutions to (96), then v = v1 − v2 satisfies

‖curlv‖2
L2(Ω) + ‖divv‖2

L2(Ω)

= ‖∇v‖2
L2(Ω) +

K∑
m=1

∫
∂ Ω∩Um

ζm

[
gαβ

m gγδ
m bmαγ

(
(v ◦ ϑm) · ϑm,β )

)(
(v ◦ ϑm) · ϑm,δ )

] ◦ ϑ−1
m dS.

Since Ω is convex, gαβ
m gγδ

m bmαγ is non-negative definite for all m; thus the Poincaré inequality (26) shows
that for a constant c > 0,

c‖v‖2
H1(Ω) � ‖∇v‖2

L2(Ω) � ‖curlv‖2
L2(Ω) + ‖divv‖2

L2(Ω) = 0

which implies that v = 0. In other words, the H1-solution to (96) must be unique if Ω is bounded and
convex.

Now we assume the more general case that Ω is a simply connected open set, and that there are two
solutions v1 and v2 in H1(Ω). Then v = v1 − v2 satisfies curlv = 0 in Ω. By the simple connectedness
of Ω, v must be of the form v = ∇p for some scalar potential p. Then the equation

curlv = 0 in Ω, (101a)

divv = 0 in Ω, (101b)

v · N = 0 on ∂Ω, (101c)

has only the trivial solution v = 0. In other words, if Ω is the disjoint union of simply connected open
sets, then Eq. (2) with boundary condition (4) has a unique solution.

5.2. Existence of Solutions

We solve (99) by finding a solution u of the form u = curlw for a divergence-free vector field w. Indeed,
if such a w exists, then using (84), w must solve

−Δw = f in Ω, (102a)

divw = 0 in Ω, (102b)

curlw · N = 0 on ∂Ω. (102c)
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We note that if w is sufficiently smooth, then the divergence-free condition (102b) can instead be treated
as a boundary condition

divw = 0 on ∂Ω. (102b’)

In fact, taking the divergence of (102a) we find that

Δdivw = divf = 0 in Ω,

where we use the solvability condition (97) to establish the last equality; thus if w satisfies (102a, b’), w
automatically has zero divergence in Ω. In other words, we may instead assume that w satisfies (102a,
b’, c). Our goal next is to find a suitable boundary condition to replace (102b’, c).

5.2.1. The Case that Ω = B(0, R). Now we assume that Ω = B(0, R) for some R > 0. Having obtained
(78b) and (78c), in order to achieve (102b’, c) it is natural to consider the case PN⊥w = 0. In other
words, we consider the following elliptic problem (with a non-standard boundary condition)

−Δw = f in Ω, (103a)

PN⊥w = 0 on ∂Ω, (103b)
∂w

∂N
· N + 2H(w · N) = 0 on ∂Ω, (103c)

where we remark that H = R−1 is a positive constant. We also note that (102b’) and (102c) are direct
consequence of (103b, c), and (83) shows that (103c) is in fact a Robin boundary condition for w̃3. The
goal is to find a solution to (103) in the Hilbert space

H1
τ (Ω) ≡ {

w ∈ H1(Ω)
∣∣PN⊥w = 0 on ∂Ω

}
=
{
w ∈ H1(Ω)

∣∣w × N = 0 on ∂Ω
}
.

In order to solve (103), we find the weak formulation first, and this amounts to computing
∫

∂ Ω

∂ w

∂N
·

ϕ dS. If ϕ ∈ H1
τ (Ω), then ϕ = (ϕ · N)N; thus, if w satisfies (103c), then for all ϕ ∈ H1

τ (Ω),

−
∫

∂ Ω

∂w

∂N
· ϕ dS = −

∫
∂ Ω

[∂w

∂N
· N

]
(ϕ · N) dS = 2

∫
∂ Ω

H(w · N)(ϕ · N) dS. (104)

Using (104), we can state the following

Definition 5.1. A vector-valued function w ∈ H1
τ (Ω) is said to be a weak solution of (103) if∫

Ω

∇w :∇ϕ dx+2
∫

∂ Ω

H(w ·N)(ϕ ·N) dS = (f ,ϕ)L2(Ω) ∀ϕ ∈ H1
τ (Ω), (105)

where ∇w : ∇ϕ = wi,j ϕ i,j .

Since H > 0, the left-hand side of (105) obviously defines a bounded, coercive bilinear form on
H1

τ (Ω) × H1
τ (Ω). In fact, using Poincaré’s inequality (26) we find that for a generic constant c > 0,∫

Ω

∇w : ∇wdx + 2
∫

∂ Ω

H(w · N)(w · N) dS � c‖w‖2
H1(Ω) w ∈ H1

τ (Ω) ;

hence by the Lax-Milgram theorem, there exists a unique w ∈ H1
τ (Ω) satisfying the weak formulation

(105) and the basic energy estimate

‖w‖H1(Ω) � C‖f‖L2(Ω). (106)

Before proceeding, we establish the corresponding regularity theory for Eq. (103).

Lemma 5.2. Let Ω = B(0, R) ⊆ R
3 for some R > 0. Then for all f ∈ H�−1(Ω) for � � 1, the weak

solution w to (103) in fact belongs to H�+1(Ω), and satisfies

‖w‖H�+1(Ω) � C‖f‖H�−1(Ω). (107)
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Proof. As the proof of Theorem 3.5 we prove this lemma by induction. The weak solution w indeed
belongs to H1(Ω) and satisfies (106). Assume that w ∈ Hj(Ω) for j � �. If χ is a smooth cut-off function
so that spt(χ)⊂⊂Ω, the same computation as in the proof of Theorem 3.5 (with ajk = δjk) shows that

‖χ∇j+1w‖L2(Ω) � C
[
‖f‖Hj−1(Ω) + ‖w‖Hj(Ω)

]
, (108)

where the constant C depends on the distance between the support of χ and ∂Ω.
Now we focus on the estimate of w near ∂Ω. Let {ζm,Um, ϑm}K

m=1 be defined as in the proof of
Theorem 1.3, and gαβ = ϑm,α ·ϑm,β . Define

ϕ1 = (−1)jζmN
[
Λε∂

2j
Λε(ζ̃mw̃m · Ñ)

] ◦ ϑ−1
m ,

where ζ̃m = ζm ◦ ϑm, w̃m = w ◦ ϑ and Ñ = N ◦ ϑ. Since PN⊥ϕ1 = 0, ϕ1 can be used as a test function
in (105). Similar to the computations in Step 2 in the proof of Theorem 3.5, we find that

∫
Ω

∇w :∇ϕ1 dx � 1
2

∥∥∇∂
j
Λε(ζ̃mw̃m· Ñ)

∥∥2

L2(B+
m)

−C‖u‖Hj(Ω)

[∥∥∂ j
Λε(ζ̃mw̃m· Ñ)

∥∥
H1(B+

m)
+‖u‖Hj(Ω)

]

� 1
2

∥∥∇∂
j
Λε(ζ̃mw̃m· Ñ)

∥∥2

L2(B+
m)

−Cδ‖w‖2
Hj(Ω)−δ

∥∥∂ j
Λε(ζ̃mw̃m· Ñ)

∥∥
H1(B+

m)
, (109)

Now we focus on the term
∫

∂ Ω
H(w · N)(ϕ1 · N) dS. Making a change of variable and integrating by

parts, we find that

∫
∂ Ω

H(w · N)(ϕ1 · N) dS =
∫
{y3=0}

∂
j
Λε

[√
g H(ζ̃mw̃m ·Ñ)

]
∂

j(
Λε(ζ̃mw̃m ·Ñ)

)
dS

=
∫
{y3=0}

∂Λε

[√
g H∂

j−1
(ζ̃mw̃m ·Ñ)

]
∂

j(
Λε(ζ̃mw̃m ·Ñ)

)
dS

+
j−1∑
k=1

(j−1

k

)∫
{y3=0}

∂Λε

[
∂

k
(
√

g H)∂
j−1−k

(ζ̃mw̃m·Ñ)
]
∂

j(
Λε(ζ̃mw̃m·Ñ)

)
dS.

Using the commutator notation �A,B�f = A(Bf) − B(Af),

∫
∂ Ω

H(w · N)(ϕ1 · N) dS

=
∫
{y3=0}

√
g H

∣∣∂ j
Λε(ζ̃mw̃m ·Ñ)

∣∣2dS

+
∫
{y3=0}

[
∂ (

√
g H)∂

j−1
Λε(ζ̃mw̃m ·Ñ)]∂ j(

Λε(ζ̃mw̃m ·Ñ)
)
dS

+
∫
{y3=0}

∂
[�

Λε,
√

g H
�
∂

j−1
(ζ̃mw̃m ·Ñ)

]
∂

j
Λε(ζ̃mw̃m ·Ñ) dS

+
j−1∑
k=1

(j−1

k

)∫
{y3=0}

Λε

[
∂

k
(
√

g H)∂
j−k

(ζ̃mw̃m ·Ñ)
]
∂

j(
Λε(ζ̃mw̃m ·Ñ)

)
dS

+
j−1∑
k=1

(j−1

k

)∫
{y3=0}

Λε

[
∂

k+1
(
√

g H)∂
j−1−k

(ζ̃mw̃m ·Ñ)
]
∂

j(
Λε(ζ̃mw̃m ·Ñ)

)
dS. (110)
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The commutator estimate (29) and interpolation, as well as Young’s inequality, show that
∫
{y3=0}

∂
[�

Λε,
√

g H
�
∂

j−1
(ζ̃mw̃m ·Ñ)

]
∂

j
Λε(ζ̃mw̃m ·Ñ) dS

� −C
∥∥∂ j−1

Λε(ζ̃mw̃m ·Ñ)
∥∥

L2({y3=0})
∥∥∂ j

Λε(ζ̃mw̃m ·Ñ)
∥∥

L2({y3=0})

� −Cδ‖w‖2
Hj(Ω) − δ

∥∥∂ j
Λε(ζ̃mw̃m ·Ñ)

∥∥2

H1(B(0,rm))
.

Using Hölder’s inequality to estimate the other terms we obtain that
∫

∂ Ω

H(w · N)(ϕ1 · N) dS �
∫
{y3=0}

√
g H

∣∣∂ j
Λε(ζ̃mw̃m ·Ñ)

∣∣2dS

− Cδ‖w‖2
Hj(Ω) − δ

∥∥∂ j
Λε(ζ̃mw̃m ·Ñ)

∥∥2

H1(B(0,rm))
. (111)

Moreover, integration by parts and Hölder’s inequality show that
∫

Ω

f · ϕ1 dx � C‖f‖Hj(Ω)

∥∥∂ j+1
Λε(ζ̃mw̃m ·Ñ)

∥∥
L2(B(0,rm))

� Cδ‖f‖2
L2(Ω) + δ

∥∥∂ j+1
Λε(ζ̃mw̃m ·Ñ)

∥∥2

L2(B(0,rm))
. (112)

Combining (109), (111) and (112),

∥∥∇∂
j
Λε(ζ̃mw̃m · Ñ)

∥∥2

L2(B+
m)

+
∫
{y3=0}

√
g H

∣∣∂ j
Λε(ζ̃mw̃m ·Ñ)

∣∣2dS

� Cδ

[
‖f‖2

L2(Ω)+‖w‖2
Hj(Ω)

]
+δ

∥∥∂ j
Λε(ζ̃mw̃m ·Ñ)

∥∥2

H1(B(0,rm))
. (113)

Using Poincaré’s inequality, there exists a constant c > 0 such that

c‖∂ j
Λε(ζ̃mw̃m · Ñ)‖2

H1(Ω) �
∥∥∇∂

j
Λε(ζ̃mw̃m · Ñ)

∥∥2

L2(B+
m)

+
∫
{y3=0}

√
g H

∣∣∂ j
Λε(ζ̃mw̃m ·Ñ)

∣∣2dS,

so by choosing δ > 0 small enough we find that

∥∥∂ j
Λε(ζ̃mw̃m · Ñ)

∥∥
H1(B+

m)
� C

[
‖f‖L2(Ω) + ‖w‖Hj(Ω)

]
.

Since the right-hand side of the estimate above is independent of ε, we can pass ε to the limit and obtain
that

∥∥∂ j
(ζ̃mw̃m · Ñ)

∥∥
H1(B+

m)
� C

[
‖f‖L2(Ω) + ‖w‖Hj(Ω)

]
. (114)

The estimate above provides the regularity of w in the normal direction.
To see the regularity of the tangential component of w, an alternative test function has to be employed.

Define

ϕ2 = (−1)jζmN × [
Λε∂

2j
Λε(ζ̃mw̃m × Ñ)

] ◦ ϑ−1
m .

We note that since w × N = 0 on ∂Ω, ϕ2 = 0 on ∂Ω so ϕ2 may be used as a test function. Since
u · (v×w) = (u×v) ·w, with J and A denoting det(∇ϑm) and (∇ϑm)−1 respectively, using brs to denote
JAr

kAs
k we find that



Vol. 19 (2017) Regularity Theory for Elliptic Equations of Hodge-Type 409

∫
Ω

∇w : ∇ϕ2 dx = (−1)j

∫
B+

m

brsw̃i
m,s

[
ζ̃mÑ×Λε∂

2j
Λε(ζ̃mw̃m×Ñ)

]i
,r dy

= (−1)j

∫
B+

m

brs(ζ̃mw̃i
m,s×Ñ)iΛε∂

2j
Λε(ζ̃mw̃m×Ñ)i,r dy

+ (−1)j

∫
B+

m

brsw̃i
m,s

[
(ζ̃mÑ),r×Λε∂

2j
Λε(ζ̃mw̃m×Ñ)

]i
dy

=
∫

B+
m

∂
j
Λε

[
brs(ζ̃mw̃m×Ñ)i,s

]
∂

j
Λε(ζ̃mw̃m×Ñ)i,r dy

−
∫

B+
m

∂
j
Λε

[
brs
(
(ζ̃m,s w̃,m×Ñ)i+(ζ̃mw̃,m×Ñ,s)i

)]
∂

j
Λε(ζ̃mw̃m×Ñ)i,r dy

+
∫

B+
m

∂
j
Λεb

rs
[
w̃i

m,s ×(ζ̃mÑ),r
]
∂

j
Λε(ζ̃mw̃m×Ñ)idy.

Similar to the procedure of deriving (46), by Leibniz’s rule,∫
B+

m

∂
j
Λεb

rs(ζ̃mw̃m × Ñ)i,s ∂
j
Λε(ζ̃mw̃m × Ñ)i,r dy

=
∫

B+
m

brs∂
j
Λε(ζ̃mw̃m × Ñ)i,s ∂

j
Λε(ζ̃mw̃m × Ñ)i,r dy

+
∫

B+
m

∂ brs∂
j−1

Λε(ζ̃mw̃m × Ñ)i,s ∂
j
Λε(ζ̃mw̃m × Ñ)i,r dy

+
∫

B+
m

∂
�
brs,Λε

�
∂

j−1
(ζ̃mw̃m × Ñ)i,s ∂

j
Λε(ζ̃mw̃m × Ñ)i,r dy

+
j−2∑
k=0

(j − 1

k

) ∫
B+

m

∂Λε

[
∂

j−1−k
brs∂

k
(ζ̃mw̃m × Ñ)i,s

]
∂

j
Λε(ζ̃mw̃m × Ñ)i,r dy.

Since {ϑm}M
m=1 is chosen so that A ≈ Id, brs is positive-definitive. As a consequence, by the commutator

estimate (29) and Young’s inequality,∫
Ω

∇w : ∇ϕ2 dx � 1
2

∥∥∂ j∇Λε(ζ̃mw̃m×Ñ)
∥∥2

L2(B+
m)

− C
∥∥∂ j−1∇Λε(ζ̃mw̃m×Ñ)

∥∥
L2(B+

m)

∥∥∂ j∇Λε(ζ̃mw̃m×Ñ)
∥∥

L2(B+
m)

� 1
4

∥∥∂ j∇Λε(ζ̃mw̃m×Ñ)
∥∥2

L2(B+
m)

−C‖w‖2
Hj(Ω).

On the other hand, ∫
Ω

f · ϕ2 dx � C‖f‖Hj−1(Ω)

∥∥∂ j+1
Λε(ζ̃mw̃m×Ñ)

∥∥
L2(B(0,rm))

� Cδ‖f‖2
L2(Ω) + δ

∥∥∂ j+1
Λε(ζ̃mw̃m×Ñ)

∥∥2

L2(B(0,rm))
;

thus using ϕ2 as a test function in (105) and choosing δ > 0 small enough, by the fact that
∫

∂ Ω
H(w ·

N)(ϕ2 · N) dS = 0 we conclude that
∥∥∂ j

Λε(ζ̃mw̃m×Ñ)
∥∥

H1(B+
m)

� C
[
‖f‖L2(Ω) + ‖w‖Hj(Ω)

]
. (115)

Since the right-hand side is ε-independent, we can pass ε to the limit and obtain that
∥∥∂ j

(ζ̃mw̃m×Ñ)
∥∥

H1(B+
m)

� C
[
‖f‖L2(Ω) + ‖w‖Hj(Ω)

]
. (116)

The estimate above provides the regularity of w in the tangential direction.
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Since every vector u can be expressed as u = Ñ× (u× Ñ) + (u · Ñ)Ñ, the combination of (114) and
(116) then shows that

∥∥ζ̃m∂
j
w̃m

∥∥
H1(B+

m)
� C

[
‖f‖L2(Ω) + ‖w‖Hj(Ω)

]
.

Finally, we follow Step 4 of Theorem 3.5 or Step 3 of Theorem 3.6 to conclude that∥∥ζ̃m∇jw̃m

∥∥
H1(B+

m)
� C

[
‖f‖L2(Ω) + ‖w‖Hj(Ω)

]
. (117)

Estimate (107) is concluded from combining the H1-estimate (106), the interior estimate (108) and the
boundary estimate (117). �

5.2.2. The Case that Ω is a General Hk+1-Domain. If Ω is a general Hk+1-domain, the mean curvature
H can be negative on some portion of ∂Ω, leading to a problematic Robin boundary condition (103c),
with the wrong sign. To overcome this difficulty, we instead consider a similar problem defined on a ball
containing Ω.

Let B(0, R) be an open ball so that Ω⊂⊂B(0, R), and let F denote a divergence-free vector field on
B(0, R) such that F = f in Ω; that is, F is a divergence-free extension of f . For a vector field f ∈ L2(Ω),
such an F (in B(0, R)\Ω) can be obtained by first solving the elliptic equation

Δφ = 0 in B(0, R)\Ω, (118a)
∂φ

∂N
= f · N on ∂Ω, (118b)

∂φ

∂N
= 0 on ∂B(0, R), (118c)

and setting F = ∇φ on B(0, R)\Ω. We note that (118) is solvable if the solvability condition (3) holds.
To see this, let Ωi be one of the connected components of Ω, and let Oi be one of bounded connected
components of Ω�

i with boundary Γi. Then Γi must be one of the connected components of ∂Ω, and (118)
implies that in particular,

Δφ = 0 in Oi,

∂ φ

∂N
= f · N on Γi.

Therefore, (3) has to be satisfied in order for the above equation to be solvable. We also note that
F ∈ L2(B(0, R)) even if f ∈ H�−1(Ω); thus F must be less regular than f due to the lack of continuity
of the derivatives of F across ∂Ω.

Next, consider the following elliptic system:

−Δw = F in B(0, R), (119a)

PN⊥w = 0 on ∂B(0, R), (119b)
∂w

∂N
· N + 2H(w · N) = 0 on ∂B(0, R). (119c)

By Lemma 5.2, there exists a strong solution w ∈ H2(B(0, R)) to (119) (so that (119) also holds in a
pointwise sense).

Now we show that w has zero divergence. Let d = divw ∈ H1(B(0, R)). We claim that d is a weak
solution to

Δd = 0 in B(0, R), (120a)

d = 0 on ∂B(0, R) ; (120b)

that is, d ∈ H1
0 (B(0, R)) and d satisfies∫

B(0,R)

∇d · ∇ϕdx = 0 ∀ ϕ ∈ H1
0 (B(0, R)). (121)
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The boundary condition d = 0 on ∂B(0, R) is obvious because of (78b) and (119b, c). To see (121), we
note that it suffices to show that Δd = 0 in the sense of distribution, since C∞

c (B(0, R)) is dense in
H1

0 (B(0, R)). Let ϕ ∈ C∞
c (B(0, R)), and define ψ = ∇ϕ. Then ψ ∈ C∞

c (B(0, R)), and

−
∫

B(0,R)

Δw · ψ dx =
∫

B(0,R)

F · ψ dx =
∫

B(0,R)\Ω
F · ∇ϕdx +

∫
Ω

f · ∇ϕdx

=
∫

∂ Ω

(
f · N − ∂φ

∂N

)
ϕdS = 0.

On the other hand, since w ∈ H2(B(0, R)), we have d ∈ H1(B(0, R)) and

−
∫

B(0,R)

Δw · ψ dx =
∫

B(0,R)

∇w : ∇ψ dx =
∫

B(0,R)

wi,j ϕ,ij dx

= −
∫

B(0,R)

d,j ϕ,j dx = −
∫

B(0,R)

∇d · ∇ϕdx ;

thus we conclude (121). Therefore, d is the weak solution to (120) and so d must vanish in Ω which implies
that divw = 0 in Ω. Finally, since w ∈ H2(Ω), applying (84), we find that v = curlw ∈ H1(Ω) satisfies
curlv = f in Ω.

So far, we have shown that there exists v ∈ H1(B(0, R)) satisfying

curlv = F in B(0, R),

divv = 0 in B(0, R),

v · N = 0 on ∂B(0, R),

which in particular shows that curlv = f in Ω. It is not clear that if v possesses better regularity; however,
since v has been constructed using a non-smooth forcing function F . Let p be the H2-solution to the
elliptic equation

Δp = 0 in Ω,

∂ p

∂N
= −v · N on ∂Ω,

and define u = v + ∇p; then, u is a solution to (99). We note that u ∈ H1(Ω) and satisfies

‖u‖H1(Ω) � ‖v‖H1(Ω) + ‖∇p‖H1(Ω) � C(|∂Ω|Hk+0.5)‖w‖H2(Ω)

� C(|∂Ω|Hk+0.5)‖f‖L2(Ω). (122)

In the following lemma, we show that while v and ∇p both have low regularity, in fact, their sum, u,
possesses H�-regularity if f ∈ H�−1(Ω) for � � 2.

Lemma 5.3. Let Ω ⊆ R
3 be a bounded Hk+1-domain for k >

3

2
. Then for all f ∈ H�−1(Ω) for 1 � � � k,

there exists a solution u ∈ H�(Ω) to (99) satisfying

‖u‖H�(Ω) � C(|∂Ω|Hk+0.5)‖f‖H�−1(Ω). (123)

Proof. We again show that u ∈ H�(Ω) by induction. We have shown the validity of the lemma for the
case that � = 1. Now suppose that � � 2 and u ∈ Hj(Ω) for j � �− 1. Since u = curlw ∈ H1(Ω) satisfies
(99b,c), using (100) we find that u satisfies

∫
Ω

curlu · curlϕ dx =
∫

Ω

∇u : ∇ϕ dx −
∫

∂ Ω

h · ϕ dS ∀ϕ ∈ H1
n(Ω),
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where in local chart (U , ϑ) h is given by h ◦ ϑ = −gαβgγδ
[
(u ◦ ϑ) · ϑ,β

]
bαγ ϑ,δ. On the other hand,∫

Ω

f · curlϕ dx =
∫

Ω

εijkf iϕk,j dx = −
∫

Ω

εijkf i,j ϕkdx +
∫

∂ Ω

εijkf iNjϕ
kdS

=
∫

Ω

curlf · ϕ dx +
∫

∂ Ω

(f × N) · ϕ dS ∀ϕ ∈ H1(Ω).

Using (99a), we find that u satisfies∫
Ω

∇u : ∇ϕ dx =
∫

Ω

curlf · ϕ dx +
∫

∂ Ω

(f × N + h) · ϕ dS ∀ϕ ∈ H1
n(Ω) ;

thus, u is a weak solution of the following elliptic system:

−Δu = curlf in Ω, (124a)

u · N = 0 on ∂Ω, (124b)

PN⊥

( ∂u

∂N
− f × N − h

)
= 0 on ∂Ω. (124c)

Let us first assume that k � 3. Then k − 1.5 > 1 = 2

2
. Moreover, j − 0.5 � k − 1.5 ; thus Proposition

2.7 shows that

‖h‖Hj−0.5(∂ Ω) � C(|∂Ω|Hk+0.5)‖b‖Hk−1.5({y3=0})‖u‖Hj−0.5(∂ Ω) � C(|∂Ω|Hk+0.5)‖u‖Hj(Ω). (125)

Therefore, by Corollary 3.7 (with ajk = δjk and w = N) we conclude that

‖u‖Hj+1(Ω) � C(|∂Ω|Hk+0.5)
[
‖curl f‖Hj−1(Ω) + ‖f × N + h‖Hj−0.5(∂ Ω)

]

� C(|∂Ω|Hk+0.5)
[
‖f‖Hj(Ω) + ‖u‖Hj(Ω)

]

which implies u ∈ Hj+1(Ω). Estimate (123) then is concluded from estimate (122), interpolation and
Young’s inequality.

The case that k = 2 (and � = 2) is a bit tricky. In this case (125) cannot be applied since b,u both
belong to H0.5(∂Ω) while H0.5(∂Ω) is not a multiplicative algebra. To see why u indeed belongs to H2(Ω)
if f ∈ H1(Ω), let uε to be the solution to

λuε − Δuε = curlf + λu in Ω, (126a)

uε · N = 0 on ∂Ω, (126b)

PN⊥

(
∂ uε

∂N
− f × N − hε

)
= 0 on ∂Ω, (126c)

where u on the right-hand side of (126a) is the solution to (99), hε is a smooth version of h given by

hε = −
K∑

m=1

ζm

[
gαβ

m gγδ
m

(
(uε ◦ ϑm) · ϑm,β

)
(Λεbmαγ)ϑm,δ

]
◦ ϑ−1

m

in which Λε is the horizontal convolution defined in Sect. 2.5, and λ � 1 is a big constant so that the
bilinear form

B(uε,ϕ) = λ(uε,ϕ)L2(Ω) + (∇uε,∇ϕ)L2(Ω) +
∫

∂ Ω

hε · ϕ dS

is coercive on H1
n(Ω) × H1

n(Ω). Since Λεbm is smooth, we find that hε ∈ H0.5(∂Ω) satisfying

‖hε‖H0.5(∂ Ω) � C(|∂Ω|H2.5)
[
‖∂ yϑm‖6

H1.25(B(0,rm)∩{y3=0})‖Λεbm‖H1.25(B(0,rm)∩{y3=0})‖uε‖H0.5(∂ Ω)

]

� Cε‖uε‖H1(Ω) � Cε

[
‖f‖L2(Ω) + λ‖u‖L2(Ω)

]
� Cε‖f‖L2(Ω),
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where the dependence on ε in the constant Cε is due to the horizontal convolution Λε. As a sequence,
uε ∈ H2(Ω), and this fact further shows that hε satisfies

‖hε‖H0.5(∂ Ω) � C(|∂Ω|H2.5)
[
‖∂ yϑm‖6

H1.25(B(0,rm)∩{y3=0})‖bm‖H0.5(B(0,rm)∩{y3=0})‖uε‖H1.25(∂ Ω)

]

� C(|∂Ω|H2.5)‖uε‖H1.75(Ω) � C(|∂Ω|H2.5)‖uε‖ 1
4
H1(Ω)‖uε‖ 3

4
H2(Ω).

By Young’s inequality, we find that that uε satisfies

‖uε‖H2(Ω) � C(|∂Ω|)
[
‖curlf‖L2(Ω) + ‖f × N + hε‖H0.5(∂ Ω)

]

� C(|∂Ω|H2.5 , δ)‖f‖H1(Ω) + δ‖uε‖H2(Ω).

Choosing δ > 0 small enough, we conclude that uε has a uniform H2 upper bound and possesses an H1

convergent subsequence uεj with limit v. This limit v must be u since u is also a weak solution to (126)
and the strong solution to (126) is unique (by the Lax-Milgram theorem). Moreover, u satisfies (123) (for
� = 2). �

Lemma 5.3 together with the elliptic estimate

‖∇φ‖Hj+1(Ω) � C
[‖g‖Hj(Ω) + ‖h‖Hj−0.5(∂ Ω)

]
for the solution φ to (98) then concludes the first part of Theorem 1.1.

5.3. Solutions with Prescribed Tangential Trace

Having considered the boundary condition v · N = h, we now establish the existence and uniqueness of
the following problem:

curlv = f in Ω, (127a)

divv = g in Ω, (127b)

v × N = h on ∂Ω, (127c)

in which (127c) prescribes the tangential trace of v. We impose the following conditions on the forcing
functions f and h:

divf = 0 in Ω, f satisfies (3), and h · N = 0 on ∂Ω. (128a)

Moreover, using (78c) and the identity N × (v × N) = v − (v · N)N on ∂Ω, we find that f and h must
have the relation

f · N = div∂Ωh on ∂Ω. (128b)

For (127) to have a solution, one additional solvability condition has to be imposed. Let u be a solution
to (99), and φ be the solution to

Δφ = g in Ω,

φ = 0 on ∂Ω.

Then w = v − u −∇φ satisfies

curlw = 0 in Ω, (129a)

divw = 0 in Ω, (129b)

w × N = h − u × N on ∂Ω. (129c)
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Taking the cross product of N with (129c), we find that

w − (w · N)N = N × h − [
u − (u · N)N

]
on ∂Ω.

If C is a closed curve on ∂Ω enclosing a surface Σ ⊆ Ω so that C = ∂Σ with a parametrization r and n
is the unit normal on Σ compatible with the orientation of C, then the Stokes theorem implies that

0 =
∫

Σ

curlw ·n dS =
∮

C

w ·dr =
∮

C

[w − (w ·N)N] ·dr =
∮

C

(N × h − u) ·dr

=
∮

C

(N × h) ·dr −
∫

Σ

curlu · n dS =
∮

C

(N × h) ·dr −
∫

Σ

f · n dS,

As a consequence,
∫

Σ

f · n dS =
∮

∂ Σ

(N × h) · dr ∀Σ ⊆ Ω, ∂Σ ⊆ ∂Ω. (128c)

Conditions (128a), (128b) and (128c) constitute the solvability conditions for equation (127). We remark
that (128c) follows from (128b) if Ω is simply connected; however, if Ω is not simply connected, then
(128c) is not necessarily true even if (128b) holds.

5.3.1. Uniqueness of Solutions. The kernel of the tangential trace problem (127) has been well studied
in [2,5,6,13–15,17] and references therein. We shall establish uniqueness for the case that Ω is of class
Hk+1 for k >

3

2
. Without loss of generality, we can assume that Ω is a connected bounded open set.

We let {Γi}I
i=0 denote the connected components of ∂Ω in which Γ0 is the boundary of the unbounded

connected component of Ω�. To establish uniqueness of solutions to (127), we look for solutions to the
equation

curlv = 0 in Ω, (130a)

divv = 0 in Ω, (130b)

v × N = 0 on ∂Ω. (130c)

If I � 1 (which means ∂Ω has multiple connected components), let {ri}I
i=1 solve

−Δri = 0 in Ω, (131a)

ri = 0 on Γ0, (131b)

ri is constant on Γj ∀ 1 � j � I, (131c)∫
Γj

∂ ri

∂N
dS = δij ,

∫
Γ0

∂ ri

∂N
dS = −1, (131d)

whose existence is guaranteed by the Lax-Milgram theorem applied to the variational problem
∫

Ω

∇ri · ∇ϕdx = ϕ
∣∣
Γi

∀ ϕ ∈ {q ∈ H1(Ω)
∣∣ q|Γ0 = 0 and q is constant on each Γi for all 1 � i � I

}
. (132)

In fact, let ri be the solution to the variation problem above. Define C�
i = ri

∣∣
Γ�

, and let qi be the solution
to (7). Then qi ∈ Hk+1(Ω) by Corollary 3.8. Moreover, ri −C�

i q� ∈ H1
0 (Ω) can be used as a test function

in (132); thus
∫

Ω

∇ri · ∇(ri − C�
i q�)dx = 0.
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As a consequence,∫
Ω

∇(ri − Cj
i qj) · ∇(ri − C�

i q�)dx = −Cj
i

∫
Ω

∇qj · ∇(ri − C�
i q�)dx

= −Cj
i

∫
∂ Ω

∂ qj

∂N
ridS + Cj

i C�
i

∫
∂ Ω

∂ qj

∂N
q�dS = −Cj

i C�
i

∫
Γ�

∂ qj

∂N
dS

+ Cj
i C�

i

∫
Γ�

∂ qj

∂N
dS = 0 ;

hence ri − Cj
i qj is a constant. This constant must be zero since ri and qj both vanish on Γ0; thus we

establish the identity
ri = C�

i q� ∀ 1 � i � I. (133)
Therefore, ri ∈ Hk+1(Ω). Integrating by parts shows that

−
∫

Ω

ϕΔri dx +
I∑

j=1

ϕ
∣∣
Γj

∫
Γj

∂ ri

∂N
dS = ϕ

∣∣
Γi

∀ ϕ ∈ {q ∈ H1(Ω)
∣∣ q|Γ0 = 0 and q is constant on each Γi for all 1 � i � I

}
.

Choosing ϕ ∈ H1
0 (Ω) arbitrarily, we conclude that ri satisfies (131a). Since ϕ can be chosen as an arbitrary

constant on Γk, we must have that
∫
Γj

∂ ri

∂N
dS = δij ; thus

∫
Γ0

∂ ri

∂N
dS =

∫
Γ0

∂ ri

∂N
dS +

I∑
j=1

∫
Γj

∂ ri

∂N
dS − 1 =

∫
∂ Ω

∂ ri

∂N
dS − 1 =

∫
Ω

Δridx − 1 = −1.

In other words, ri satisfies (131d); hence ri is a strong solution to (131). We note that ∇ri is not identically
zero in Ω since ri cannot be constant in Ω.

Let v ∈ H1(Ω) be a solution to (130). Define F ∈ H1(Ω) by

F = v −
I∑

i=1

(∫
Γi

v · NdS

)
∇ri.

Then curlF = 0 in Ω. Using (131b, c), we find that

F × N = v × N −
I∑

i=1

(∫
Γi

v · NdS

)
(∇ri × N) = −

I∑
i=1

(∫
Γi

v · NdS

)
(∇∂Ωri × N) = 0 on ∂Ω.

Moreover, for 1 � k � I,
∫

Γk

F · NdS =
∫

Γk

v · NdS −
I∑

i=1

(∫
Γi

v · NdS

)∫
Γk

∂ ri

∂N
dS = 0.

Since divF = 0 in Ω,
∫

Γ0

F · NdS =
∫

Γ0

F · NdS +
I∑

k=1

∫
Γk

F · NdS =
∫

∂ Ω

F · NdS =
∫

∂ Ω

divF dx = 0 ;

hence, F satisfies (3). Lemma 5.3 then guarantees the existence of a vector ψ ∈ H2(Ω) satisfying

curlψ = F in Ω,

divψ = 0 in Ω,

ψ · N = 0 on ∂Ω.

As a consequence,

‖F ‖2
L2(Ω) =

∫
Ω

F · curlψdx =
∫

Ω

curlF · ψdx +
∫

∂ Ω

(N × F ) · ψdS = 0
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which implies that F = 0. In other words, if v is a solution to (130), then

v =
I∑

i=1

(∫
Γi

v · NdS

)
∇ri in Ω ; (134)

that is, {∇ri}I
i=1 spans the solution space of (130). Therefore, as long as the boundary of a connected

component of Ω has only one connected component, then only the trivial solution to (130) exists, and
uniqueness is established.

Remark 5.4. The identities (133) and (134) show that {∇qi}I
i=1 span the solution space of (130); see, for

example, [2,5,6,14,15,17].

5.3.2. Existence of Solutions. Let the pair (w, p) denote the solutions to the following elliptic problems:

Δw = 0 in Ω,

w = N × h on ∂Ω,

and

Δp = g − divw in Ω,

p = 0 on ∂Ω.

Then (w, p) satisfies

‖w‖H�(Ω) + ‖p‖H�+1(Ω) � C(|∂Ω|Hk+0.5)
[‖g‖H�−1(Ω) + ‖h‖H�−0.5(∂ Ω)

]
. (135)

We note that if u is a solution to the equation

curlu = f − curlw in Ω, (136a)

divu = 0 in Ω, (136b)

u × N = 0 on ∂Ω, (136c)

then v = u + w + ∇p is a solution to (127).
We first establish existence of an H1(Ω) solution to (136), and then employ our regularity theory

on Sobolev class domains to show that solutions to (127) have the desired H�(Ω)-regularity stated in
Theorem 1.1. We use the following lemma, which is Theorem 3.17 in [2], to establish the existence of a
u ∈ H1(Ω) solving (136).

Lemma 5.5. Suppose that Ω ⊆ R
3 is a Lipschitz domain, and {Σj}J

j=1 are cuts of Ω; that is, Σj ⊆ Ω for
all j ∈ {1, . . . , J} are connected smooth 2-manifolds with unit normal n such that Ω0 ≡ Ω\⋃J

j=1 Σj is
simply connected, where J is the minimal number of cuts required. Then a function F ∈ H1(Ω) satisfies
divF = 0 in Ω, F · N = 0 on ∂Ω, and∫

Σj

F · n dS = 0 for each cut Σj, 1 � j � J ;

if and only if there exists a unique a vector potential u ∈ H1(Ω) satisfying

curlu = F in Ω,

divu = 0 in Ω,

u × N = 0 on ∂Ω,∫
Γ

u · N dS = 0 for each connected component Γ of ∂Ω.

Now we prove the existence of a solution u ∈ H1(Ω) to (136). First, noting that our domain Ω is of
class Hk+1 with k >

n

2
, by the Sobolev embedding theorem, Ω is a Lipschitz domain. Let F = f − curlw.

It is clear that divF = 0 in Ω. By the fact that

h · N = 0, w = N × h and f · N = div∂Ωh on ∂Ω,
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(78c) implies that

F · N = f · N − div∂Ω(w × N) = f · N − div∂Ωh = 0 on ∂Ω.

Finally, let t denote the unit tangent vector on ∂Σ such that ñ = t × n is the outward pointing unit
normal to Σj . Since f satisfies (128c), using (78c) again we conclude that∫

Σj

F · n dS =
∫

Σj

f · n dS −
∫

Σj

divΣj
(w × n) dS =

∫
Σj

f · n dS −
∫

∂ Σj

(w × n) · ñ ds

=
∫

Σj

f · n dS −
∫

∂ Σj

w · (n × ñ) ds =
∫

Σj

f · n dS −
∫

∂ Σj

w · t ds

=
∫

Σj

f · n dS −
∮

∂ Σj

(N × h) · dr = 0.

Therefore, F satisfies all the conditions of Lemma 5.5, and so we have established the existence of a
solution u ∈ H1(Ω) to (136). We next establish the regularity of this solution.

5.3.3. Regularity of Solutions. We follow the proof of Lemma 5.3 to establish the following

Lemma 5.6. Let Ω ⊆ R
3 be a bounded Hk+1-domain for k >

3

2
. Then for all (f ,w) ∈ H�−1(Ω) × H�(Ω)

for 1 � � � k, there exists a solution u ∈ H�(Ω) to (136) satisfying

‖u‖H�(Ω) � C(|∂Ω|Hk+0.5)
[‖f‖H�−1(Ω) + ‖w‖H�(Ω)

]
. (137)

Proof. It suffices to prove the case � � 2. Using (100) we find that if ϕ ∈ H1
τ (Ω),∫

Ω

curl(f − curlw) · ϕ dx =
∫

Ω

curlu · curlϕ dx

=
∫

Ω

∇u : ∇ϕ +
∫

∂ Ω

(u · N)
[
div∂Ωϕ + 2H(ϕ · N)

]
dS

=
∫

Ω

∇u : ∇ϕ dx +
∫

∂ Ω

2H(u · N)(ϕ · N) dS.

In other words, u is a weak solution of the following elliptic system:

−Δu = curlf + Δw in Ω, (138a)

u × N = 0 on ∂Ω, (138b)
∂u

∂N
· N + 2H(u · N) = 0 on ∂Ω. (138c)

Similar to the proof of Lemma 5.3, by induction we conclude that u ∈ H�(Ω) satisfies

‖u‖H�(Ω) � C‖curl f + Δw‖H�−2(Ω)

which concludes the lemma. �

The regularity of u together with the inequality (135) concludes the proof of regularity of the tangential
trace problem, hence we have finished the proof of Theorem 1.1.

6. Fractional-Order Regularity: The Proof of Theorem 1.6

Now we proceed to the proof of Theorem 1.6. We only prove (12) since the proof of (13) is similar.
By assumption ∂Ω is in a small tubular neighborhood of the normal bundle over ∂D; hence, there is a
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height function h(x, t) such that each point on ∂Ω is given by x + h(x)n(x), x ∈ ∂D, where n is the
outward-pointing unit normal to ∂D. Let ψ : D → R

2 solve

Δψ = 0 in D,

ψ = e + hn on ∂D,

where e is the identity map. Then ψ : ∂D → ∂Ω, and standard elliptic estimates show that for a constant
C = C(|∂D|Hk+0.5),

‖∇ψ − Id‖Hk(D) � C‖h‖Hk+0.5(∂D) � Cε � 1 (139)

which further shows that ψ : D → Ω is an Hk+1-diffeomorphism since ‖h‖Hk+0.5(∂D) < ε � 1. We note
that according to the proofs of Corollary 2.10 and Theorem 2.13, there exist generic constants c1 and C1

independent of |∂Ω|Hk+0.5 such that if j � k + 1,

c1(1 − ε)‖f‖Hj(Ω) � ‖f ◦ ψ‖Hj(D) � C1(1 + ε)‖f‖Hj(Ω) ∀ f ∈ Hj(Ω). (140)

As a consequence, letting A = (∇ψ)−1 we obtain that

‖(curlu) ◦ ψ‖Hk(D) = ‖εijkAr
j(u

k ◦ ψ),r ‖Hk(D) = ‖εijk(Ar
j − δr

j )(uk ◦ ψ),r +εijk(uk ◦ ψ),j ‖Hk(D)

� ‖curl(u ◦ ψ)‖Hk(D) − C‖A − Id‖Hk(D)‖u ◦ ψ‖Hk+1(D),

where the constant C = C(|∂D|Hk+0.5). Therefore,

‖curl(u ◦ ψ)‖Hk(D) � ‖(curlu) ◦ ψ‖Hk(D) + Cε‖u ◦ ψ‖Hk+1(D)

� C1‖curlu‖Hk(Ω) + (C1 + C)ε‖u‖Hk+1(Ω). (141a)

Similarly,

‖div(u ◦ ψ)‖Hk(D) � C1‖divu‖Hk(Ω) + (C1 + C)ε‖u‖Hk+1(Ω). (141b)

Let n be the outward-pointing unit normal to ∂D. Then by the identity N ◦ ψ = ATn

|ATn| , we find that

‖(N ◦ ψ) − n‖Hk−0.5(∂ D) � C2(|∂D|Hk+0.5)ε.

Therefore, in addition to estimate (141a,b), we also have

‖∇∂D(u ◦ ψ) · n‖Hk−0.5(∂D) � ‖∇∂D(u ◦ ψ) · (N ◦ ψ)‖Hk−0.5(∂D) + C2ε‖u‖Hk+1(∂ Ω)

� C1(1 + ε)‖∇∂Ωu · N‖Hk−0.5(∂ Ω) + C2ε‖u‖Hk+1(Ω)

� C1‖∇∂Ωu · N‖Hk−0.5(∂ Ω) + (C1 + C2)ε‖u‖Hk+1(Ω).

Finally, by Theorem 1.3, there exists a generic constant C3 = C3(|∂D|Hk+0.5) such that

‖v‖Hk+1(D) � C3

[
‖v‖L2(D) +‖curlv‖Hk(D) +‖divv‖Hk(D) +‖∇∂Dv · n‖Hk−0.5(∂D)

]
∀ v ∈ Hk+1(D).

Letting v = u ◦ ψ, using (140) and (141) we find that

c1(1 − ε)‖u‖Hk+1(Ω) � C3C1

[
‖u‖L2(Ω) +‖curlu‖Hk(Ω) +‖divu‖Hk(Ω) +‖∇∂Ωu · N‖Hk−0.5(∂ Ω)

]

+ C3(C1 + C2 + C)ε‖u‖Hk+1(Ω) ∀u ∈ Hk+1(Ω).

Since ε � 1, the last term on the right-hand side can be absorbed by the left-hand side, yielding a linear
inequality. The conclusion of Theorem 1.6 then follows by linear interpolation.
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Appendix A. Proofs of the Inequalities in Sect. 2.3

Proof of Proposition 2.1. Let p ∈ ∂Ω. Since ∂Ω is a C k-surface, there exists a tangent space Tp∂Ω to the
boundary ∂Ω at p, and in a neighborhood of p ∂Ω can be view as a graph of a function φ defined on that
neighborhood. In other words, there exist an ((n − 1)-dimensional) ball D(p,R) ⊆ Tp∂Ω and a C k-map
φ : D(p,R) → ∂Ω such that {

(y′, φ(y′)) ∈ R
n
∣∣ y′ ∈ D(p,R)

} ⊆ ∂Ω.

Choose an othornormal basis {e1, . . . , en−1} on the tangent space Tp∂Ω such that every y′ ∈ Tp∂Ω can
be written as y′ = (y1, . . . , yn−1) in the sense that y′ = y1e1 + · · · yn−1en−1, and let N denote the inward-
pointing unit normal to the tangent plane Tp∂Ω. Then {e1, . . . , en−1,N} as the orthonormal basis in R

n.
We define ϑ : B(0, R) → R

n, where B(0, R) is a n-dimensional ball, by

ϑ(y′, yn) = y′ +
(
yn + φ(y′)

)
N ∀ y′ ∈ D(p,R), (y′, yn) ∈ B(0, R),

or equivalently,

ϑ(y1, . . . , yn) =
(
y1, . . . , yn−1, yn + φ(y′)

)
.

Since Tp∂Ω is a tangent space, ϑ,α (0) · N = 0 for all 1 � α � n − 1; thus φ,α (0) = 0 for all
1 � α � n − 1. By the continuity of ∇φ, there exists r > 0 such that

|φ,α (y′)| < ε whenever |y′| < r and 1 � α � n − 1.

It is clear that ϑ is injective on B(0, r), and the inverse function theorem implies that ϑ : B(0, r) → U :=
ϑ(B(0, r)) is a C k-diffeomorphism between open sets B(0, r) and U . Moreover, ϑ : B(0, r)∩{yn = 0} → ∂Ω
and by the choice of N, ϑ : B(0, r) ∩ {yn > 0} → Ω. Finally, since

∇ϑ(y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 1 0

φ,1 (y′) · · · · · · φ,n−1 (y′) 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

we immediately conclude that det(∇ϑ) = 1 and ‖∇ϑ − Id‖L∞(B(0,r)) < ε. Therefore, we establish that
for each p ∈ ∂Ω, there exist ϑ : B(0, r) → U satisfying

(1) ϑ : B(0, r) → U is a C k-diffeomorphism;
(2) ϑ : B(0, r) ∩ {yn = 0} → U ∩ ∂Ω;
(3) ϑ : B(0, r) ∩ {yn > 0} → U ∩ Ω;
(4) det(∇ϑ) = 1;
(5) ‖∇ϑ − Id‖L∞(B(0,r)) � ε.

The proposition is concluded by the fact that ∂Ω is compact. �

Proof of Proposition 2.7. We estimate ∇jf∇�−jg for j = 1, . . . , � as follows:

(1) If 1 � j � n

2
, by the Sobolev inequalities

‖w‖
L

n
j−σ (Ω)

� Cσ‖w‖
H

n
2 −j+σ(Ω)

(if 0 < σ < 1),

‖w‖
L

2n
n−2(j−σ) (Ω)

� C‖w‖Hj−σ(Ω),

we find that

‖∇jf∇�−jg‖L2(Ω) � ‖∇jf‖
L

n
j−σ (Ω)

‖∇�−jg‖
L

2n
n−2(j−σ) (Ω)

� Cσ‖f‖H
n
2 +σ(Ω)

‖g‖H�−σ(Ω).
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(2) If j = �, by the Sobolev inequality

‖w‖L∞(Ω)� Cσ‖w‖
H

n
2 +σ(Ω)

,

we find that

‖∇jf∇�−jg‖L2(Ω) � Cσ‖f‖H�(Ω)‖g‖H
n
2 +σ(Ω)

.

(3) If n

2
< j < � (this happens only when n

2
< � � k), we consider the following two sub-cases:

(a) The case � � n : Similar to the previous case, by the Sobolev inequalities

‖w‖
L

2n
n−2(�−j) (Ω)

� C‖w‖H�−j(Ω) and ‖w‖
L

n
�−j (Ω)

� C‖w‖
H

n
2 −�+j(Ω)

,

we obtain that

‖∇jf∇�−jg‖L2(Ω) � ‖∇jf‖
L

2n
n−2(�−j) (Ω)

‖∇�−jg‖
L

n
�−j (Ω)

� C‖f‖H�(Ω)‖g‖H
n
2 (Ω)

.

(b) The case n < � � k : If j > k − n

2
, by the Sobolev inequalities

‖w‖
L

2n
n−2(k−j) (Ω)

� C‖w‖Hk−j(Ω) and ‖w‖
L

n
k−j (Ω)

� C‖w‖
H

n
2 −k+j(Ω)

,

we obtain that

‖∇jf∇�−jg‖L2(Ω) � ‖∇jf‖
L

2n
n−2(k−j) (Ω)

‖∇�−jg‖
L

n
k−j (Ω)

� C‖f‖Hk(Ω)‖g‖H
n
2 −k+�(Ω)

.

Now suppose that n

2
< j � k − n

2
. Note that if 0 < σ <

1

2
,

‖w‖
H

n
2 +σ(Ω)

� Cσ‖w‖W j,∞(Ω) � Cσ‖w‖Hk(Ω),

‖w‖
H

n
2 −k+�(Ω)

� C‖w‖H�−j(Ω) � C‖w‖H�−σ(Ω).

Therefore, by the Gagliardo–Nirenberg–Sobolev interpolation inequality we obtain that

‖∇jf∇�−jg‖L2(Ω) � ‖f‖W j,∞(Ω)‖g‖H�−j(Ω)

� Cσ‖f‖1−αj

H
n
2 +σ(Ω)

‖f‖αj

Hk(Ω)
‖g‖αj

H
n
2 −k+�(Ω)

‖g‖1−αj

H�−σ(Ω)

for some αj ∈ (0, 1); thus Young’s inequality implies that

‖∇jf∇�−jg‖L2(Ω) � Cσ

[
‖f‖

H
n
2 +σ(Ω)

‖g‖H�−σ(Ω) + ‖f‖Hk(Ω)‖g‖H
n
2 −k+�(Ω)

]
.

Summing over all the possible �, we conclude that for 0 < σ <
1

2
,

�∑
j=1

‖∇jf∇�−jg‖L2(Ω) �

⎧⎨
⎩

Cσ‖f‖H
n
2 +σ(Ω)

‖g‖H�−σ(Ω) if � � n

2
,

Cσ

[
‖f‖

H
n
2 +σ(Ω)

‖g‖H�−σ(Ω) + ‖f‖Hk(Ω)‖g‖H
n
2 +σ(Ω)

]
otherwise.

Estimate (15) is then concluded by the fact that for all σ ∈ (0,
1

4

)
,

n
2

+ σ � k and
n
2

+ σ � � − σ if (in addition) � >
n
2
.

Finally, we conclude estimate (16) by an additional estimate

‖f∇�g‖L2(O) � ‖f‖L∞(O)‖g‖H�(O) � C‖f‖Hk(O)‖g‖H�(O). �
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Proof of Corollary 2.10. By the definition of determinant, centered (16) shows that

‖J‖Hk(O) � C‖∇ψ‖n
Hk(O).

By the Sobolev embedding Hk(O) ⊆ C 0,α(O), we find that J is uniformly continuous on O. Since J �= 0 in
O (since ψ is a diffeomorphism), ‖1/J‖L∞(O) < ∞ and |J | � 1/‖1/J‖L∞(O) > 0. Let δ = 1/‖1/J‖L∞(O).
The cofactor formula for the inverse of matrices then shows that

‖A‖L2(O) �
∥∥∥ 1

J

∥∥∥
L∞(O)

‖JA‖L2(O) � C

δ
‖∇ψ‖n−2

Hk(O)
‖∇ψ‖L2(O). (142)

Therefore, by interpolation and Young’s inequality, using (15) with σ = 1

8
we find that

‖∇kA‖L2(O) � 1
δ
‖J∇kA‖L2(O) � 1

δ

[
‖∇k(JA)‖L2(O) +

k∑
j=1

(k

j

)
‖∇jJ∇k−jA‖L2(O)

]

� C

δ

[
‖∇ψ‖n−1

Hk(O)
+ ‖J‖Hk(O)‖A‖

Hk− 1
8 (O)

]

� C

δ

[
‖∇ψ‖n−1

Hk(O)
+ ‖J‖Hk(O)‖A‖1− 1

8k
Hk(O)

‖A‖ 1
8k
L2(O)

]

� Cδ,δ1

(‖∇ψ‖Hk(O)

)
+ δ1‖A‖Hk(O).

Combining the estimate above with (142), by choosing δ1 > 0 sufficiently small we conclude (21b). �

Proof of Corollary 2.11. We prove (22) by induction. Let J = det(∇ψ) and A = (∇ψ)−1. With the help
of (21), the case that � = 0 is concluded by

‖f‖2
L2(Ω) =

∫
O

|(f ◦ ψ)(y)|2|J(y)| dy � C(‖∇ψ‖Hk(O))‖f ◦ ψ‖2
L2(O) (143)

and
‖f ◦ ψ‖2

L2(O) =
∫

Ω

|f(x)|2 1
(J ◦ ψ−1)(x)

dx � 1
δ
‖f‖2

L2(Ω), (144)

where δ = 1/‖1/J‖L∞(O) > 0 is a lower bound for ‖J‖L∞(O). Suppose that (22) holds for � = j (� k).
Then for � = j + 1, by (16) and (21) we obtain that

‖∇j+1f‖L2(Ω) � ‖∇f‖Hj(Ω) � C(‖∇ψ‖Hk(O))‖(∇f) ◦ ψ‖Hj(O)

� C(‖∇ψ‖Hk(O))
∥∥AT∇(f ◦ ψ)‖Hj(O)

(� holds if j � k) � C(‖∇ψ‖Hk(O))‖A‖Hk(O)‖D(f ◦ ψ)‖Hj(O)

� C(‖∇ψ‖Hk(O))‖f ◦ ψ‖Hj+1(O)

and

‖∇j+1(f ◦ ψ)‖L2(O) =
∥∥∇j

[
(∇f) ◦ ψDψ

]∥∥
L2(O)

�
∥∥(∇f) ◦ ψDψ

∥∥
Hj(O)

(� holds if j � k) � C‖∇ψ‖Hk(O)‖(∇f) ◦ ψ‖Hj(O)

� C‖∇ψ‖Hk(O)‖∇f‖Hj(Ω) � C‖∇ψ‖Hk(O)‖f‖Hj+1(Ω),

which, together with the (143) and (144), concludes the case that � = j + 1. �
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