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A MODEL FOR RAYLEIGH–TAYLOR MIXING AND INTERFACE
TURNOVER∗

RAFAEL GRANERO-BELINCHÓN† AND STEVE SHKOLLER‡

Abstract. We first develop a new mathematical model for two-fluid interface motion, sub-
jected to the Rayleigh–Taylor (RT) instability in two-dimensional fluid flow, which in its simplest
form, is given by htt(α, t) = AgΛh − σ

ρ++ρ−
Λ3h − Apα(Hhtht), where Λ = Hpα and H denotes

the Hilbert transform. In this so-called h-model, A is the Atwood number, g is the acceleration,
σ is surface tension, and ρ± denotes the densities of the two fluids. We derive our h-model us-
ing asymptotic expansions in the Birkhoff–Rott integral-kernel formulation for the evolution of an
interface separating two incompressible and irrotational fluids. The resulting h-model equation is
shown to be locally and globally well-posed in Sobolev spaces when a certain stability condition
is satisfied; this stability condition requires that the product of the Atwood number and the ini-
tial velocity field be positive. The asymptotic behavior of these global solutions, as t → ∞, is
also described. The h-model equation is shown to have interesting balance laws, which distinguish
the stable dynamics from the unstable dynamics. Numerical simulations of the h-model show that
the interface can quickly grow due to nonlinearity, and then stabilize when the lighter fluid is on
top of the heavier fluid and acceleration is directed downward. In the unstable case of a heavier
fluid being supported by the lighter fluid, we find good agreement for the growth of the mixing
layer with experimental data in the “rocket rig” experiment of Read and Youngs. We then derive
an interface model for RT instability, with a general parameterization z(α, t) = (z1(α, t), z2(α, t))

such that z satisfies ztt = Λ[ A
|∂αz|2

H(zt · (∂αz)⊥H(zt · (∂αz)⊥)) +
[p]

ρ++ρ−
+ Agz2]

(∂αz)
⊥

|∂αz|2
+ zt ·

(∂αz)⊥(
(∂αzt)

⊥

|∂αz|2
− (∂αz)

⊥2(∂αz·∂αzt)
|∂αz|4

). This more general RT z-model allows for interface turnover.

Numerical simulations of the z-model show an even better agreement with the predicted mixing layer
growth for the rocket rig experiment.
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1. Introduction. The instability of a heavy fluid layer supported by a light one
is generally known as Rayleigh–Taylor (RT) instability (see Rayleigh [12] and Taylor
[17]). It can occur under gravity and, equivalently, under an acceleration of the fluid
system in the direction toward the denser fluid; in particular, RT is an interface
fingering instability, which occurs when a perturbed interface, between two fluids of
different density, is subjected to a normal pressure gradient. Whenever the pressure
is higher in the lighter fluid, the differential acceleration causes the two fluids to mix.
See Sharp [16], Youngs [18, 19], and Kull [11] for an overview of the RT instability.
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The Euler equations of inviscid hydrodynamics serve as the basic mathematical
model for RT instability and mixing between two fluids. This highly unstable system
of conservation laws is both difficult to analyze (as it is ill-posed in the absence of
surface tension and viscosity) and difficult to computationally simulate at the small
spatial scales of RT mixing. As such, our objective is to develop model equations,
which can be used to predict the RT mixing layer and growth rate.

In order to derive our RT interface models, we shall assume both incompressible
and irrotational flow for the two-fluid Euler equations. Rather than proceeding with a
direct approximation of the Euler equations, we shall instead work with the equivalent
Birkhoff–Rott singular integral-kernel formulation for the evolution of the material
interface. We have found that this formulation possesses a certain robustness in
regards to approximations founded upon expansions in various parameters.

In the simplest case, in which the interface is modeled as a graph (α, h(α, t)) of
a signed height function h(α, t), our approach yields a second-order–in-time quadrat-
ically nonlinear wave equation for the position of the interface, the h-model, which is
given by

htt(α, t) = AgΛh− σ

ρ+ + ρ−
Λ3h−A∂α(Hhtht) ,

where Λ = H∂α and H denotes the Hilbert transform. In this h-model equation, A
denotes the Atwood number, g is the acceleration, σ ≥ 0 is the surface tension, and
ρ± > 0 denotes the densities of the two fluids.

As we will describe below, our h-model equation for RT instability is both locally
and globally well-posed in Sobolev spaces when a stability condition is satisfied, which
requires the product of the Atwood number and the initial velocity field to be positive.
Under such a stability condition, we also derive the asymptotic behavior of solutions
to the h-model as t→∞. A number of interesting energy laws are also derived, which
distinguish between stable and unstable interface dynamics

Numerical simulations are performed, which show that the h-model is capable
of producing remarkable growth of the interface, followed by (possibly oscillatory)
decay to a rest state in the case that the lighter fluid is supported by the heavier
fluid. In the highly unstable case, where a heavy fluid is supported by the lighter
fluid, we perform the classical “rocket rig” experiment of Read [13] and Youngs [19]
for the case of unstable RT mixing layer growth, and find very good agreement for
the growth rates with the predicted quadratic growth rate of Youngs [19], and with
both direct numerical simulations (DNS) and experimental data.

Finally, in order to allow for the interface to turn over (rather than simply remain-
ing a graph) we develop a more general z-model for the interface parameterization
z(α, t) = (z1(α, t), z2(α, t)) which satisfies

ztt = Λ

[
A

|∂αz|2
H
(
zt · (∂αz)⊥H(zt · (∂αz)⊥)

)
+

[[p]]

ρ+ + ρ−
+Agz2

]
(∂αz)

⊥

|∂αz|2

+ zt · (∂αz)⊥
(

(∂αzt)
⊥

|∂αz|2
− (∂αz)

⊥2(∂αz · ∂αzt)
|∂αz|4

)
.

Rather than constraining the interface amplitude to grow at the RT instability, the z-
model can allow for interface turnover. We perform numerical simulations to demon-
strate the improvement afforded by this more general model, and the even better
accuracy in matching the predicted growth of the RT mixing layer for the rocket
rig experiment. We also perform the so-called “tilted rig” experiment, in which
the tank holding the fluid is tilted by a small angle away from vertical. Again,
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Γ(t)

u+, ρ+

u−, ρ−

Fig. 1. The blue curve is an illustration of the interface Γ(t), separating two fluids at a time
t ∈ [0, T ]. The fluid on top of Γ(t) has density ρ+, while the fluid on the bottom has density ρ−.

our simulations demonstrate good qualitative agreement with DNS. To conclude, we
also perform a numerical simulation for a Kelvin–Helmholtz problem, for which the
Atwood number is set to zero to prevent an RT instability; starting from a steep
mode-1 wave, we show roll-over of the interface with a very localized energy spec-
trum.

2. Equations for multiphase flow. The Euler equations are a system of con-
servation laws, modeling the dynamics of multiphase inviscid fluid flow. For incom-
pressible two-dimensional motion, the conservation of momentum for a homogeneous,
inviscid fluid can be written as

(1) ρ
(
ut + (u · ∇)u

)
+∇p = −gρe2,

where u = (u1, u2) denotes the velocity vector field of the fluid, p is the scalar pressure
function, ρ is the density, g is the acceleration, ∇ = (∂x1

, ∂x2
) is the gradient vector,

and e2 = (0, 1).
For incompressible flow, the conservation of mass is given by

∇ · u = 0 .

We shall further assume that the fluid is irrotational so that

(2) ω := curlu = 0,

where ω is the vorticity of the fluid, and curlu = ∂1u
2 − ∂2u

1.
We assume that there are two fluids with densities ρ+ and ρ−, separated by a

material interface Γ(t), where t denotes an instant of time in the interval [0, T ]. As
shown in Figure 1, the fluid with density ρ+ lies above Γ(t), while the fluid with
density ρ− lies below Γ(t).

For each instant of time t ∈ [0, T ], the interface Γ(t) is parameterized by a function
z(α, t). We will provide a special choice for the parameterization z(α, t) below.

We denote the jump of a field variable f(x, t) across Γ(t) by

[[f ]] = f+ − f− .

We let n and τ denote the unit normal and tangent vectors to Γ(t), respectively; for
the RT instability, we have the following jump conditions:

(3) [[u · n]] = 0 , [[u · τ ]] 6= 0 on Γ(t) .

Note that ∂αz(α, t) is a tangent vector to Γ(t) at the point z(α, t), so that

[[u · ∂αz]] 6= 0.
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Consequently, the velocity is not continuous at the interface. Due to the fact that
the shape of the interface is determined only by the normal component of the fluid
velocity, the motion of the interface has a tangential reparameterization symmetry,
so that we can add any tangential velocity to the motion of the interface, with the
hope that this will simplify the analysis. As such, the evolution equation for the
parameterization of Γ(t) is written as

(4) zt(α, t) = u(z(α, t), t) + c(α, t)∂αz(α, t),

where the function c(α, t) will be specified below.

3. The integral kernel formulation. A number of modal models have been
proposed for the evolution of the RT mixing layer; see, for example, Rollin and An-
drews [15] and Goncharov [8], and the references therein. These modal models are
based on a modal decomposition and approximation of the evolution equations for
the parameterization of the interface and the velocity potential; such models consist
of a large coupled system of nonlinear ODEs for a finite set of Fourier modes.

Rather than developing a modal model for RT mixing and approximating the
partial differential equations themselves, we shall take another approach to the de-
velopment of an RT model, which is founded upon the Birkhoff–Rott integral-kernel
formulation for the evolution of an interface, separating two incompressible and irro-
tational fluids.

In order to introduce the integral-kernel formulation, which consists of singular
integrals, we begin by defining the principal value integral of a given function f as

P.V.

∫
R
f(β)dβ = lim

ε→0+

∫
(−1/ε,−ε)∪(ε,1/ε)

f(β)dβ .

The well-known Biot–Savart kernel KBS is an integral representation for ∇⊥∆−1,
where ∇⊥ = (−∂x2

, ∂x1
), and ∆ = ∂2

x1
+ ∂2

x2
denotes the Laplace operator in the

plane. In other words, if the two fluids fill the plane, then ∆−1 is given by the
Newtonian potential and the Biot–Savart kernel is given by

(5)

KBS(x, y) =
1

2π
∇⊥ log(x)

=
1

2π

(
− x2 − y2

(x2 − y2)2 + (x1 − x1)2
,

x1 − y1

(x2 − y2)2 + (x1 − y1)2

)
.

Similarly, if the fluid flow is periodic in the horizontal variable, then

(6) KBS(x, y) =
1

4π

(
− sinh(x2 − y2)

cosh(x2 − y2)− cos(x1 − y1)
,

sin(x1 − y1)

cosh(x2 − y2)− cos(x1 − y1)

)
.

Due to the characteristics of the irrotational flow, the vorticity is a measure which
is supported on the interface Γ(t), written as

ω = $δΓ(t) ,

where δΓ(t) is the Dirac delta function supported on the interface Γ(t). More precisely,
the vorticity ω is a distribution defined as follows: for all smooth test functions ϕ with
compact support,

ω(ϕ) =

∫
R
$(β, t)ϕ(z(β, t))dβ .
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The function $ is the amplitude of the vorticity along Γ(t). Notice that $ is minus
the jump of the velocity in the tangential direction:

$ = −[[u · ∂αz]].

Given the vorticity measure $, we can reconstruct the velocity field everywhere;
specifically, we have, thanks to the Biot–Savart law, that

(7) u(x, t) = P.V.

∫
R
$(β)KBS(x, z(β, t))dβ.

Now, using the parameterization z(α, t) for the interface Γ(t), we define the
Birkhoff–Rott principal-value integral, denoting

∫
R by

∫
, as

(8) KBR(α, t) = P.V.

∫
$(β, t)KBS(z(α), z(β, t))dβ.

In particular, (8) is explicitly given by

(9) KBR(α, t) =
1

2π
P.V.

∫
$(β)

(
− z2(α, t)− z2(β, t)

|z(α, t)− z(β, t)|2
,
z1(α, t)− z1(β, t)

|z(α, t)− z(β, t)|2

)
dβ.

The Birkhoff–Rott function KBR(α, t) denotes the average velocity at a given point
α ∈ Γ(t), so that

KBR =
u+ + u−

2
on the interface z(α, t).

4. Dynamics of the interface and vorticity amplitude. We now formulate
the dynamics of the interface. Since zt = u+ c∂αz, we see that

(10) zt(α, t) =
1

2π
P.V.

∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
dβ + c(α, t)∂αz(α, t) .

A lengthy computation then shows [6] that

$t = −∂α
[
A

4π2

∣∣∣∣∫ $(β)
(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
dβ

∣∣∣∣2 − A

4

$(α, t)2

|∂αz(α, t)|2

+
A

π

∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
· ∂αz(α, t)c(α, t)dβ

− c(α, t)$(α, t)− 2[[p]]

ρ+ + ρ−
− 2Agz2

]
+
A

π
∂t

[ ∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
· ∂αz(α, t)dβ

]
.(11)

5. The case that the interface Γ(t) is a graph. We now assume that the
interface Γ(t) is the graph of the signed height function h(α, t), so that the parame-
terization z(α, t) is given by

(12) (z1(α, t), z2(α, t)) = (α, h(α, t)) .

If at time t = 0, Γ(0) is given as the graph (α, h(α, 0)), then we can ensure that
Γ(t) stays a graph for future time t > 0 by making an explicit choice of the function
c(α, t) in (4). To this end, we define

(13) c(α, t) =
1

2π
P.V.

∫
$(β)

h(α, t)− h(β, t)

(α− β)2 + (h(α, t)− h(β, t))
2 dβ .
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With Γ(t) given by (α, h(α, t)), the definition of the Birkhoff–Rott functionKBR(α, t)
in (8) simplifies to
(14)

KBR(α, t)(α, t) =
1

2π
P.V.

∫
$(β, t)

α− β

 −h(α,t)−h(β,t)
α−β

1 +
(
h(α,t)−h(β,t)

α−β

)2 ,
1

1 +
(
h(α,t)−h(β,t)

α−β

)2

 ,

the evolution equation for Γ(t) can be written in terms of the height function h(α, t)
as

(15) ht(α, t) =
1

2π
P.V.

∫
$(β, t)

α− β
1

1 +
(
h(α,t)−h(β,t)

α−β

)2 dβ + c(α, t)∂αh(α, t) ,

and the evolution equation for vorticity $ on Γ(t) takes the form

$t(α, t) =
A

4
∂α

(
$2(α, t)

1 + (∂αh(α, t))2

)
+ ∂α(c(α, t)$(α, t)) +

2

ρ+ + ρ−
∂α[[p]]

+ 2A∂αKBR(α, t) · (1, ∂αh)c(α, t) + 2Ag∂αh+ 2A∂tKBR(α, t) · (1, ∂αh) .(16)

6. A simple model equation for RT instability. In this section, we shall
derive a model of RT instability in which the interface Γ(t) is a graph of the height
function h(α, t). In order to proceed with our derivation, we shall make further
approximations to the coupled system of (15) and (16).

6.1. The equations in the linear regime. In the linear regime, (15) and (16)
reduce to the following coupled system:

ht(α, t) =
1

2
H$ ,(17a)

$t(α, t) = +2Ag∂αh+
2σ

ρ+ + ρ−
∂3
αh ,(17b)

where H denotes the Hilbert transform, defined as

(18) H$(α) =
1

π
P.V.

∫
$(β)

α− β
dβ .

6.2. The nonlinear regime and the model equation. Having found the
linear dynamics, we turn our attention to the the nonlinear regime. Our objective is
to derive a model equation which contains the quadratic nonlinearities. To do so, we
shall introduce some further notation.

We define the operator Λ by

Λ$ = H∂α$ ,

and the space-integrated vorticity as

〈$〉(t) =

∫
$(β, t)dβ .

We shall use the notation 〈f〉(t) to denote
∫
f(β, t)dβ for any integrable function

f(β, t).
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We make use of the following power series expansions for |ζ| < 1:

1

1 + ζ2
= 1− ζ2 + ζ4 − ζ6 + · · · ,

and
ζ

1 + ζ2
= ζ − ζ3 + ζ5 − ζ7 + · · · .

Using these identities together with the approximation

h(α)− h(β)

α− β
≈ ∂αh(α) +

1

2
∂2
αh(α)(β − α),

the nonlocal terms in (15) and (16) can be approximated as

c(α, t)∂αh(α, t) ≈ ∂αh(α, t)

2π
P.V.

∫
$(β)

α− β
h(α, t)− h(β, t)

α− β
dβ ,

KBR(α, t) ≈ 1

2π
P.V.

∫
$(β, t)

α− β

(
−h(α, t)− h(β, t)

α− β
,

1−
(
h(α, t)− h(β, t)

α− β

)2
)
,

∂αKBR(α, t) · (1, ∂αh)c(α, t) ≈ −1

2
∂α

(
1

2π
P.V.

∫
$(β)

α− β
h(α, t)− h(β, t)

α− β
dβ

)2

+
1

2
Λ$∂αh

1

2π
P.V.

∫
$(β)

α− β
h(α, t)− h(β, t)

α− β
dβ

≈ −1

2
∂α

(
∂αh

2
H$ − ∂2

αh

4π
〈$〉

)2

+
1

2
Λ$∂αh

(
∂αh

2
H$ − ∂2

αh

4π
〈$〉

)
,

and

∂tKBR(α, t) · (1, ∂αh) ≈ 1

2π
P.V.

∫
$t(β)

α− β

(
−h(α, t)− h(β, t)

α− β
+ ∂αh(α)

)
dβ

− 1

2
H$∂t∂αh+

1

4π
〈$〉∂t∂2

αh

≈ 1

4π
∂2
αh

d

dt
〈$〉 − 1

2
H$∂t∂αh+

1

4π
〈$〉∂t∂2

αh.

If we neglect terms of order O(h2) in (15) and (16), we find that

ht(α, t) =
1

2
H$ ,(19a)

$t(α, t) = 2Ag∂αh+
2σ

ρ+ + ρ−
∂3
αh

+
A

2
$∂α$ + ∂α

($
2
∂αhH$

)
− ∂α

($
4π
∂2
αh
)
〈$〉

+
A

4π
∂αΛ$〈$〉 − A

2
H$Λ$ +

A

2π
∂2
αh(α)

d

dt
〈$〉 .(19b)
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Integrating in space, we obtain that the vorticity average 〈$〉 verifies

d

dt
〈$〉 = 0;

thus,
〈$〉(t) = 〈$〉(0) = 〈$0〉.

Finally, we can use the Tricomi relation for the Hilbert transform,

(20) 2H(fHf) = (Hf)2 − f2 ,

to obtain
1

2
∂α((H$)2 −$2) = H$Λ$ −$∂α$ = ∂αH($H$).

Then, the system (19a), (19b) is equivalent to

ht(α, t) =
1

2
H$ ,(21a)

$t(α, t) = 2Ag∂αh+
2σ

ρ+ + ρ−
∂3
αh+ ∂α

($
2
∂αhH$

)
− ∂α

($
4π
∂2
αh
)
〈$0〉+

A

4π
∂αΛ$〈$0〉 −

A

2
Λ($H$) .(21b)

The coupled first-order system (21) can be written as one second-order equation
for the evolution of the height function:

htt(α, t) = AgΛh− σ

ρ+ + ρ−
Λ3h− Λ (Hht∂αhht)

−A∂α(Hhtht) + Λ

(
Hht
4π

∂2
αh

)
〈$0〉+

A

4π
∂αΛht〈$0〉 .(22)

The model equation (22) contains both quadratic and cubic nonlinearities, but we can
simplify further.

Keeping only the quadratic nonlinearities, we find that the graph of the interface
(x, h(x, t)) evolves according to

htt(α, t) = AgΛh− σ

ρ+ + ρ−
Λ3h

−A∂α(Hhtht) + Λ

(
Hht
4π

∂2
αh

)
〈$0〉+

A

4π
∂αΛht〈$0〉 .(23)

By assuming that our initial vorticity has zero average, we arrive at the nonlinear
equation

(24) htt(α, t) = AgΛh− σ

ρ+ + ρ−
Λ3h−A∂α(Hhtht) .

Equation (24) is supplemented with initial conditions. In particular, we specify the
initial interface position and velocity, respectively, by

h(·, 0) = h0 and ht(·, t) = h1 .

As we explain in the next section, this model equation has a natural stability condition,
requiring the product of the Atwood number A and the initial velocity field h1 to be
positive.

The second-order–in-time nonlinear wave equation (24) is a new model for the
motion of an interface under the influence of RT instability. We shall refer to either
the system (21) or the wave equation (24) as the h-model.
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Remark 6.1. The quadratic nonlinearity u 7→ ∂α(uHu) has been previously stud-
ied by many authors (see, for instance, [1, 2, 3, 4, 5]). In those papers, the model
problem was parabolic and thus yielded a maximum principle, from which many of
the analytical results followed. Our study of (24) involves a hyperbolic-type problem
with no maximum principle. Of particular significance of the structure of (24) is the
recovery of an RT-like stability condition for the model; this will be discussed in great
detail next.

7. Well-posedness of the h-model equation (24). We now prove that our h-
model equation (24) is well-posed in Sobolev spaces, when a certain stability condition
is satisfied by the data.

In this section we consider the periodic Hilbert transform H, defined as

(25) Hf(α) =
1

2π
P.V.

∫
T

f(β)

tan
(
α−β

2

)dβ ,
and the periodic Zygmund operator

(26) Λf(α) = H∂αf(α) =
1

4π
P.V.

∫
T

f(α)− f(β)

sin2
(
α−β

2

) dβ .
Recall also that Λ = (−∆)

1
2 .

The space L2(T) consists of the Lebesgue measurable functions on the circle T
which are square integrable with norm ‖h‖20 =

∫
T |h|

2dx. For s ≥ 0, we define the
homogeneous Sobolev space

Ḣs(T) =

{
h ∈ L2(T) :

∑
k∈Z
|k|2s|ĥ(k)|2 <∞

}
,

with norm defined as

(27) ‖h‖2s =

∫
T
|Λsh|2dx .

For s ≥ 0, functions Ḣs(T) are identified with 2π-periodic functions [−π, π] with finite
norm ‖ · ‖s.

From (24),

〈ht(t)〉 = 〈h1〉.

Thus,
d

dt
〈h(t)〉 =

∫
T
ht(t)dx = 〈h1〉,

so that

〈h(t)〉 = 〈h0〉+ 〈h1〉t.

These identities show that given h0 ∈ L2(T), it follows that h(·, t) ∈ L2(T), and so
together with the Poincaré inequality, control of the seminorm (27) provides fullHs(T)
bounds for h. (Recall that we are using the notation 〈f〉(t) to denote

∫
f(β, t)dβ for

any integrable function f(β, t).)
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Theorem 7.1 (local well-posedness for the h-model (24)). Let σ ≥ 0, ρ+, ρ− >
0, g 6= 0 be fixed constants and let (h0, h1) denote the initial position and velocity pair
for (24). Suppose that (h0, h1) ∈ H2.5+sgn(σ)(T)×H2(T) and let

(28) λ := min
α∈T

Ah1(α).

If

(29) λ > 0 ,

then there exists a time 0 < T ∗(h0, h1) ≤ ∞ and a unique classical solution of (24)
satisfying

h ∈ C0([0, T ∗];H2.5+sgn(σ)), ht ∈ C0([0, T ∗];H2) ∩ L2(0, T ∗;H2.5).

Proof. Step 1. Approximate problem for hε, ε > 0. For ε > 0, we introduce
a sequence of approximations to (24). We let Pε denote the projection operator in
L2(T), given by

Pεf(α) =
∑
|k|≤1/ε

f̂(k)eikα ,

where f̂(k) denotes the kth Fourier mode of f . Then, we let hε be a solution to

(30) hεtt(α, t) = AgPεΛPεh
ε − σ

ρ+ + ρ−
PεΛ

3Pεh
ε −APε∂α(Pεh

ε
t PεHh

ε
t)

with initial data given by (Pεh0, Pεh1). The projection operator Pε commutes with
∂α and with H (and hence with Λ).

We let the parameter ε range in the interval (0, ε0] for a constant ε0 � 1 to be
chosen later. Then, ODE theory provides a unique short-time solution hε to (30) on a
time interval [0, Tε]; the solution hε is smooth and can be taken in C2([0, Tε];H

s(T))
for all s ≥ 0.

According to (30), hεtt = Pεh
ε
tt; since (hε(0), hεt(0)) = (Pεh0, Pεh1), the fundamen-

tal theorem of calculus shows that

hε = Pεh
ε and hεt = Pεh

ε
t .

As such, (30) can be written as

(30′) hεtt(α, t) = AgΛP 2
ε h

ε − σ

ρ+ + ρ−
Λ3P 2

ε h
ε −APε∂α(hεtHh

ε
t) .

Step 2. The higher-order energy norm. We define the higher-order energy norm
E(t) by

(31) E(t) = sup
0≤s≤t

{
σ

ρ+ + ρ−
‖hε(s)‖23.5 + ‖hεt(s)‖22 +

λ

2

∫ t

0

‖hεt(s)‖22.5ds
}
.

Note that for each ε ∈ (0, ε0], t 7→ E(t) is continuous on [0, T ε].
Step 3. Lower bound for hεt. We shall assume that by choosing Tε and ε0 suffi-

ciently small,

(32) Ahεt(α, t) ≥
λ

2
∀ α ∈ T, t ∈ [0, Tε], ε ∈ [0, ε0] .
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Below, we shall verify that this assumption holds on a time interval [0, T ], where T is
independent of ε.

Step 4. ε-independent energy estimates. We now establish a time of existence and
bounds for hε which are independent of ε.

We multiply (24) by Λ4hεt, integrate over T, and find that

(33)
1

2

(
d

dt
‖hεt‖22 +

σ

ρ+ + ρ−
d

dt
‖hε‖23.5

)
≤ |g|‖hε‖2.5‖hεt‖2.5 + I,

where

(34) I = −A
∫
T
∂α(hεtHh

ε
t) ∂

4
αh

ε
t dα.

We first write the integral I as

I = −A
∫
T
∂3
α(hεtHh

ε
t)∂

2
αh

ε
tdα

= −A
∫
T

Λ∂2
αh

ε
t h

ε
t ∂

2
αh

ε
tdα︸ ︷︷ ︸

I1

−A
∫
T
Hhεt ∂

3
αh

ε
t ∂

2
αh

ε
tdα︸ ︷︷ ︸

I2

− 3A

∫
T

[
Λ∂αh

ε
t∂αh

ε
t + Λhεt∂

2
α

]
∂2
αh

ε
tdα︸ ︷︷ ︸

I3

.

The integral I2 has an exact derivative, so upon integration by parts,

I2 =
A

2

∫
T

Λhεt ∂
2
αh

ε
t ∂

2
αh

ε
t dα ≤ ‖hεt‖22‖Λhεt‖L∞ ≤ C‖hεt‖22‖hεt‖1.75 ,

the last inequality following from the Sobolev embedding theorem. The integral I3
clearly has the same bound.

Equipped with the assumption (32) and the estimate for I2, the integral I1 pro-
vides extra regularity for hεt as follows:

I1 = −
∫
T

 1

4π

∫
T

∂2
αh

ε
t(α)− ∂2

αh
ε
t(β)

sin2
(
α−β

2

) dβ

Ahεt(α)∂2
αh

ε
t(α)dα

=

∫
T

 1

4π

∫
T

∂2
αh

ε
t(α)− ∂2

αh
ε
t(β)

sin2
(
α−β

2

) dβ

Ahεt(β)∂2
αh

ε
t(β)dα

= − A

8π

∫
T

∫
T

∂2
αh

ε
t(α)− ∂2

αh
ε
t(β)

sin2
(
α−β

2

) (
hεt(α)∂2

αh
ε
t(α)− hεt(β)∂2

αh
ε
t(β)

)
dαdβ

≤ − A

8π

∫
T

∫
T

(
∂2
αh

ε
t(α)− ∂2

αh
ε
t(β)

)
(hεt(α)− hεt(β))

sin2
(
α−β

2

) ∂2
αh

ε
t(α)dαdβ

− A

8π

∫
T

∫
T

(
∂2
αh

ε
t(α)− ∂2

αh
ε
t(β)

)2
sin2

(
α−β

2

) hεt(β)dαdβ

≤ − A

8π

∫
T

∫
T

(
∂2
αh

ε
t(α)− ∂2

αh
ε
t(β)

)2
sin2

(
α−β

2

) hεt(β)dαdβ +
A

2

∫
T

Λhεt ∂
2
αh

ε
t ∂

2
αh

ε
t dα .
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The last equality follows from the fact that∫
T

∫
T

∂2
αh

ε
t(β)∂2

αh
ε
t(α) (hεt(α)− hεt(β))

sin2
(
α−β

2

) dαdβ = 0 .

With our assumed lower bound for hεt in (32), we find that

−I1 ≥
λ

2

1

8π

∫
T

∫
T

(
∂2
αh

ε
t(α)− ∂2

αh
ε
t(β)

)2
sin2

(
α−β

2

) dαdβ .

Using the computation

∫
T
fΛfdα =

∫
T

 1

4π

∫
T

f(α)− f(β)

sin2
(
α−β

2

) dβ
 f(α)dα

= −
∫
T

1

4π

∫
T

f(α)− f(β)

sin2
(
α−β

2

) f(β)dβdα

=
1

8π

∫
T

∫
T

(f(α)− f(β))2

sin2
(
α−β

2

) dβdα ,

it follows that I1 ≤ −λ2 ‖h
ε
t‖22.5 and, hence,

I ≤ −λ
2
‖hεt‖22.5 + C‖hεt‖22‖hεt‖1.75 .

Thus,
(35)
1

2

(
d

dt
‖hεt‖22 +

σ

ρ+ + ρ−
d

dt
‖hε‖23.5

)
≤ |g|‖hε‖2.5‖hεt‖2.5 −

λ

2
‖hεt‖22.5 + C‖hεt‖22‖hεt‖1.75.

The fundamental theorem of calculus shows that

‖hε‖22.5 ≤ ‖h0‖22.5 + t

∫ t

0

‖hεt(s)‖22.5ds

and, hence,

d

dt
‖hεt‖22 +

σ

ρ+ + ρ−
d

dt
‖hε‖23.5 +

λ

2
‖hεt‖22.5 ≤ C‖hε‖22.5 + C‖hεt‖42

≤ C‖h0‖22.5 + Ct

∫ t

0

‖hεt‖22.5ds+ C‖hεt‖42 .

It follows that

(36)
d

dt
E(t) ≤ C‖hεt‖22E(t) + C‖h0‖2.5 ≤ CE(t)2 + C‖h0‖2.5 .

By Gronwall’s inequality,

(37) E(t) ≤ C
[
‖h0‖22.5 + ‖h1‖22

]
.
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Step 5. Verifying the lower-bound on hεt. As the bound (37) for E(t) is indepen-
dent of ε and σ, there exists a time interval [0, T ], with T independent of ε and σ,
such that

(38) E(t) ≤ C
[
‖h0‖22.5 + ‖h1‖22

]
on [0, T ] with T independent of ε, σ .

Using (30′), we see that hεtt is bounded in L2(0, T ;L2(T)). Thus,

‖ht(T )− Pεh1‖L2 ≤
∫ T

0

‖htt(s)‖L2ds ≤ C T.

Since ‖ht(T )− Pεh1‖2 ≤ C, we can interpolate between the last two inequalities and
use the Sobolev embedding theorem to conclude that∥∥ht(T 2)− Pεh1

∥∥
L∞
≤ CT 1/8 .

By choosing T and ε0 sufficiently small, and using (28), we verify (32).
Step 6. Existence of solutions. From (38), for all 1 < p <∞,

hε ⇀ h in W 1,p(0, T ;H2(T)) ,

hεt ⇀ h in L2(0, T ;H2.5(T)) ∩H1(0, T ;L2(T)) ∩ Lp(0, T ;H2(T)) .

By using Rellich’s theorem, we can pass to the limit as ε→ 0 in (30′). Since ‖f‖L∞ =
limp→∞ ‖f‖Lp , we find that the limit h is a solution of (24) on [0, T ] and

h ∈ L∞(0, T ;H2.5(T)) , ht ∈ L2(0, T ;H2.5(T)) ∩ L∞(0, T ;H2(R)) .

It is easy to prove that t 7→ h(·, t) and t 7→ ht(·, t) are continuous into H2.5(T)
and H2(T), respectively, with respect to the weak topologies on H2.5(T) and H2(T);
furthermore, we can again find a differential inequality that is almost identical to
(36) (but this time for the solution h rather than the sequence hε). It follows that
t 7→ ‖h(t)‖2.5 and t 7→ ‖ht(t)‖2.5 are continuous, hence

h ∈ C0(0, T ;H2.5(T)) , ht ∈ L2(0, T ;H2.5(T)) ∩ C0(0, T ;H2(R)) .

When σ > 0, by the same argument, we have the better regularity

h ∈ C0(0, T ;H3.5(T)) .

Step 7. Uniqueness of solutions. Uniqueness of solutions follows from a standard
L2-type energy estimate, and we omit the details.

Remark 7.2. If the stability condition Ah1 > 0 is not satisfied, the evolution
equation (24) may not be well-posed in Sobolev spaces. For analytic initial data,
however, the equation does not require a stability condition for a short-time existence
theorem. We shall investigate this further in future work.

Having established existence and uniqueness of classical solutions to the RT model
(24), we next establish a number of interesting energy laws satisfied by its solutions.

Proposition 7.3 (energy laws for solutions to the h-model (24)). Given con-
stants σ ≥ 0, ρ+, ρ− > 0, and g 6= 0, suppose that h is a solution to (24) with initial



RAYLEIGH–TAYLOR MIXING AND INTERFACE TURNOVER 287

data (h0, h1). Then, with T ∗ given by Theorem 7.1 and for all 0 ≤ t ≤ T ∗, h verifies
the following energy laws:

‖ht‖20 +
σ

ρ+ + ρ−
‖h‖21.5 −Ag‖h‖20.5 +

∫ t

0

D1(s)ds

= ‖h1‖20 +
σ

ρ+ + ρ−
‖h0‖21.5 −Ag‖h0‖20.5,

(39a)

‖ht‖20.5 +
σ

ρ+ + ρ−
‖h‖22 −Ag‖h‖21 +

∫ t

0

D2(s)ds

= ‖h1‖20.5 +
σ

ρ+ + ρ−
‖h0‖22 −Ag‖h0‖21,

(39b)

‖ht − 〈h1〉‖2−0.5 +
σ

ρ+ + ρ−
‖h‖21 −Ag‖h‖20 +

∫ t

0

D3(s)ds+ 2Ag

∫ t

0

2〈h1〉〈h(s)〉ds

= ‖h1 − 〈h1〉‖2−0.5 +
σ

ρ+ + ρ−
‖h0‖21 −Ag‖h0‖20,

(39c)

where the terms D1, D2, and D3 are given by

D1 = 2

∫
T

P.V.

∫
T

A (ht(α) + ht(β)) (ht(α)− ht(β))
2

8π sin2
(
α−β

2

) dαdβ ,

D2 = A

∫
T
ht

(
(Λht)

2
+ (∂αht)

2
)
dα ,

D3 = 2A

∫
T
ht |Hht|2 dα .

Proof. The proof reduces to a careful manipulation of the following integrals:

I1 = −A
∫
T
∂α(htHht)htdα ,

I2 = −A
∫
T
∂α(htHht)Λhtdα ,

I3 = −A
∫
T
∂α(htHht)Λ

−1(ht − 〈h1〉)dα ,

where Ij = −Dj/2 for j = 1, 2, 3. First,

I1 = A

∫
T
Hhtht∂αhtdα

= −A
2

∫
T

Λhth
2
tdα

= − A

8π

∫
T

P.V.

∫
T

(ht(α)− ht(β))2(ht(α) + ht(β))

sin2
(
α−β

2

) dβdα.

Next,

I2 = −A
∫
T
∂αhtHht∂αHhthdα−A

∫
T
ht |Λht|2 dα.
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Using the skew adjointness of the Hilbert transform and Tricomi relation (20),

−A
∫
T
Hht∂αhtH∂αhtdα = A

∫
T
htH (∂αhtH∂αht) dα

=
A

2

∫
T
ht

(
(Λht)

2 − (∂αht)
2
)
dα,

so that

I2 = −A
2

∫
T
ht

(
(Λht)

2
+ (∂αht)

2
)
dα.

Finally,

I3 = −A
∫
T

Λ−1∂α(htHht)(ht − 〈h1〉)dα

= A

∫
T
H(htHht)(ht − 〈h1〉)dα

= −A
∫
T
ht |Hht|2 dα ,

where we have used the fact that Λ−1∂α = −H, so that H∂α = Λ.

Corollary 7.4. If ρ+ < ρ− so that the Atwood number A < 0, and if gravity
acts downward so that g > 0, then whenever the initial velocity h1 satisfies the stability
condition h1 < 0, the energy law (39b) shows that

‖ht(t)‖20.5 +
σ

ρ+ + ρ−
‖h(t)‖22 + |Ag|‖h(t)‖21 decays in time ∀t ∈ [0, T ∗] ,

where T ∗ is given by Theorem 7.1.

Remark 7.5. The energy law (39a) provides decay for lower-order norms when
Ah1 > 0, while the energy law (39c) may actually cause a growth in time which
behaves like t2. There may indeed be other higher-order energy laws to the model
equation (24) that have yet to be established.

We now define the average value of a function h(α) on [−π, π]:

h̄ :=
〈h〉
2π

=
1

2π

∫
T
h(α)dα .

Theorem 7.6 (global well-posedness and asymptotic behavior for the h-model
(24)). Let σ ≥ 0, ρ+, ρ− > 0, g 6= 0 be fixed constants such that Ag < 0, and let
(h0, h1) denote the initial position and velocity, respectively, for the h-model (24).
Setting

h2 := htt(·, 0) = AgΛh0 + σΛ3h0 −A∂α(Hh1h1) ,

and with λ defined by (28), suppose that (h0, h1) ∈ H2.5+sgn(σ)(T) ×H2(T) is given
such that

(40) λ > 0

and

(41) ‖h2‖20.5 + ‖h1‖21 + σ‖h1‖22 <
(
h̄1

5

)2

.
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Then there exists a unique classical solution of (24) satisfying

h ∈ C0([0, T ];H2.5+sgn(σ)), ht ∈ C0([0, T ];H2) ∩ L2(0, T ;H2.5) ∀ 0 ≤ T <∞.

Furthermore, as t → ∞, the solution h(·, t) converges to the homogeneous solution
h∞ = h̄0 + h̄1t; specifically,

lim sup
t→∞

‖h(t)− h∞‖1+sgn(σ) + ‖ht(t)− h̄1‖1+sgn(σ) = 0.

Proof. Without loss of generality, we consider ρ+ = 0, ρ− = 1, and g = 1 so that
A = −1. Our analysis will rely on the fact that

〈h1〉 < 0 ,

since we have assumed the initial velocity satisfies h1 < 0.
It is convenient to introduce a new variable f(α, t) given by

f = h− h̄0 − h̄1t so that ft = ht − h̄1.

It follows that f satisfies the evolution equation

(42) ftt(α, t) + Λf + σΛ3f − h̄1Λft = ∂α(Hftft) ,

with initial data
f0 = h0 − h̄0, f1 = h1 − h̄1.

The local existence for h and ht (and, consequently, for f and ft) follows from Theo-
rem 7.1. Thus, in order to prove that solutions exist for all time, it remains only to
establish estimates which are uniform in time, and the desired asymptotic behavior
will be established by showing that both f and ft converge to zero.

With λ defined by (28), the stability condition (40) for ht reduces to

(43) sup
0≤t
‖ft(t)‖L∞ < −h̄1.

Furthermore, we have that∫
T
f(α, t)dα = 0 and

∫
T
ft(α, t)dα = 0 ∀ t ≥ 0.

We tested (42) against Λft and obtained that

1

2

d

dt

(
‖ft‖20.5 + ‖f‖21 + σ‖f‖22

)
− h̄1‖ft‖21 =

∫
T
∂α(Hftft)Λftdα

≤ ‖ft‖21(‖ft‖L∞ + ‖Hft‖L∞).

We shall make use of the refined Carlson inequality [9]:

(44) ‖w‖2L∞ ≤ ‖w‖0‖w‖1 −
1

π
‖w‖20 ∀w ∈ Ḣ1(T) with 〈w〉 = 0 .

Using (44) together with the Poincaré inequality shows that

‖w‖L∞ < ‖w‖1.
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As a consequence, we obtain that

(45)
1

2

d

dt

(
‖ft‖20.5 + ‖f‖21 + σ‖f‖22

)
− h̄1‖ft‖21 < 2‖ft‖31.

Taking a time derivative of (42), we find that ft satisfies

(46) fttt(α, t) + Λft + σΛ3ft − h̄1Λftt = ∂α(Hfttft +Hftftt)

with initial data given by

f1(α) = ft(α, 0), f2 = ftt(α, 0) = −Λf0 − σΛ3f0 + h̄1Λf1 + ∂α(Hf1f1) .

Testing (46) against Λftt, and using (44), we obtain that

1

2

d

dt

(
‖ftt‖20.5 + ‖ft‖21 + σ‖ft‖22

)
− h̄1‖ftt‖21 ≤ ‖ftt‖21(‖ft‖L∞ + ‖Hft‖L∞)

+ ‖ftt‖1‖ft‖1(‖ftt‖L∞ + ‖Hftt‖L∞)

< 4‖ftt‖21‖ft‖1.(47)

Next, we define the following energy and dissipation functions, respectively, as

E(t) = ‖ftt‖20.5 + ‖ft‖21 + σ‖ft‖22, D(t) = −2h̄1‖ftt‖21 .

Then (47) can be written as

d

dt
E(t) +D(t) ≤

4
√
E(t)

−h̄1
D(t),

and we find decay of the energy

E(t) +

(
1−

4
√
E(0)

−h̄1

)∫ t

0

D(s)ds ≤ E(0),

provided that the initial data satisfy

E(0) <

(
−h̄1

4

)2

.

Consequently, due to (41), the initial data f0 and f1 satisfy

(48) E(0) = ‖f2‖20.5 + ‖f1‖21 + σ‖f1‖22 <
(
−h̄1

5

)2

,

and we have that (45) and (47) reduce to

d

dt

(
‖ft‖20.5 + ‖f‖21 + σ‖f‖22

)
− h̄1‖ft‖21 < 0,

d

dt

(
‖ftt‖20.5 + ‖ft‖21 + σ‖ft‖22

)
− 2h̄1

5
‖ftt‖21 < 0.

Thus, we find the estimates

‖ft(t)‖20.5 + ‖f(t)‖21 + σ‖f(t)‖22 − h̄1

∫ t

0

‖ft(s)‖21ds ≤ ‖f1‖20.5 + ‖f0‖21 + σ‖f0‖22,

‖ftt(t)‖20.5 + ‖ft(t)‖21 + σ‖ft(t)‖22 −
2h̄1

5

∫ t

0

‖ftt(s)‖21ds ≤ ‖f2‖20.5 + ‖f1‖21 + σ‖f1‖22,
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and the asymptotic behavior

(49) lim sup
t→∞

‖f(t)‖1+sgn(σ) + ‖ft(t)‖1+sgn(σ) + ‖ftt(t)‖0.5 = 0.

Finally, using (44) and (48), we conclude that

(50) ‖ft(t)‖2L∞ < ‖ft(t)‖21 <
(
−h̄1

5

)2

,

and the stability condition (43) is satisfied even in a stricter sense. Finally, we test
(42) against Λ4ft. We find that

1

2

d

dt

(
‖ft‖22 + ‖f‖22.5 + σ‖f‖23.5

)
− h̄1‖ft‖22.5 =

∫
T
∂α(ftHft)∂

4
αftdα.

Using integration by parts, Sobolev embedding, and interpolation, we have that

I =

∫
T
∂α(ftHft)∂

4
αftdα

= −
∫
T
∂2
α(ftHft)∂

3
αftdα

=
1

2

∫
T
∂2
αftΛft∂

2
αftdα− 2

∫
T
∂αftΛft∂

3
αftdα+

∫
T

Λ0.5(ft∂αΛft)∂αΛ1.5ftdα

≤ C‖ft‖22.25‖ft‖1 +

∫
T
[Λ0.5, ft]∂αΛft∂αΛ1.5ft +

∫
T
ft∂αΛ1.5ft∂αΛ1.5ftdα

≤ C‖ft‖2.5
(
‖ft‖2‖ft‖1 + ‖∂αft‖L4‖∂αΛ0.5ft‖L4 + ‖Λ0.5ft‖L4‖∂2

αft‖L4

)
+ ‖ft‖L∞‖ft‖22.5
≤ C‖ft‖2.5 (‖ft‖2‖ft‖1 + ‖ft‖0.75‖ft‖2.25) + ‖ft‖L∞‖ft‖22.5,

where we have used the classical commutator estimate [10]

‖[Λ0.5, u]v‖L2 ≤ C(‖∂αu‖L4‖Λ−0.5v‖L4 + ‖Λ0.5u‖L4‖v‖L4).

Using Young’s inequality and (50), we find that

(51)
d

dt

(
‖ft‖22 + ‖f‖22.5 + σ‖f‖23.5

)
+ δ‖ft‖22.5 ≤ C1(h0, h1)‖ft‖22

for a certain explicit 0 < δ(h0, h1). Using Gronwall’s inequality, we conclude that

(52) ‖ft(t)‖22 + ‖f(t)‖22.5 + σ‖f(t)‖23.5 ≤ C2(h0, h1)eC1(h0,h1)t.

Finally, from the regularity of f and ft, we conclude the regularity of h and ht.

Remark 7.7. Let us emphasize that the condition (41) does not require small
initial data; rather, we require that the homogeneous norms of the initial acceleration
and velocity be comparable to the size of the average velocity. For example, in the
case that surface tension σ = 0, we can consider

h0 = A+Beαi and h1 = −1000 +
eαi

6

for constants A and B. A simple computation using the explicit form of h0 and h1

shows that the condition (41) is satisfied when B ≤ 110 and any A.
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Remark 7.8. Finally, we note that the asymptotic condition (49) remains true for
higher-order Sobolev norms if the condition (50) is replaced with further constraints
on the initial data involving higher-order time derivatives of h evaluated at t = 0. In
particular, we do not claim that (52) is sharp.

8. General interface parameterization with interface turnover. Our h-
model equation (24) for the evolution of the height function h(α, t) uses a special
parameterization in which the interface Γ(t) is constrained to be the graph (α, h(α, t)).
While this model works well in predicting the mixing layer, in the unstable regime
and when the RT instability is initiated, the height function h(α, t) can only grow in
amplitude. Our goal is to generalize the h-model equation (24) by using a general
parameterization z(α, t) that permits the interface to turn over. As we will show, the
ability for the wave to turn over, rather than only grow in amplitude, provides an
even more accurate prediction of the RT mixing layer, at the expense of a slightly
more complicated system of evolution equations.

We now return to the general evolution equations (10) and (11) and set c(α, t) = 0;
hence, the average velocity at the interface is

u(z(α, t), t) =
1

2π

∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
dβ

and the interface parameterization z(α, t) = (z1(α, t), z2(α, t)) evolves according to

(53) zt(α, t) =
1

2π

∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
dβ ,

while the vorticity amplitude satisfies

(54)

$t = −∂α
[
A

∣∣∣∣ 1

2π

∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
dβ

∣∣∣∣2
− A

4

$(α, t)2

|∂αz(α, t)|2
− 2[[p]]

ρ+ + ρ−
− 2Agz2

]
+
A

π
∂t

[ ∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
· ∂αz(α, t)dβ

]
.

For δ > 0 taken sufficiently small, we define an approximate velocity field ũ by

ũ(z(α), t) =
1

π
P.V.

∫ α+δ

α−δ

$(β)

α− β

(z(α)−z(β))⊥

α−β
|z(α)−z(β)|2

(α−β)2

dβ.(55)

Thus, it is evident that in our definition of the approximate velocity field ũ (which
depends on δ), we have restricted the nonlocality to a radius δ > 0.

Using the difference quotient approximation for the derivative, (α − β)−1

(z(α)− z(β)) ≈ ∂αz(α), the integrand in (55) can be approximated as

$(β)

α− β

(z(α)−z(β))⊥

α−β
|z(α)−z(β)|2

(α−β)2

≈ $(β)

α− β
∂⊥α z(α)

|∂αz(α)|2

if δ > 0 is small enough. With the integrand approximated in this way and using the
definition of the Hilbert transform, we define the model velocity

(56) umod(z(α, t), t) =
1

2
H$(α)

(∂αz(α))⊥

|∂αz(α)|2
.



RAYLEIGH–TAYLOR MIXING AND INTERFACE TURNOVER 293

To estimate the error in the approximation of the actual velocity u by the model
velocity umod, we define

m = min |∂αz|, M = max |∂αz|.

Note that

z(α)− z(α− β) =

∫ 1

0

∂sz(α+ (s− 1)β)ds = β

∫ 1

0

∂αz(α+ (s− 1)β)ds ,

so that

m ≤ |z(α)− z(α− β)|
|β|

≤M.

For any r > 0, we compute the difference of the two velocities as follows:

u(z(α), t)− umod(z(α), t)

=
1

π
P.V.

∫
Br(0)

$(α− β)

β

 (z(α)−z(α−β))⊥

β

|z(α)−z(α−β)|2
β2

− ∂⊥α z(α)

|∂αz(α)|2

 dβ
+

1

π
P.V.

∫
Bcr(0)

$(α− β)

β

 (z(α)−z(α−β))⊥

β

|z(α)−z(α−β)|2
β2

− ∂⊥α z(α)

|∂αz(α)|2

 dβ.
By estimating each integral separately, and computing the minimum value the integral
bounds as a function of r > 0, we find that

|u(z(α), t)− umod(z(α), t)| ≤ 2
‖$‖L2

π

(
1

m2
+ 2

)0.5 ‖∂2
αz‖0.5L∞
m0.5

.(57)

The inequality (57) shows that when the curvature of the interface is smaller than
the slope of the interface, a good approximation for the velocity is given by

(58)
1

2π

∫
$(β)

(z(α, t)− z(β, t))⊥

|z(α, t)− z(β, t)|2
dβ ≈ 1

2
H$(α)

(∂αz(α))⊥

|∂αz(α)|2
.

Substituting (58) into (53) and (54), and using the Tricomi relation (20), we obtain
the (more general) RT model evolution equations which allow for wave turnover:

zt(α, t) =
1

2
H$(α, t)

(∂αz(α, t))
⊥

|∂αz(α, t)|2
,(59a)

$t(α, t) = −∂α
[
A

2

1

|∂αz(α, t)|2
H ($(α, t)H$(α, t))− 2[[p]]

ρ+ + ρ−
− 2Agz2

]
.(59b)

Substituting the time derivative of (59a) into (59b) yields

ztt = −Λ

[
A

4

1

|∂αz|2
H ($H$)− [[p]]

ρ+ + ρ−
−Agz2

]
(∂αz)

⊥

|∂αz|2

+
1

2
H$

(
(∂αzt)

⊥

|∂αz|2
− (∂αz)

⊥2(∂αz · ∂αzt)
|∂αz|4

)
.

Notice that (59a) implies that

(60) H$ = 2zt · (∂αz)⊥ and $ = −2H(zt · (∂αz)⊥).
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Thus, we obtain the equivalent second-order nonlinear wave system for z(α, t) given
by

ztt = Λ

[
A

|∂αz|2
H
(
zt · (∂αz)⊥H(zt · (∂αz)⊥)

)
+

[[p]]

ρ+ + ρ−
+Agz2

]
(∂αz)

⊥

|∂αz|2

+ zt · (∂αz)⊥
(

(∂αzt)
⊥

|∂αz|2
− (∂αz)

⊥2(∂αz · ∂αzt)
|∂αz|4

)
.(61)

We shall refer to the system (59) or the wave equation (61) as the z-model. The
z-model (61) is analogous to the slightly simpler h-model (24).

Remark 8.1. Note well that due to our choice of setting c(α, t) = 0, the evolving
interface solving (59) (or equivalently (61)) does not remain a graph, even if the initial
data z(α, 0) = (α, h0(α)), zt(α, 0) = (0, h1(α)) are given as graphs. In particular, it
is convenient (especially for the purposes of comparing against the h-model (24)) to
prescribe the initial interface position as a graph, and allow the interface to evolve
into a nongraph state. As we will show, the z-model (59) captures the turnover of
the RT interface.

9. Numerical study.

9.1. The algorithm. In order to stabilize numerical oscillations without affect-
ing the amplitude or speed of wave propagation, we shall employ an arbitrary-order
artificial viscosity operator for both the h-model (21) (or (24)) and the z-model (59)
(or (61)).

9.1.1. Numerical approximation of the h-model. We first consider the h-
model, written as a system in (21). We numerically discretize the following approxi-
mation:

hεt =
1

2
H$ε ,(62a)

$ε
t = 2Ag∂αh

ε +
2σ

ρ+ + ρ−
∂3
αh

ε − ∂α
(
$ε

4π
∂2
αh

ε

)
〈$0〉

+
A

4π
∂αΛ$ε〈$0〉 −

A

2
Λ($εH$ε)− εΛs$ε ,(62b)

where ε > 0 is the artificial viscosity, and s ≥ 2 determines the order of the artificial
viscosity employed.

Equivalently, we have the approximation for the wave equation given by

∂2
t h

ε + εΛshεt = AgΛhε − σ

ρ+ + ρ−
Λ3hε −A∂α(Hhεth

ε
t)

+ Λ

(
Hhεt
4π

∂2
αh

ε

)
〈$0〉+

A

4π
∂αΛhεt〈$0〉 .(63)

The term εΛshεt represents the artificial viscosity operator. The parameter s deter-
mines the order of the operator; for example, for s = 2, we recover the classical
Laplace operator, while for s > 2, we can study a variety of hyperviscosity operators.
We believe that this equation will be an ideal candidate for the C-method artificial
viscosity which is localized in both space and time (see [14]), and shall implement this
in future work.
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We use a Fourier collocation method to solve (62). We note that for the numerical
simulations that we consider herein, we choose initial data for which 〈$0〉 = 0, in
which case the equation that we discretize is equivalent to

∂2
t h

ε + εΛshεt = AgΛhε − σ

ρ+ + ρ−
Λ3hε −A∂α(Hhεth

ε
t) .(63′)

For N = 0, 1, 2, . . . , we define the Fourier approximation using our projection
operator PN (introduced in section 7), defined as

PNf(α) =

N∑
−N

f̂(k)eikα .

Hence, the mesh size of our algorithm is given by

dx =
2π

N
.

We make use of the following identities in frequency space:

∂̂nαf(k) = (ik)nf̂(k) ,

Ĥf(k) = −isgn(k)f̂(k) ,

Λ̂f(k) = −isgn(k)ikf̂(k) = |k|f̂(k) ,

f̂g(k) = f̂ ∗ ĝ(k) .

It follows that in frequency space, the system (62) can be written as

d

dt
ĥε =

−isgn(k)

2
$̂ε ,

d

dt
$̂ε = 2Agikĥε +

2σ

ρ+ + ρ−
(ik)3ĥε − 〈$0〉ik

(
$ε

4π
(−k2ĥε)̌

)
ˆ

+
A

4π
ik|k|$̂ε〈$0〉 −

A

2
|k| ($ε (−isgn(k)$̂ε)̌ )̂ − ε|k|3$̂ε .

This is a nonlinear system of ordinary differential equations, to which we shall apply
the adaptive Runge–Kutta–Fehlberg fourth-order (nominally fifth-order) scheme to
advance in time increments.

For the following simulations, we have set the acceleration to a constant value of
g, which will either act downward or upward, depending on the type of RT instability
that we examine. The initial position of the interface is specified, as well as the initial
amplitude of the vorticity, $(α, 0).

9.1.2. Numerical approximation of the z-model. We change variables and
consider that the curve z(α, t) is given by

z(α, t) = (α+ δz1(α, t), z2(α, t)),

where δz1, z2 are periodic functions defined on [−π, π].
For our numerical simulations, we shall only consider the case of zero surface

tension. We use the same Fourier-collocation method described previously (with N
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Fourier modes) to approximate the following system of equations:

(δz1)εt = −1

2
H$ε ∂αz

ε
2

|(1 + ∂αδzε1, ∂αz
ε
2)|2

+ ε∂2
αδz

ε
1 ,(64a)

(z2)εt =
1

2
H$ε 1 + ∂αδz

ε
1

|(1 + ∂αδzε1, ∂αz
ε
2)|2

+ ε∂2
αz

ε
2 ,(64b)

$ε
t = −∂α

[
A

2

1

|(1 + ∂αδzε1, ∂αz
ε
2)|2

H ($εH$ε)− 2Agzε2

]
+ ε∂2

α$
ε .(64c)

The system (64) employs an artificial viscosity term ε∂2
α to stabilize small-scale noise.

9.2. Simulation 1: h-model, ρ+

ρ− = 1
1.5

and Atwood number A < 0. We

first study the effect of the density ratio on the interface motion given by the simple
RT h-model (62) in the absence of surface tension (σ = 0). For our first simulation,
we consider two fluids with density ratio 1/1.5.

Specifically, we consider the physical parameters set to

g = 9.8 m/s, σ = 0, ρ+ = 1 kg/m
3
, ρ− = 1.5 kg/m

3
, so A = −0.2 ,

with initial data

h(α, 0) = sin(3α) ,(65)

$(α, 0) = 2H sin(2α) .(66)

In order to study convergence of our scheme and the effect of the artificial viscosity
operator, we perform a number of different simulations, varying the total number of
modes N that are used, as well as the power on the artificial viscosity operator s and
the size of the artificial viscosity parameter ε. In particular, we consider the following
cases:

• N = 27, ε = 0.01, s = 3 (red solid line in Figures 2 and 3);
• N = 27, ε = 0.008, s = 3 (blue solid line with + markers in Figures 2 and 3);
• N = 28, ε = 0.008, s = 3 (green dashed line in Figures 2 and 3);
• N = 27, ε = 0.04, s = 2 (black dash-dot line in Figures 2 and 3).

The results are shown in Figures 2 and 3.
Note that the results are qualitatively similar for various values of parameters

and, in particular, show the convergence of the numerical solutions with mesh size N .
A comparison of the blue and the green curves in Figures 2 and 3 demonstrates this
nicely.

Furthermore, as shown in Figure 2, there is a large jump in the amplitude of the
interface ‖h‖L∞ over a very small time scale. Specifically, we see that for an O(1)
initial interface position and velocity, the amplitude of the interface, ‖h‖L∞ , grows by
a factor of 4 in a time 0.45. See Figure 3 for the comparison of the interface position
h(x, t1) at time t1 = 1.95 and interface position h(x, t2) at time t2 = 2.4.

9.3. Simulation 2: h-model, ρ+

ρ− = 1.23
1027

for Atwood number A < 0.

Next, we consider the physical parameters

g = 9.8 m/s, σ = 0, ρ+ = 1.23 kg/m
3
, ρ− = 1027 kg/m

3
, so A = −0.99761.

This corresponds to the density of air (ρ+) and ocean water (ρ−).
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Fig. 2. Evolution of the maximum amplitude of |h(x, t)|, written as ‖h(t)‖L∞ .
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Fig. 3. Interface position h(x, tj) for t1 = 1.95 and t2 = 2.4.

We consider the initial data (65) and (66) for (62). The artificial viscosity ε = 0.05
and the order of the artificial viscosity operator is s = 3. The number of nodes is
N = 27. The results of this simulation are shown in Figure 4, wherein, we once again
see the fast growth of the interface ‖h(t)‖L∞ over a short time scale, followed by
decay to equilibrium. The heavier fluid in this simulation, as compared to Simulation
1, reduces the frequency of oscillations, as the interface decays to the rest state. From
the intial data, the amplitude grows from 0.7 to 4.3 in a time scale of length 0.2
(between t = 0.2 and t = 0.4). After this remarkable growth, the amplitude of the
interface decays and approaches the rest state (see the blue curve in Figure 4). In
order to demonstrate the role of the nonlinearity in the growth of the interface, we
compare this to the linear h-model (17). As expected, the linear model simply decays
the interface amplitude; see the red curve in Figure 4.

Finally, in Figure 5 we plot the energy spectrum

E(k, t) = |ĥt(k, t)|2 −Ag|k||ĥ(k, t)|2,

associated with the energy law (39a) in Proposition 7.3, as a function of k at t0 =
0, t1 = 0.2, t2 = 0.45, and t3 = 0.7. We note that outside the Fourier modes k ∈
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Fig. 4. (a) Interface position h(x, tj) for t1 = 0, t2 = 0.2, t3 = 0.45, and t4 = 0.7. (b)
‖h(t)‖L∞ as a function of time.
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Fig. 5. The energy spectrum |ĥt(k, t)|2 −Ag|k||ĥ(k, t)|2 as a function of the Fourier mode k at
t0 = 0, t1 = 0.2, t2 = 0.45, and t3 = 0.7.

[−50, 50], the energy spectrum E(k, t) is of order 10−4 for the time interval considered.
Starting from a mode-3 initial interface shape, the energy content is distributed into
the smaller scales. At time t = .45 when the interface is of maximum amplitude, the
energy content is well-distributed among all large scales |k| ≤ 20.

9.4. Simulation 3: h-model, fingering instability, Atwood number A >
0. We next simulate the highly unstable case of a heavy fluid on top of the lighter
fluid, and with the acceleration acting downward. We consider the following physical
parameters:

g = 9.8 m/s, σ = 0, ρ+ = 10 kg/m
3
, ρ− = 1 kg/m

3
, so A = 0.81818 .
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Fig. 6. Interface position h(x, tj) for t1 = 0, t2 = 0.05, t3 = 0.1, t4 = 0.15, and t5 = 0.2.

We once again use our order one initial data (65) and (66) for (62). The artificial
viscosity operator is order s = 3, and the artificial viscosity parameter is set to
ε = 0.05. The number of nodes is N = 27.

This simulation is intended to demonstrate the ability of the h-model to show
fingering phenomenon; indeed, as can be seen in Figure 6, the heavy fluid penetrates
the lighter fluid and a strong RT instability is initiated. After a large enough time
interval, the absolute value of the interface grows exponentially fast.

9.5. Simulation 4: h-model, stability, Atwood number A < 0. To cap-
ture the behavior described in Theorem 7.6, we simulate (63′) (instead of (62)). We
consider the physical parameters

g = 9.8 m/s, σ = 0, ρ+ = 0 kg/m
3
, ρ− = 1 kg/m

3
, so A = −1 ,

and the initial data

h0 =
cos(α)

10
, h1 = −1 +

sin(α)

10
.

For these initial data, the homogeneous solution h∞(t) is given by

h∞(t) = −t.

Theorem 7.6 states that h(·, t)− h∞(t) converges to zero as t→∞.
As the initial data satisfy the stability condition, no artificial viscosity is required

to stabilize the numerical solution, and we set ε = 0. Finally, we fix the number of
Fourier modes to N = 27. The results are plotted in Figure 7, where the simulation
demonstrates the asymptotic behavior of the theorem.

9.6. Simulation 5: The rocket rig experiment of Read and Youngs. We
consider now the situation where two (nearly) incompressible fluids, of densities ρ±,
are subjected to an approximately constant acceleration g normal to the interface
separating them, directed from the lighter fluid to the denser fluid. We assume that
the initial interface is given by a small and random perturbation of the flat state.

Our goal is to compare the growth rate of the mixing layer using our model
(24) with that predicted by experiments and numerical simulations of Read [13] and
Youngs [19]. Experiments show that if the instability arises in the previous setting,
the width of the mixed region grows like t2. Actually, as shown by Read [13] and
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Fig. 7. Distance from h(x, t) to h∞(t) (dashed line) and from ht(x, t) to −1.

Youngs [19], the mixing region grows as

(67) δAgt2.

DNS in two space dimensions by Youngs [19] has indicated that the parameter δ should
range from 0.04 to 0.05, whereas experiments of Read [13] suggest that δ should range

from 0.06 to 0.07. In particular, when we have a NaI solution (ρ− = 1.89 g/cm
3
) and

hexane (ρ+ = 0.66 g/cm
3
) in a tank, the empirical value is δ = 0.063 (see [13]). Let

us emphasize that both the numerical simulations and the physical experiments were
run for approximately 70 ms.

9.6.1. The h-model. We consider the initial data for the h-model, given by

h(α, 0) = S

n∑
j=1

aj cos(jx) + bj sin(jx),(68)

$(α, 0) = 0,(69)

where aj , bj are random numbers following a standard Gaussian distribution, and S
denotes a normalization constant such that

‖h(0)‖L2 =
π

100
.

We consider n = 50, N = 27, and σ = 0.
The acceleration g = − 9.8·2·π

0.3 L/s2 acts upwards, where L is chosen so that
2π/0.3L = 1 m. This gravity force corresponds to the usual gravity force on the

surface of the Earth of 9.8 m/s
2
. Finally, we use the artificial viscosity parameter

ε = 0.05 together with a second-order artificial viscosity operator s = 2.
The mixing layer is shown in Figure 8, where the interface position h(x, tj) is

displayed for times t1 = 0, t2 = 0.02, t3 = 0.04, t4 = 0.06, and t5 = 0.08.
In Figure 9, we see that up to time t = 150 ms, the numerical solution provides

a mixing layer growth rate which agrees well with the predicted growth rate given by
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Fig. 9. Comparison between maxx h(x, t)−maxx h(x, 0) and the predicted quadratic growth rate
(67) with δ = 0.06.

(67); the largest difference between the h-model and (67) is given by

max
0≤t≤150ms

max
x

h(x, t)−max
x

h(x, 0)− 0.06Agt2 = 0.002916 .

For large times, due to the strong RT instability present in the equations, the
results of numerical simulations are very sensitive to the artificial viscosity parameter
(see [7] for the artificial viscosity effects on RT mixing rates); however, for short time
(meaning around 70 ms, neither viscosity nor nonlinearity plays a critical role in the
evolution. To demonstrate this, we perform a numerical simulation of the h-model
with zero artificial viscosity ε = 0, and with surface tension σ = 0.005. We use the
initial data satisfying (68)–(69) with n = 30, and S chosen such that

‖h(0)‖L2 =
π

1000
.

As can be seen in Figure 10, the growth rate predicted by our model agrees well with
the Youngs’ growth rate with δ = 0.06 up to around t = 60 ms.
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artificial viscosity.
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9.6.2. The z-model. Now, we repeat the rocket rig experiment of Read and
Youngs using the z-model, with initial data given by

δz1(α, 0) = 0,(70)

z2(α, 0) = S

n∑
j=1

aj cos(jx) + bj sin(jx),(71)

$(α, 0) = 0,(72)

where aj , bj are random numbers following a standard Gaussian distribution, and S
denotes a normalization constant such that

‖z2(0)‖L2 =
π

1000
.

We consider n = 30 and N = 29. The artificial viscosity for (64) has coefficient
ε = 0.01. Figure 11 shows the interface evolution for the z-model. The ability of the
z-model parameterization to “fatten” and “finger” produces an even more accurate
representation of the mixing region.
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Fig. 12. Comparison between maxx z2(x, t) − maxx z2(x, 0), maxx h(x, t) − maxx h(x, 0), and
(67) with δ = 0.06.

We are able to quantitatively validate this statement by comparing the growth of
the mixing region of the z-model with the h-model and the quadratic prediction (67)
of Read and Youngs. For the comparison, we simulate the h-model with the same
physical parameters, and with second-order artificial viscosity with ε = 0.05, and with
initial data given by

h(α, 0) = z2,

$(α, 0) = 0.

We note that the artificial viscosity ε is five times larger for the h-model (62) than
for the z-model (64). As shown in Figure 12, the z-model mixing region growth rate
matches very well with the quadratic prediction (67) of Read and Youngs, and for
a relatively long time interval, up to t = 150 ms. The width of the mixing region,
approximated by

max
α

z2(α, t)−max
α

z2(α, 0) ,

is in excellent agreement with the quadratic prediction (67). The maximum error for
the z-model is

max
0≤t≤0.152

∣∣∣max
α

z2(α, t)−max
α

z2(α, 0)− 0.06Agt2
∣∣∣ ≈ 0.01537 ,

whereas the maximum error for the h-model is

max
0≤t≤0.133

∣∣∣max
α

h(α, t)−max
α

h(α, 0)− 0.06Agt2
∣∣∣ ≈ 0.23244 .

Moreover, the z-model has a longer lifespan than the h-model. Since the h-model
is constrained to remain a graph, the amplitude of the interface can only grow rapidly
once the RT instability is strongly initiated; on the other hand, as the z-model can
turn over, the instability creates a turnover and horizontal fattening of the mixing
region. The comparison is shown in Figure 13.

9.7. Simulation 6: The tilted rig experiment. Finally, we consider the
“tilted” rig experiment of Youngs [19], wherein the tank of the rocket rig experiment
is titled by a small angle θ from the vertical.
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Again, we have two (nearly) incompressible fluids, of densities ρ±, with a vertical
acceleration g directed from the lighter fluid to the denser fluid. As Youngs notes, the
inclination of the initial interface results in a gross overturning motion in addition to
the fine-scale mixing.

We define θ = 5.7◦ and consider the unperturbed (flat) tilted interface given by

z̃2
0 =

 tan(θ)(x+ π) if − π ≤ x < −π/2,
− tan(θ)x if |x| ≤ π/2,

tan(θ)(x− π) if π/2 < π ≤ π.

We assume that the actual initial interface is given by a small and random perturba-
tion so that

z2
0(x) = z̃2

0(x) + S

n∑
j=1

aj cos(jx) + bj sin(jx),

where aj , bj are random numbers following a standard Gaussian distribution, and S
denotes a normalization constant such that

‖z2
0 − z̃2

0‖L2 =
π

1000
.

We fix n = 30 and N = 29.

9.7.1. The h-model. The initial data for the h-model (62) are given by

h(α, 0) = z2
0(α) ,(73)

$(α, 0) = 0 .(74)

Again, we employ a second-order artificial viscosity operator with ε = 0.25, a rather
large artificial viscosity, but necessary to stabilize the interface in the highly unstable
RT regime. The results are plotted in Figure 14.

9.7.2. The z-model. For the z-model, we use the initial conditions

δz1(α, 0) = 0 , z2(α, 0) = z2
0(α) , $(α, 0) = 0

with artificial viscosity ε = 0.05. As can be seen in Figure 14, as the RT instability
is strongly initiated, the amplitude of the h-model starts to grow unboundedly, while
the z-model can turn over and continue to run for a much longer time interval.
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Fig. 15. Interface position for t0 = 0, t1 = 0.069, t2 = 0.139, t3 = 0.209, and t4 = 0.286.

We show the time evolution of the interface for the h-model and z-model in
Figure 15. Because the h-model can only grow the amplitude of h, the behavior of
the interface is more singular for the h-model than for the z-model. In particular,
‖h(t)‖L∞ grows faster than ‖z2(t)‖L∞ . Moreover, the z-model is more stable, and
permits the use of smaller artificial viscosity than the h-model.

Finally, as we have run the titled rig experiment with random initial data, it is
interesting to plot the ensemble of runs, and get a clear picture of the mixing region.
In particular, as it may be difficult to infer the qualitative description of the mixing
region from only one simulation, in Figure 16, we plot the z-model interface location
for a number of different random initial conditions at time t = 0.22. As can be seen,
the ensemble gives an approximation of the mixing region provided by experiment
[19] and DNS [15]. The mixing region grows slightly faster on the left side than it
drops on the right side as expected by Youngs [19], and has the qualitative features
of the experiment.

9.8. Simulation 7: z-model, Kelvin–Helmholtz instability, Atwood num-
ber A = 0. The z-model can simulate the Kelvin–Helmholtz instability arising in
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the case of equal densities ρ+ = ρ−, equivalently A = 0. We note that when A = 0,
due to (59), we have

$t = 0,

and the problem reduces to describing the interface evolution for z(α, t) via (64a),
(64b). We consider the initial data given by

δz1(α, 0) = − sin(α) , z2(α, 0) = 0.5 sin(α) ,

and
$(α) = 10 cos(α) ,

and use N = 28 Fourier modes. We fix the artificial viscosity as ε = 0.01. The results
are given in Figure 17. The primary effect of the nonlinearity is to increase the length
of the interface by starting to roll over, while keeping the curve smooth.

This can be seen by looking at the spectral content of the the L2-energy function

E(k, t) = |δẑ1(k, t)|2 + |ẑ2(k, t)|2



RAYLEIGH–TAYLOR MIXING AND INTERFACE TURNOVER 307

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

3.5

4

k

|F
[δ

 z
1
]|

2
+

|F
[z

2
]|

2

 

 

t=0

t=0.2

t=0.4

t=0.6

Fig. 18. The energy spectrum |δẑ1(k, t)|2 + |ẑ2(k, t)|2 as a function of the Fourier mode k ∈
[−10, 10] at t0 = 0, t1 = 0.2, t2 = 0.4, and t3 = 0.6.

at different instances of time. In Figure 18 we plot the spectrum of E(k, t) at times
t0 = 0, t1 = 0.2, t2 = 0.4, and t3 = 0.6. For large Fourier modes |k| > 10, the L2-
energy spectrum E(k, t) is of order 10−5 for the time interval considered, so we plot
E(k, t) versus −10 ≤ k ≤ 10. The energy spectrum remains fairly localized about
the k = 1 initial data, with some growth in wavenumbers |k| = 2 and 3, which are
responsible for the dilation and rotation of the wave.
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