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Abstract

In a previous paper we proved that long-wavelength solutions of the water-
wave problem in the case of zero surface tension split up into two wave packets,
one moving to the right and one to the left, where each of these wave packets
evolves independently as a solution of a Korteweg-de Vries (KdV) equation. In this
paper we examine the effect of surface tension on this scenario. We find that we
obtain three different physical regimes depending on the strength of the surface
tension. For weak surface tension, the propagation of the wave packets is very
similar to that in the zero surface tension case. For strong surface tension, the
evolution is again governed by a pair of KdV equations, but the coefficients in
these equations have changed in such a way that the KdV soliton now represents a
wave ofdepression on the fluid surface. Finally, at a special, intermediate value of
the surface tension (where the Bond number equals1

3) the KdV description breaks
down and it is necessary to introduce a new approximating equation, the Kawahara
equation, which is a fifth order, nonlinear partial differential equation. In each of
these regimes we give rigorous estimates of the difference between the solution
of the appropriate modulation equation and the solution of the true water-wave
problem.

1. Introduction

We consider the irrotational flow of an incompressible, inviscid fluid in an
infinitely long canal of fixed depth with impermeable bottom under the influence
of gravity and surface tension. We prove that the evolution of long-wavelength
initial data can be accurately approximated for very long times by the motion of
a pair of wave packets, one moving to the right and one moving to the left, and
depending on the values of the various physical parameters in the problem, each of
these wave packets evolves according to either the Korteweg-de Vries or Kawahara
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equations. What is more, to the order of approximation typically considered in the
formal derivation of these approximate equations, there is no interaction between
the counterpropagating waves.

To state our results more precisely, we introduce coordinates withx1 ∈ R and
x2 in the bounded direction. The fluid fills the domain�(t) between the bottom
{(α,−1)|α ∈ R} and the free surface

�(t) = {(X̃1(α, t), X̃2(α, t)) = (α +X1(α, t), X2(α, t)) | α ∈ R}.
For fixed timet , � is a Jordan curve which remains bounded in thex2-direction
and which has no intersection with{(α,−1) | α ∈ R}.
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Fig. 1. The water-wave problem.

It turns out that under these assumptions [Yo83, equations (1.10)–(1.12)] the
dynamics of the problem is completely determined by the evolution of the free
surface �(t) which is governed by the pair of partial differential equations,

∂2
t X1(1 + ∂αX1)+ ∂αX2(1 + ∂2

t X2) = µR(∂αX, ∂2
αX)+ µS(∂αX, ∂3

αX), (1)

∂tX2 = K(X)∂tX1, (2)

where

R(∂αX, ∂
2
αX) = − 3Q(∂αX)

−5((1 + ∂αX1)∂
2
αX1 + ∂αX2∂

2
αX2)

× (−∂αX2∂
2
αX1 + (1 + ∂αX1)∂

2
αX2),

S(∂αX, ∂
3
αX) = Q(∂αX)−3(−∂αX2∂

3
αX1 + (1 + ∂αX1)∂

3
αX2),

Q(∂αX) = ((1 + ∂αX1)
2 + (∂αX2)

2)1/2.

The parameterµ is called the Bond number and is proportional to the strength of the
surface tension, and the bounded operator K is related to the Dirichlet-Neumann
operator. It depends linearly on ∂tX1, but nonlinearly on X. Properties of K(X)·
are explained at the beginning of Section 2. Also, we have “nondimensionalized”
the equations so that the unperturbed fluid depth and gravitational acceleration are
both equal to one.

For relatively flat surfaces we could assume without loss of generality an initial
parametrization X1|t=0 = 0, and so it turns out that we have essentially two inde-
pendent initial conditions X2|t=0 and ∂tX1|t=0. However, the freedom to choose
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a nonzero initial parametrization for X1 is essential for our approximation results
and we use that freedom in both Theorem 1 and Theorem 2.

Notation. We denote Fourier transform by (Fu)(k) = û(k) = 1
2π

∫
u(x)e−ikx dx.

The Sobolev space Hs is equipped with the norm ‖u‖Hs = (
∫ |û(k)|2(1 + |k|2)s

dk)1/2. Moreover, let ‖u‖Hm(n) = ‖uρn‖Hm , where ρ(x) = (1 + x2)1/2, and let

‖u‖Cnb = ∑n
j=0 ‖∂jx u‖C0

b
, where ‖u‖C0

b
= supx∈R |u(x)|.

Our goal is to approximate the evolution of solutions of (1) and (2) with general
long-wavelength initial conditions. In order to make such an approximation, it is
necessary to consider two different approximating equations since, as we explain
below, the value of µ = 1

3 leads to a degeneracy in the equations. For µ 
= 1
3 , the

evolution of (long-wavelength) solutions of (1) and (2) can be split into a left and
right moving wave packet, each of which is described by the Korteweg–de Vries
(KdV) equation and there is no interaction between the left and right moving waves
to the degree of approximation considered here. Nonetheless, as we shall see in the
discussion following Theorem 1, the nature of the wave trains described by the two
KdV equations is quite different depending on whether or not µ is greater or less
than 1

3 . We now state our first approximation result.

Theorem 1. (The nondegenerate case: The KdV limit). Letµ 
= 1
3 . The solutions of

the water-wave problem in the long-wave limit split up into two wave packets, one
moving to the right and one to the left, where each of these wave packets evolves
independently as a solution of a Korteweg-de Vries equation.

More precisely: Fix s � 6; then, for all C1, T0 > 0, there exist C2, ε0 > 0 such
that for all ε ∈ (0, ε0) the following is true.

Let X1|t=0 = 0, X2|t=0(α) = ε2"1(εα) and ∂tX1|t=0(α) = ε2"2(εα) with

‖("1,"2)‖Hs+6(2)∩Hs+11(0) � C1.

Define amplitudes A1 = A1(α, T ) ∈ R and A2 = A2(α, T ) ∈ R satisfying the
KdV equations

2∂T A1 = (µ− 1
3 )∂

3
αA1 − 3

2A1∂αA1 and

2∂T A2 = ( 1
3 − µ)∂3

αA2 + 3
2A2∂αA2,

(3)

with 2A1|T=0 = "2 +"1 and 2A2|T=0 = "2 −"1.
Then there exists a reparametrization of the fluid surface (denoted with the same

symbols) such that the solution of the water wave-problem (1) and (2) satisfies

sup
t∈[0,T0/ε3]

|X1(0, t)| � C2ε
1/2

and

sup
t∈[0,T0/ε3]

∥∥∥∥∥∥

∂αX1
X2
∂tX1


 − ψLWL(ε, ·, t)

∥∥∥∥∥∥
Hs−1×Hs×Hs−3/2

� C2ε
7/2,
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where

ψLWL(ε, α, t) = ε2A1(ε(α − t), ε3t)


−1

1
−1


 + ε2A2(ε(α + t), ε3t)


−1

1
1


 .

Proof. See Section 4. ��

Remark 1. It might seem surprising that the error estimate is O(ε7/2). On the basis
of formal calculations it would be expected to be O(ε4). The loss of a half a power
of ε results from the way the Sobolev norms scale — i.e., if the error term is of the
form ε4E(εα), for some E ∈ L2, then ‖ε4E(ε·)‖L2 = ε7/2‖E‖L2 .

While most rigorous studies of the water-wave problem have focused on the
Lagrangian description used in Theorem 1, for comparison with experiments it
is necessary to re-express these results in terms of Eulerian coordinates. Define
u1(X̃1(α, t), t) = ∂tX1(α, t) and η(X̃1(α, t), t) = X2(α, t). In terms of these
variables, we have the following approximation result.

Corollary 1. Assume that Theorem 1 holds. Then the following estimate holds:

sup
t∈[0,T0/ε3]

∥∥∥∥
(
η

u1

)
− ε2A1(ε(· − t), ε3t)

(
1

−1

)
− ε2A2(ε(· + t), ε3t)

(
1
1

)∥∥∥∥
C
s−3/2
b

� C2ε
5/2.

Proof. This follows from Theorem 1 exactly as [SW00a, Corollary 1.5]. ��

The long-time behavior for the water-wave problem in the long-wave limit is
sketched in the Figs. 2 and 3. On a time scale O(1/ε) the solutions split up into two
wave packets one moving to the right and one to the left, regardless of whether µ is
greater or less than 1

3 . Each of these wave packets evolve independently as solutions
of the KdV equations whose long-time behavior can be computed explicitly with
the help of the inverse scattering transform. However, the behavior of these wave
packets is dramatically different depending on the value of µ, in spite of the fact
that they are all governed by the KdV equation. Forµ < 1

3 (“weak” surface tension)
the KdV solitons correspond to solitary waves of elevation on the fluid surface. The
largest solitary waves propagate fastest, followed by dispersive ripples. This is very
similar to the case of zero surface tension studied in [SW00a]. However, if µ > 1

3 ,
the KdV solitons represent solitary waves of depression on the fluid surface and the
largest waves move most slowly, preceded by the dispersive waves. Experimentally,
it is difficult to observe these solitary waves of depression on the surface of water at
room temperature since values of µ > 1

3 correspond to very shallow water depths
where dissipation is no longer negligible, and also because the dispersive ripples
propagating in front of the solitary wave tend to obscure it. However Benjamin
[Be82] reports tentative experimental observation of such solutions. See also the
comment before Corollary 2.
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Fig. 2. The long-time behavior for the water-wave problem in the long-wave limit for
µ < 1

3 .

Remark 2. In what follows we prove Theorem 1 for all 0 < µ, µ 
= 1
3 . However,

the constants C2 and ε0 in the theorem depend on µ and in particular the estimates
are not uniform in µ as ε tends to zero. Thus, while the statement of the theorem is
true forµ = 0 due to the results of [SW00a], we cannot recover our previous results
from those proved below. The technical reason for this difficulty is that the surface
tension enters as a singular perturbation of the µ = 0 problem, and this requires
very significant modifications of the former proof. Thus, while the general approach
here parallels that of [SW00a], we must develop a completely new existence theory
for solutions of (1) and (2) in Section 2, since that of [SW00a] no longer applies.

If µ = 1
3 , the coefficient of the third order dispersive terms in (3) vanish. These

terms in the KdV equation represent the leading order dispersive effects in the
water-waves problem and their disappearance means that in this parameter regime
water waves are almost dispersionless. This fact has been recognized for a long
time by the fluid-mechanics community and has been experimentally exploited in
an interesting way. Sound waves in air are also dispersionless, but in contrast to
water waves, are hard to observe visually. By studying surface-tension-driven water
waves, in water with µ = 1

3 (which corresponds to a water depth of about 5 mm at
20o C) it has been possible to exhibit visually many of the theoretically predicted
properties of two-dimensional sound waves [Li78, Sections 1.8 and 3.4].

Furthermore, the point µ = 1
3 is a codimension-two bifurcation point for the

stationary water-wave problem and this fact has been exploited in a series of recent
works ([BGT96,BG99]) to construct a host of interesting traveling water waves. The
waves constructed in those works require very special choices of initial conditions
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Fig. 3. The long-time behavior for the water-wave problem in the long-wave limit for
µ > 1

3 .

and our goal here is to derive equations that describe the evolution of general
long-wavelength initial conditions. If we try to approximate such solutions using
Theorem 1, the coefficients of the third derivative terms in (3) are equal to zero,
and the resulting equations are just Burgers equation whose solutions typically
form shocks in finite time. Thus, if we wish to model interesting behavior in the
water-wave problem for this parameter regime, we must modify the scaling and the
approximating equations (3). The next theorem explains how this can be done.

Theorem 2 (The degenerate case: The Kawahara limit). Let µ = 1
3 + νε2. The

solutions of the water-wave problem in the long-wave limit split up into two wave
packets, one moving to the right and one to the left, where each of these wave
packets evolves independently as a solution of a Kawahara equation.

More precisely: Fix s � 6; then, for all C1, T0 > 0, there exist C2, ε0 > 0 such
that for all ε ∈ (0, ε0) the following is true.

Let X1|t=0 = 0, X2|t=0(α) = ε4"1(εα) and ∂tX1|t=0(α) = ε4"2(εα) with

‖("1,"2)‖Hs+8(2)∩Hs+17(0) � C1.

Define amplitudes A1 = A1(α, T ) and A2 = A2(α, T ) satisfying the Kawahara
equations

2∂T A1 = ν∂3
αA1 − 2

90∂
5
αA1 − 3

2A1∂αA1 and

2∂T A2 = −ν∂3
αA2 + 2

90∂
5
αA2 + 3

2A2∂αA2,
(4)
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with 2A1|T=0 = "2+"1 and 2A2|T=0 = "2−"1. Denote by [0, T1] the existence
interval of the solutions A1 and A2 in Hs+8(2) and set T2 = min(T0, T1).

Then there exists a reparametrization of the fluid surface (denoted with the same
symbols) such that the solution of the water wave-problem (1) and (2) satisfies

sup
t∈[0,T2/ε5]

|X1(0, t)| � C2ε
1/2

and

sup
t∈[0,T2/ε5]

∥∥∥∥∥∥

∂αX1
X2
∂tX1


 − ψLWL(ε, ·, t)

∥∥∥∥∥∥
Hs−1×Hs×Hs−3/2

� C2ε
11/2,

where

ψLWL(ε, α, t) = ε4A1(ε(α − t), ε5t)


−1

1
−1


 + ε4A2(ε(α + t), ε5t)


−1

1
1


.

Proof. See Section 4. ��
Remark 3. The local existence and uniqueness of solutions of the Kawahara equa-
tions inH 8+s(2) is guaranteed for initial conditions inH 8+s(2)∩H 16+s(0). How-
ever, we are not aware of any studies of the global existence of solutions to (4),
in contrast to the case of the KdV equation. The work of Il’ ichev [Il90] shows
that the Kawahara equations (4) possess stable solitary waves at least when ν = 1.
This gives global existence for solutions with initial conditions close to the solitary
waves.

As remarked above, for water at room temperature, the valueµ = 1
3 corresponds

to a depth of about 5 mm. Because dissipation is no longer negligible in such thin
layers, it is difficult to observe Kawahara dynamics in such shallow fluids. However,
as noted by Marchenko [Ma88], a thin layer of ice floating on the top of the water
can lead to effects similar to those that would arise from a greatly enhanced surface
tension. Therefore, the evolution of waves on fluids of moderate depth, under a
thin layer of ice are also expected to be described by the Kawahara equations at
wavelengths where dissipation should be negligible.

Corollary 2. Assume that Theorem 2 holds. Then, for the Eulerian variables
u1 = u1(x, t) and η = η(x, t) defined by u1(X̃1(α, t), t) = ∂tX1(α, t) and
η(X̃1(α, t), t) = X2(α, t), the following estimate holds:

sup
t∈[0,T0/ε5]

∥∥∥∥
(
η

u1

)
− ε4A1(ε(· − t), ε5t)

(
1

−1

)
− ε4A2(ε(· + t), ε5t)

(
1
1

)∥∥∥∥
C
s−3/2
b

� C2ε
9/2.

Proof. This follows exactly as [SW00a, Corollary 1.5]. ��
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The plan of the paper is as follows. In Section 2 we discuss the local existence
and uniqueness theory for (1) and (2). In Section 3 we consider the formal long-
wave limit and derive the KdV and Kawahara equations. Finally, in Section 4 we
prove the error estimates given in Theorems 1 and 2.

Before we start let us make some remarks.

Remark 4. The main difficulty in proving these results stems from the long time
scales, O(1/ε3) in the KdV case and O(1/ε5) in the Kawahara case, which have
to considered. Since the amplitudes of the approximations are of order O(ε2) in
the KdV case and O(ε4) in the Kawahara case a simple application of Gronwall’s
inequality would only give estimates on a “short” time scale O(1/ε2) in the KdV
case and O(1/ε4) in the Kawahara case. To close the gap we must exploit some
additional structure of the water-wave problem. With the introduction of a suitable
energy norm and some normal form transformations we are able to take advantage
of the gradient-like structure of the nonlinearity, allowing us to extend the estimates
to the desired time scale.

Remark 5. For a system

∂tW = *W + B(W,W) (* linear, B bilinear)

and an approximation ε2ψ , the error εβR = W − ε2ψ for a β > 3 satisfies

∂tR = *R + 2ε2B(ψ,R)+ εβB(R,R)+ ε−βRes(ε2ψ),

where the formal error Res(ε2ψ) is small by construction. In order to estimate R
an energy functionalEs(·, ·) has to be constructed which simultaneously yields the
local existence and uniqueness of the solutions of the quasilinear system and allows
us to follow the solution for long enough to obtain the desired error estimates, i.e.,

1
2∂tEs(R,R) = Es(R,*R)+ 2ε2Es(R,B(ψ,R))+ h.o.t

� 0 + Cε3Es(R,R)+ h.o.t

Then by Gronwall’s inequality the O(1) boundedness of Es(R,R) and so also of
R on an O(1/ε3) time scale follows.

Remark 6. The cases of zero and nonzero surface tension must be distinguished
since the local existence and uniqueness theory for the solutions is different and the
energyEs(· , ·) described in Remark 5 is (somewhat surprisingly) quite different in
the two cases.

Remark 7. The theory of modulation equations is a weakly nonlinear theory, where
the dispersion relation

λ2 = −(k + µk3) tanh k

for the eigenvalues λ of the linearization of (1) and (2) plays a crucial role. In the
long-wave limit the Fourier modes are concentrated in an O(ε) neighborhood of
the Fourier wave number k = 0. Blowing up this neighborhood yields

λ±(εK) = ±εK ± ε3 3µ− 1

6
K3 ± ε5 2 − 5µ

30
K5 + O(ε7K7).
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Fig. 4. Expansion of the eigenvalues for µ < 1
3 and µ > 1

3 .

The O(ε) terms correspond to transport to the right and to the left, whereas the terms
of order O(ε3) contribute to the linear part of the KdV equations. This expansion
shows why the caseµ = 1

3 is exceptional and higher order terms have to be included.

Remark 8. In the local existence and uniqueness theory we use in an essential way
the fact that R + S is a gradient, in detail

R + S = ∂α(Q(∂αX)−3(−(∂αX2)∂
2
αX1 + (1 + ∂αX1)∂

2
αX2)).

Remark 9. We refer to [SW00a] for a discussion of the mathematical literature
about the approximation by the KdV equation [Cr85,KN86,Kal89]. Other mod-
els for the long wave limit are described in [Bo1877,Lo64,BS71,BBM72,Me79,
Ma91].A mathematical description of the long-wave limit by the KdV or the Kawa-
hara equation in various other problems can be found in [Sch98,SW00b,SW00c].
In contrast to other models the KdV or Kawahara description has the advantage of
being simple, exactly solvable in the KdV case, and independent of ε.

Notation. Throughout this paper, we assume 0 < ε � 1. The j -th component
of a vector v is denoted by (v)(j). The commutator of two operators L and M is
defined as [L,M] = LM −ML.
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2. Formulation as evolutionary problem

In this section we prove local existence and uniqueness for the solutions of (1)
and (2). Due to Remark 5 our local existence and uniqueness approach differs from
the existing literature. We obtain the result by embedding (1) and (2) into a bigger
system which is quasilinear in the sense of [Kat75], such that standard existence
and uniqueness theory can be applied. In order to do so we construct out of (1) and
(2) a nonlinear wave equation.

Notation. We introduce U1 = ∂tX1, and V1 = ∂tU1. All variables are collected
in the vector V = (X1, X2, U1, V1). Later on we need the additional variable
Z1 = K0X1, where K0 is the linear part of the operator K(X) and has Fourier
symbol K̂0(k) = −i tanh(k), and the collections of variables W = (Z1, X2, U1)

and We = (Z1, X2, U1, V1). The vectors W and We will be in the spaces Hs =
Hs ×Hs ×Hs−3/2 and Hs

e = Hs ×Hs ×Hs−3/2 ×Hs−3 respectively. We abuse
notation and do not distinguish between operators which depend on V or W; for
instance, we write for K(X) also K(V) and K(W).

Preliminaries. Before we start to construct the quasilinear system out of (1) and
(2) we recall some facts. For more details we refer to [SW00a] and the literature
cited there. The operator K(X) is of the form K(X) = K0 + S1(X), where the
operator S1(X)· has certain smoothing properties. As a rule, a term with S1(X)·
in front will have the regularity of X. More precisely, in terms of the variables W
used later on:

Lemma 1. Fix s � 11/2. Then there exist C > 0 and Cs > 0 such that for
‖(Z1, X2)‖Hs×Hs � Cs the operator S1(W) = K(W)− K0 satisfies

‖S1(W)U‖Hs � C‖W‖Hs‖U‖H 3 .

Proof. See [SW00a, Lemma 3.14]. ��
Lemma 2. Assume the situation of Lemma 1. Then, for all s � 6,

‖∂t (S1(W)U1)‖Hs−3 � C‖W‖Hs (‖U1‖H 3 + ‖V1‖H 3),

‖[∂2
t ,S1(W)]U1]‖Hs−3 � C‖We‖Hs

e
(‖U1‖H 3 + ‖V1‖H 3),

‖∂α(S1(W)U1)‖Hs−1 � C‖W‖Hs‖U1‖H 3 .

Proof. See [SW00a, Lemma 3.15]. ��
In the construction of the quasilinear system commutators [a,K0]· play a big

role. As a rule, [a,K0]u smoothes u and has the regularity of the function a.

Lemma 3. Let r � 0, q > 1
2 and 0 � p � q. Then there exists a C > 0 such that

‖[a,K0]u‖Hr � C‖a‖Hr+p‖u‖Hq−p .
Proof. See [SW00a, Lemma 3.12]. ��
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As mentioned in the beginning of this section, it will be convenient to introduce
a new variable Z1 = K0X1. We associate with Z1 the operator

M1(Z1, ·) = [X1,K0]·
which satisfies

Lemma 4. Let r � 0, q > 1
2 and 0 � p � q. Then there exists a C > 0 such that

‖M1(a, u)‖Hr � C‖a‖Hr+p‖u‖Hq−p .
Proof. See [SW00a, Corollary 3.13]. ��
Remark 10. The operator M1 is well defined, even though K0 is not invertible in
general, due to the commutator in its definition.

Remark 11. Examining the expression for ‖[a,K0]u‖Hr on [SW00a, p. 1499]
(which is expressed in terms of the Fourier transforms of a and u), we also see that
it can be bounded by

‖[a,K0]u‖Hr � Cmin(‖â‖L1(r+p)‖u‖Hq−p , ‖a‖Hr+p‖û‖L1(q−p)),

where ‖f̂ ‖L1(n) = ∫
(1 + |k|2)(n/2)|f̂ (k)|dk. There is then a similar bound for

‖M1(a, u)‖Hr , namely

‖M1(a, u)‖Hr � Cmin
(‖â‖L1(r+p)‖u‖Hq−p , ‖a‖Hr+p‖û‖L1(q−p)

)
.

Estimates of this kind were also used in [SW00a]: see, for example, (6.8). These
alternate forms of Lemmas 3 and 4 will sometimes be used in Section 4 since they
do not suffer from the loss of half a power of ε described in Remark 1, i.e., if
f (x) = ε2F(εx), then ‖f̂ ‖L1(n) � ε2‖F̂‖L(n) whereas ‖f ‖Hn � ε3/2‖F‖Hn .

In order to express the term ∂αX1 in terms of Z1 we define additionally the
operator

M2· = −∂α(K0)
−1·

which is a map from Hs+1 to Hs .
Finally, the operator (1 + K2

0)· is infinitely smoothing due to the fact that in
Fourier space its symbol (1 + K̂0(k)

2) vanishes with some exponential rate for
|k| → ∞.

Remark 12. As a general rule, it is possible to obtain existence and uniqueness of
solutions of the nonlinear wave equation

∂2
t u = a(u)L(∂α)u+ b(u), (a > 0) (5)

with L an elliptic operator, provided the coefficients a(u) and b(u) contain not
more than half the number of derivatives of L and terms with ∂tu. In the water-
wave problem (1) and (2) the operator L is essentially given by the multiplier
L̂(k) = −(k + µk3) tanh k in Fourier space. As a consequence |L̂(k)| ∼ |k|3 for
|k| → ∞. Thus, if we look for solutions u in Hs−3/2 we can allow for coefficients
a, b ∈ Hs−3, i.e., the coefficients a and b can lose 3

2 derivatives. Moreover, we
then have ∂tu ∈ Hs−3.
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The nonlinear wave equation will be constructed for the variable U1. We have
to chooseX1,2 ∈ Hs,U1 = ∂tX1 ∈ Hs−3/2, and V1 = ∂2

t X1 ∈ Hs−3. So all terms
up to ∂3

αX1,2 ∈ Hs−3 and ∂αU ∈ Hs−5/2 have the right regularity to be included
in the functions a and b. Terms containing ∂2

αU ∈ Hs−7/2 create difficulties and
must be included in the operator L.

The quasilinearization. With this scheme in mind we begin with the construction
of the quasilinear system. With the notation U2 = ∂tX2 the equations (1) and (2)
become

(1 + ∂αX1)∂tU1 + ∂αX2(1 + ∂tU2) = µR(∂αX, ∂2
αX)+ µS(∂αX, ∂3

αX),

U2 = K0U1 + S1(X)U1.

Differentiation of (1) with respect to time yields

(1 + ∂αX1)∂
2
t U1 + (∂tU1)∂αU1 + (1 + ∂tU2)∂αU2 + (∂αX2)∂

2
t U2

= µ∂1R(∂αX, ∂
2
αX)∂αU + µ∂2R(∂αX, ∂

2
αX)∂

2
αU

+ µ∂1S(∂αX, ∂
3
αX)∂αU + µ∂2S(∂αX, ∂

3
αX)∂

3
αU.

(6)

Differentiation of (2) with respect to time and space yields

∂αU2 = K0∂αU1 + ∂α(S1(X)U1),

∂2
αU2 = K0∂

2
αU1 + ∂2

α(S1(X)U1),

∂3
αU2 = K0∂

3
αU1 + ∂3

α(S1(X)U1),

∂tU2 = K0∂tU1 + ∂t (S1(X)U1),

∂2
t U2 = K0∂

2
t U1 + S1(X)∂

2
t U1 + [∂2

t ,S1(X)]U1.

Replacing ∂αU2, ∂2
αU2, ∂3

αU2, and ∂2
t U2 in (6) gives

(1 + ∂αX1)∂
2
t U1 + ∂tU1∂αU1 + (1 + ∂tU2)(K0∂αU1 + ∂α(S1(X)U1))

+ (∂αX2)(K0∂
2
t U1 + S1(X)∂

2
t U1 + [∂2

t ,S1(X)]U1)

= µ∂1R(∂αX, ∂
2
αX)∂αU + µ∂1S(∂αX, ∂

3
αX)∂αU

− 3µQ(∂αX)
−5(((1 + ∂αX1)∂

2
αU1 + ∂αX2(K0∂

2
αU1 + ∂2

α(S1(X)U1)))

× (−∂αX2∂
2
αX1 + (1 + ∂αX1)∂

2
αX2))

− 3µQ(∂αX)
−5((1 + ∂αX1)∂

2
αX1 + ∂αX2∂

2
αX2)

× (−∂αX2∂
2
αU1 + (1 + ∂αX1)(K0∂

2
αU1 + ∂2

α(S1(X)U1))))

+ µQ(∂αX)−3(−∂αX2∂
3
αU1 + (1 + ∂αX1)(K0∂

3
αU1 + ∂3

α(S1(X)U1))),

and so

(f1 + f2(K0 + S1(X)))∂
2
t U1 + h0(−f2 + f1K0)∂

3
αU1

+ 3µQ−5((−f2∂αf1 + f1∂αf2)(f1 + f2K0)∂
2
αU1)

+ 3µQ−5((f1∂αf1 + f2∂αf2)(−f2 + f1K0)∂
2
αU1)+G1 = 0,

(7)



Long-Wavelength Capillary-Gravity Waves 259

with

f1 = (1 + ∂αX1),

f2 = ∂αX2,

h0 = − µQ(∂αX)−3 = −µ(f 2
1 + f 2

2 )
−3/2,

G1 = ∂tU1(1 + K2
0)∂αU1 + (1 + ∂tU2)∂α(S1(X)U1),

+ (∂αX2)([∂2
t ,S1(X)]U1)+ ((1 + ∂tU2)− ∂tU1K0)K0∂αU1

− µ∂1R(∂αX, ∂
2
αX)∂αU − µ∂1S(∂αX, ∂

3
αX)∂αU

− µQ(∂αX)−3(f1∂
3
α(S(X)U1)))

+ 3µQ−5((−f2∂αf1 + f1∂αf2)f2∂
2
α(S(X)U1))

+ 3µQ−5((f1∂αf1 + f2∂αf2)f1∂
2
α(S(X)U1)).

The terms are separated according to the following rules:G1 contains the obviously
semilinear terms, and the terms written explicitly are the quasilinear ones.

The quasilinear term (−f2 + f1K0)∂
3
αU1 is rewritten as

(−f2 + f1K0)∂
3
αU1 = (f1 + f2K0)K0∂

3
αU1 − f2(1 + K2

0)∂
3
αU1.

Since 1 + K2
0 is infinitely smoothing, the last term can be handled as a semilinear

one. In a similar fashion we obtain

(f1∂αf1 + f2∂αf2)(−f2 + f1K0)∂
2
αU1)

= (f1∂αf1 + f2∂αf2)(f1 + f2K0)K0∂
2
αU1

− (f1∂αf1 + f2∂αf2)f2(1 + K2
0)∂

2
αU1.

Therefore, we arrive at

(f1 + f2(K0 + S1(X)))∂
2
t U1 + h0(f1 + f2K0)K0∂

3
αU1

+ 3µQ−5((−f2∂αf1 + f1∂αf2)(f1 + f2K0)∂
2
αU1)

+ 3µQ−5((f1∂αf1 + f2∂αf2)(f1 + f2K0)K0∂
2
αU1)+G2 = 0,

(8)

with

G2 = G1 − h0f2(1 + K2
0)∂

3
αU1

+ 3µQ−5(f1∂αf1 + f2∂αf2)f2(1 + K2
0)∂

2
αU1.

We multiply (8) with (f1−f2K0) and find that the first term in the equation becomes

(f1 − f2K0)(f1 + f2(K0 + S1(X)))∂
2
t U1

= (f1)
2∂2
t U1 − f2K0(f1∂

2
t U1)+ (f1 − f2K0)f2S1(X)∂

2
t U1

+ f1f2K0∂
2
t U1 − f2K0(f2K0∂

2
t U1)

= (f1)
2∂2
t U1 − f2[K0, f1]∂2

t U1 + (f1 − f2K0)f2S1(X)∂
2
t U1

+ f2K0[K0, f2]∂2
t U1 − f2(1 + K2

0)(f2∂
2
t U1)+ f 2

2 ∂
2
t U1.
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The second term can be rewritten as:

(f1 − f2K0)h0(f1 + f2K0)K0∂
3
αU1

= [(f1 − f2K0), h0](f1 + f2K0)K0∂
3
αU1

+ h0(f1 − f2K0)(f1 + f2K0)K0∂
3
αU1

= [(f1 − f2K0), h0](f1 + f2K0)K0∂
3
αU1

+ h0(f1)
2K0∂

3
αU1 − h0f2[K0, f1]K0∂

3
αU1

+ h0f2K0[K0, f2]K0∂
3
αU1 − h0f2(1 + K2

0)(f2K0∂
3
αU1)

+ h0f
2
2 K0∂

3
αU1.

For the third and fourth term, we obtain in the same fashion, with

h1 = 3µQ−5,

a1 = (−f2∂αf1 + f1∂αf2),

a2 = f1∂αf1 + f2∂αf2

the value

(f1 − f2K0)h1(a1((f1 + f2K0)∂
2
αU1 + a2(f1 + f2K0)K0∂

2
αU1))

= [(f1 − f2K0), h1a1](f1 + f2K0)∂
2
αU1

+ [(f1 − f2K0), h1a2](f1 + f2K0)K0∂
2
αU1

+ h1a1(f
2
1 + f 2

2 )∂
2
αU1 + h1a2(f

2
1 + f 2

2 )K0∂
2
αU1

− h1a1f2[K0, f1]∂2
αU1 − h1a2f2[K0, f1]K0∂

2
αU1

+ h1a1f2K0[K0, f2]∂2
αU1 + h1a2f2K0[K0, f2]K0∂

2
αU1

− h1a1f2(1 + K2
0)(f2∂

2
αU1)− h1a2f2(1 + K2

0)(f2K0∂
2
αU1).

Therefore, (7) transforms into

(f3 −H1)∂
2
t U1 + h0f3K0∂

3
αU1

+ h1a1f3∂
2
αU1 + h1a2f3K0∂

2
αU1 +G3 = 0 (9)

with

f3 = f 2
1 + f 2

2 ,

H1· = f2[K0, f1] · −f2K0[K0, f2] · +f2(1 + K2
0)(f2·)

− (f1 − f2K0)f2S1(X)·,
H2· = f2[K0, f1] · −f2K0[K0, f2] · +f2(1 + K2

0)(f2·),
G3 = (f1 − f2K0)G2 + [(f1 − f2K0), h0](f1 + f2K0)K0∂

3
αU1

+ [(f1 − f2K0), h1a1](f1 + f2K0)∂
2
αU1

+ [(f1 − f2K0), h1a2](f1 + f2K0)K0∂
2
αU1

− h0H2K0∂
3
αU1 − h1a1H2∂

2
αU1 − h1a2H2K0∂

2
αU1.
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We multiply this with

(f3 −H1)
−1 = (f3(1 − f−1

3 H1))
−1 = (1 − f−1

3 H1)
−1f−1

3

=
∞∑
n=0

(f−1
3 H1)

nf−1
3 ≡ f−1

3 +H3

and obtain

∂2
t U1 + h0K0∂

3
αU1 + h1a1∂

2
αU1 + h1a2K0∂

2
αU1 +G4 = 0 (10)

with

G4 = (f3 −H1)
−1G3 +H3(h0f3K0∂

3
αU1 + h1a1f3∂

2
αU1 + h1a2f3K0∂

2
αU1).

By the above Lemmas [·,K0]·, (1 + K2
0), S1(X), and consequently H1, H2, and

H3 have smoothing properties. Hence, it is easy to see that all terms in G4, h0,
h1, a1 and a2 are at least in Hs−3 provided that X1, X2 ∈ Hs , U1 ∈ Hs−3/2, and
V1 ∈ Hs−3 and have sufficiently small norm that the sum defining H3 converges.

Finally, we take out the linear term from G4 and introduce the abbreviations

L(V)U1 = −∂α(h0K0∂
2
αU1)− h2∂

2
αU1 − K0∂αU1

G5 = −G4 + K0∂αU1,

where we set h2 = h1a1 and used

h1a2 = 3µQ−5∂α(f
2
1 + f 2

2 )/2 = 3µQ−5∂α(Q
2)/2

= 3µQ−4∂αQ = −µ∂α(Q−3) = ∂αh0.

Remark 13. Note that h0 = −µ+h.o.t. (higher order terms) and that it is essential
for the local existence and uniqueness theory thath1a2 can be written as the gradient
∂αh0. A linear system ∂2

t U1 = K0∂
3
αU1 + δ1∂2

αU1 + δ2K0∂
2
αU1 with δ1,2 ∈ R has

the eigenvalues λ satisfying λ2 = −(tanh k)k3 − δ1k2 + iδ2(tanh k)k2. The real
term δ1k2 can be dominated by −(tanh k)k3 in the sense that the eigenvalues stay on
the imaginary axis for |k| sufficiently big. This is no longer true for the imaginary
term iδ2(tanh k)k2 which leads to eigenvalues leaving the imaginary axis by order
O(k1/2) for |k| → ∞. This would yield to an unacceptable loss of regularity of the
solutions. Because the coefficient in front of this term is a gradient, ∂αh0, it can be
merged into the leading order term −∂α(h0K0∂

2
αU1) and this loss of regularity can

be avoided. (See the discussion following (15) for more details.)

Rewriting (10) and the associated equations forX1 andX2 as a first order system
we obtain

∂tX1 = U1,

∂tX2 = K0U1 + S1(X)U1,

∂tU1 = V1,

∂tV1 = L(V)U1 +G5

(11)

for which the local existence and uniqueness of solutions can be established.
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Theorem 3. For all s � 6 there exists a C1 > 0 such that, for all C2 ∈ (0, C1],
there is a T0 > 0 such that the following is true. For each initial condition V0 ∈ Hs

e

with ‖V0‖Hs
e

� C2 there exists a unique solution V ∈ C([0, T0],Hs
e) of (11) with

V|t=0 = V0.

Remark 14. The existence proofs are based on the choice of a suitable energy
Es(V,V)which is equivalent to the usual Hs

e scalar product. The energyEs(· , ·) is
chosen in such a way that in the computation of d

dt
Es(V,V) all quasilinear terms

from (11) cancel and we can estimate d
dt
Es(V,V) in terms of Es(V,V). Then

Gronwall’s inequality can be applied and a priori estimates on the solution can be
obtained. We provide additional details in the proof of Theorem 4, which is the
form of the existence theorem that we actually use.

Remark 15. Various formulations of (1) and (2) as an evolutionary problem and as-
sociated local existence and uniqueness theorems have been obtained for the water-
wave problem with and without surface tension for finite and infinite depth in two
dimensions ([Na74,Sh76,Yo82,Yo83,Wu97]) and in three dimensions ([Wu99]).
For a more complete historical discussion of the existence theory for the water-
wave problem, see [SW00a, Remark 4.4].

Not all initial conditions V0 of (11) lead to solutions of the water-wave problem (1)
and (2), only those which have been computed from X1|t=0, X2|t=0, and U1|t=0.
Therefore, we introduce the space Cp,X of functions which satisfy the compatibility
conditions.

Definition 1. We define

Cp,X = {V = (φ0, φ1, φ2, φ3) |
(a) (1 + ∂αφ0)φ3 + (∂αφ1)(1 + φ4)

= µR(∂α(φ0, φ1), ∂
2
α(φ0, φ1))+ µS(∂α(φ0, φ1), ∂

3
α(φ0, φ1)),

(b) φ4 = K(φ0, φ1)φ3 + [∂t ,K(φ0, φ1)]φ2}.
We know that [∂t ,K(φ0, φ1)] is a function of φ0, φ1 and φ2 since ∂tφ0 = φ2

and ∂tφ1 = K(φ0, φ1)φ2. From V|t=0 ∈ Cp,X it follows that V(t) ∈ Cp,X for all
t > 0 due to the construction of (11).

As explained in [SW00a] for our approximation problem we must avoid trying
to estimate the variable X1 in some Sobolev space. So as in [SW00a] the variable
X1 will now be replaced by the variable Z1 = K0X1 which is possible due to
[SW00a, Section 3, especially Lemma 3.14].

Thus, we finally consider

∂tZ1 = K0U1,

∂tX2 = K0U1 + S1(W)U1,

∂tU1 = V1,

∂tV1 = L(W)U1 +G5

(12)

for We = (Z1, X2, U1, V1).
For this system we now prove the local existence and uniqueness of solutions.
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Theorem 4. For all s � 6 there exists aC1 > 0 such that, for allC2 ∈ (0, C1], there
is a T0 > 0 such that the following is true. For each initial condition We,0 ∈ Hs

e

with ‖We,0‖Hs
e

� C2 there exists a unique solution We ∈ C([0, T0],Hs
e) of (12)

with We|t=0 = We,0.

Proof. The proof of Theorem 4 is based on estimating the time derivative of the
energy function

Es(W,W) = (Z1, Z1)Hs + (X2, X2)Hs + (U1, U1)Hs−3/2 + (V1, V1)Hs−3 .

(13)

We see immediately that for any r � 1, if we differentiate along solutions of (12),
there exists a constant CE such that

d

dt
Er(W,W) � CE((Z1, Z1)Hr + (X2, X2)Hr + (U1, U1)Hr + (V1, V1)Hr ).

(14)

We use (14) to control derivatives of the solutions of (12) with r � s − 3. It is not
suitable for controlling the highest derivatives because it bounds time derivatives
of ‖U1‖Hr−3/2 and ‖V1‖Hr−3 on the left-hand side in terms of ‖U1‖Hr and ‖V1‖Hr
on the right-hand side.

In order to estimate the highest order derivatives we first look at the quasilinear
part of the last two equations of (12) which we write again as a nonlinear wave
equation

∂2
t U1 = −∂α(h0K0∂

2
αU1)− h2∂

2
αU1 − K0∂αU1. (15)

We introduce the skew symmetric operators λ1 and λ2 by λ2
1 = −K0∂α and λ2

2 =
−M2 = ∂αK−1

0 . Then u = λ1U1 satisfies

∂2
t u = ∂αλ1(h0∂αλ1u)− λ1(h2M2λ1u)+ λ2

1u

= ∂αλ1(h0∂αλ1u)+ λ1λ2(h2λ1λ2u)+ λ2
1u− λ1[λ2, h2]λ1λ2u,

where we used λ1λ2 = λ2λ1. The last term is semilinear since λ1 and λ2 both lose
half a derivative. Exploiting the smoothing property of the commutator, we find that
[λ2, h2] gains half a derivative and hence the combination λ1[λ2, h2]λ1λ2 loses a
total of one derivative. By Remark 12 we can still expect well-posedness of this
equation provided this term loses less than 3/2 of a derivative so we ignore this
part of the equation for the moment. (We intend here only to give a sketch of the
argument – precise details are supplied below.) The operator

*· = −∂αλ1(h0∂αλ1) · −λ1λ2(h2λ1λ2) · −λ2
1

is self-adjoint inL2. For ‖h2‖C1
b

and ‖h0 +µ‖C2
b

sufficiently small it is also positive

in L2 and hence according to [DS71] fractional powers of * can be defined. For
‖We‖Hs sufficiently small the norm ‖*s/3 ·‖L2 is equivalent to the usualHs norm.
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Again, in order to emphasize the essential outline of the argument, we assume
for the moment that h0 and h2 are independent of time. Then

d

dt

( (
*
s
3 − 7

6 ∂tu,*
s
3 − 7

6 ∂tu
)
L2

+
(
*
s
3 − 2

3 u,*
s
3 − 2

3 u
)
L2

)
= 0

and the local and global existence for solutions u ∈ C([0, T0], H s−2) ∩
C1([0, T0], H s−7/2) of

∂2
t u = −*u

follows. Here (· , ·)L2 stands for the L2 scalar product.
We now fill in the details of the above sketch. Returning to the full system

we introduce, in addition to u, the variables z = λ1Z1, x = λ1X2, v = λ1V1,
g0 = λ1S1(X)U1 and g5 = λ1G5 + λ1[λ2, h2]λ1λ2u.

Then the variables ω = (z, x, u, v) satisfy

∂t z = K0u,

∂tx = K0u+ g0,

∂tu = v,
∂tv = −*u+ g5.

We are looking now for solutions satisfying (*r+1z,*r+1x,*r+1/2u,*rv) ∈
(L2)4, where r = s

3 − 7
6 . By construction we then have *r+1g0 ∈ L2 and *rg5 ∈

L2. Remembering x = λ1X2 and z = λ1Z1 shows*r+5/6h0 ∈ L2 and*r+1/2h2 ∈
L2. Looking again at the definition of h0 and h2, we see that their time derivatives
satisfy *r+1/3∂th0 ∈ L2 and *r∂th2 ∈ L2.

We begin by reconsidering the time derivative of (*rv,*rv)L2 +
(*r+1/2u,*r+1/2u)L2 , but now include the fact that h0 and h2 depend on time.

1
2
d

dt
((*rv,*rv)L2 + (*r+1/2u,*r+1/2u)L2)

= (*rv,*rg5)L2 + (*rv, ∂t (*r)v)L2 + (*r+1/2u, ∂t (*
r+1/2)u)L2).

By the Cauchy-Schwarz inequality, the first term can be immediately bounded
by C(‖*rv‖2

L2 + ‖*rg5‖2
L2). The term (*rv, ∂t (*r)v)L2 can be written as

(*rv, ∂t (*
r)v)L2

=
r−1∑
j=0

(*rv,*j (∂αλ1(∂th0)∂αλ1 + λ1λ2(∂th2)λ1λ2)*
r−j−1v)L2 .

Since *r+1/3∂th0 ∈ L2 and *r∂th2 ∈ L2 as we observed above, we see that this
expression is bounded by

C(‖*rv‖2
L2 + Es(We,We))
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where s = 3r + 7
2 . The term (*r+1/2u, ∂t (*

r+1/2)u)L2 is bounded in like fashion
and we have

1

2

d

dt
((*rv,*rv)L2 + (*r+1/2u,*r+1/2u)L2)

� C((*rv,*rv)L2 + (*r+1/2u,*r+1/2u)L2)+ Es(We,We).

In order to estimate the the highest order derivatives of x and z we must take
advantage of the special form of the equations. Define ũ = K0U1, and z̃ = ∂αZ1.
Then

∂tV1 = −∂αh0∂α(∂αũ)− h2(∂αK−1
0 )(∂αũ)− (∂αũ)+G5 ≡ N(∂αũ)+G5

∂t z̃ = ∂αũ
Recalling that ‖h0 + µ‖Hs−1 � C‖W‖Hs , we see that if ‖W‖Hs is sufficiently
small, N is invertible and maps Ht → Ht+2. Furthermore, if Z1 ∈ Hs and

U1 ∈ Hs− 3
2 , then z̃ ∈ Hs−1 and ũ ∈ Hs− 3

2 . With this in mind, we consider the
quantity:

‖∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃‖2

L2 .

Note that if we know that V1 ∈ Hs−3 and if ‖We‖Hs
e

is sufficiently small, this
quantity controls the L2 norm of ∂s−1

α z̃, (and hence the L2 norm of ∂sαz.)
Differentiating this with respect to time gives:

([∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃], [∂sαũ−N−1∂s−1

α (N(∂αũ)+G5)

+ (∂tN−1)(∂s−1
α V1)+ (∂t [N−1(∂αN)])∂s−2

α z̃+N−1(∂αN)∂
s−1
α ũ)L2

= ([∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃],

[−N−1[∂s−1
α ,N ]∂αũ−N−1∂s−1

α G5

+ (∂tN−1)(∂s−1
α V1)+ (∂t [N−1(∂αN)])∂s−2

α z̃+N−1(∂αN)∂
s−1
α ũ])L2 ,

where we have simplified the expression by commuting the factor of N through
∂s−1
α . We now examine each of the remaining pieces in turn.

Note first that

N−1[∂s−1
α ,N ](∂αũ) =

s−1∑
j=2

cjN
−1(∂jαN)∂

s−1−j
α (∂αũ)+N−1(∂αN)∂

s−1
α ũ

for some constants cj . But if ũ ∈ Hs−3/2, there exists a constant C, such that

|([∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃],

[N−1[∂s−1
α ,N ](∂αũ)−N−1(∂αN)∂

s−1
α ũ])L2 |

� C{‖∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃‖2

L2

+ ‖u‖2

H
s− 3

2
+ ‖W‖2

Hs } ,
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where the term ‖W‖2
Hs results from bounding the derivatives of h0 and h2 that

occur in (∂jαN).
Next observe that

(∂tN
−1)f = −N−1(∂tN)N

−1f.

Since (∂tN) = −∂α(∂th0)∂α − (∂th2)(∂αK−1
0 ), and we know that ∂th0 ∈ Hs−5/2,

while ∂th2 ∈ Hs−7/2, we have ‖(∂tN−1)f ‖L2 � C(‖W‖Hs )‖f ‖Hs−3 , using the
fact that N−1 : Hs−3 → Hs−1 and the fact that N−1(∂tN) can be extended to a
bounded operator from L2 to L2. Thus,

|([∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃], (∂tN−1)(∂s−1

α V1))L2 |
� C{‖∂s−1

α z̃−N−1(∂s−1
α V1)+N−1(∂αN)∂

s−2
α z̃‖2

L2 + ‖W‖2
Hs + ‖V1‖2

Hs−3}.
The time derivative of N−1(∂αN) is computed in like fashion and we find

|([∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃], (∂t [N−1(∂αN)])(∂s−2

α z̃))L2 |
� C{‖∂s−1

α z̃−N−1(∂s−1
α V1)+N−1(∂αN)∂

s−2
α z̃‖2

L2 + ‖W‖2
Hs + ‖z̃‖2

Hs−2}.
Finally, using the estimate on G5 from above, we find

|([∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃], N−1∂s−1

α G5)L2 |
� C{‖∂s−1

α z̃−N−1(∂s−1
α V1)+N−1(∂αN)∂

s−2
α z̃‖2

L2 + ‖W‖2
Hs }.

Collecting all of these pieces we see that we have the estimate

1
2∂t‖∂s−1

α z̃−N−1(∂s−1
α V1)+N−1(∂αN)∂

s−2
α z̃‖2

L2

� C{‖∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃‖2

L2 + ‖W‖2
Hs }, (16)

where we used the fact that ‖u‖Hs−3/2 � ‖W‖Hs .
In a similar way, if we define x̃ = ∂αX2, we then have the estimate

1
2∂t‖∂s−1

α x̃ −N−1(∂s−1
α V1)+N−1(∂αN)∂

s−2
α z̃‖2

L2

� C{‖∂s−1
α x̃ −N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃‖2

L2 + ‖W‖2
Hs }. (17)

Hence, we introduce the pre-energy

Er (ω, ω) = (*rv,*rv)L2 + (*r+1/2u,*r+1/2u)L2

+ ‖∂s−1
α z̃−N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃‖2

L2

+ ‖∂s−1
α x̃ −N−1(∂s−1

α V1)+N−1(∂αN)∂
s−2
α z̃‖2

L2 .

Summarizing these estimates shows that there exists a constant C5, such that

d

dt
(Er (ω, ω)+ Es−3(W,W)) � C5(Er (ω, ω)+ Es(W,W)) (18)
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with 3r = s − 7
2 . Moreover, if ‖W‖Hs , is sufficiently small the norm defined by

either Er (ω, ω)+ Es−3(W,W) or Er (ω, ω)+ Es(W,W) is equivalent to the Hs
e

norm.
With the help of this a priori estimate the existence theory locally in time

is completed by applying the usual fixed-point argument to the iteration scheme
[Kat75]:

∂tZ1,j = K0U1,j ,

∂tX2,j = K0U1,j + S1(Wj−1)U1,j−1,

∂tU1,j = V1,j ,

∂tV1,j = L(Wj−1)U1,j +G5,j−1

(19)

with We,j |t=0 = We,0 for all j ∈ N in the space C([0, T0],Hs
e) for a T0 > 0

sufficiently small, and hence Theorem 4 follows immediately. ��
Definition 2. The compatibility conditions for (12) are denoted by Cp. They are the
obvious analogues of Cp,X.

3. Long wave analysis

In this section we derive the KdV equations in detail and sketch the very similar
derivation of the Kawahara equations. Then we construct an approximation for the
solutions of (1) and (2) and we estimate the formal error, the so-called residual.

3.1. Derivation of the KdV and Kawahara equations

We are interested in the long-wave limit, i.e., in the case when the initial con-
ditions are functions of the large spatial variable α = εα and the amplitudes are of
order O(ε2) in the KdV case or O(ε4) in the Kawahara case. We first consider the
former. There will be no fast dynamics, that is to say, no dynamics on time scales
of O(1), and so we also introduce the variable for the slow temporal scale t = εt .
The amplitude is scaled in such a way that the leading linear and leading nonlinear
terms are of the same order. We make the standard ansatz

X1(ε, α, t) = εX1(α, t) and X2(ε, α, t) = ε2X2(α, t), (20)

and we use the fact that the operator K(X) possesses the expansion [Cr85, Lem-
ma 3.7, p. 827]

K(X)U = K0U + [X1,K0]∂αU − (X2 + K0(X2K0))∂αU + O(X2)U

so that in the long-wave limit we obtain

K0(∂α) = −ε∂α − 1
3ε

3∂3
α − 2

15ε
5∂5
α + O(ε7).
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Inserting (20) and the expansion for K(X) into (1) and (2), we find

∂2
t X1 + ∂αX2 = −ε2((∂αX1)(∂

2
t X1))+ µε2∂3

αX2 + O(ε4),

∂tX2 + ∂α∂tX1 = ε2(− 1
3∂t∂

3
αX1 + (∂αX1)(∂t ∂αX1)−X2∂t∂αX1)+ O(ε4).

The first order long-wave approximation focuses on those terms of O(ε0) and
O(ε2), i.e., on the system of equations

∂2
t X1 + ∂αX2 = −ε2((∂αX1)(∂

2
t X1))+ µε2∂3

αX2, (21)

∂tX2 + ∂α∂tX1 = ε2(− 1
3∂t∂

3
αX1 + (∂αX1)(∂t ∂αX1)−X2∂t∂αX1). (22)

We solve these equations (up to terms of O(ε4)) by choosing

X2 + ∂αX1 = ε2(− 1
3∂

3
αX1 + (∂αX1)

2). (23)

Differentiating this with respect to time gives

∂tX2 + ∂t∂αX1 = − 1
3ε

2∂3
α∂tX1 + 2ε2(∂α∂tX1)(∂αX1) (24)

= − 1
3ε

2∂3
α∂tX1 + ε2(∂α∂tX1)(∂αX1)− ε2X2(∂α∂tX1)+ ε4E4

1 ,

where
E4

1 = (− 1
3∂

3
αX1 + (∂αX1)

2)(∂α∂tX1) .

This means that by the choice (23) equation (22) is satisfied up to terms of O(ε4).
Inserting (23) into (21) gives

∂2
t X1 − ∂2

αX1 = ε2(( 1
3 − µ)∂4

αX1 − ∂αX1∂
2
t X1 − ∂α((∂αX1)

2)))+ O(ε4)

(25)

and so

∂2
t X1 = (1 + ε2∂αX1)

−1(∂2
αX1 + ε2( 1

3 − µ)∂4
αX1 − ε2∂α((∂αX1)

2))+ O(ε4)

= ∂2
αX1 + ε2( 1

3 − µ)∂4
αX1 − ε2∂α((∂αX1)

2)− ε2∂αX1∂
2
αX1 + O(ε4)

= ∂2
αX1 + ε2( 1

3 − µ)∂4
αX1 − ε2 3

2∂α((∂αX1)
2))+ O(ε4).

Corresponding to our variableZ1 = K0X1, we introduce in the long-wave limit
Z1 = −∂αX1. From (25), we see that Z1 = −∂αX1 satisfies

∂2
t Z1 − ∂2

αZ1 = ε2(( 1
3 − µ)∂4

αZ1 + 3
2∂

2
α((Z1)

2))+ O(ε4). (26)

Remark 16. Neglecting terms of order O(ε4), system (26) is ill-posed. Using
∂2
t Z1 − ∂2

αZ1 = O(ε2) gives the well-posed system

∂2
t Z1 − ∂2

αZ1 = ε2(( 1
3 − µ)∂2

α∂
2
t Z1 + 3

2∂
2
α((Z1)

2))). (27)

Equations (25), (26), and (27) have first been derived by Boussinesq (cf. [Bo1877]).
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Our goal is to obtain approximation equations which are independent of ε.
Therefore, we make the hypothesis that solutions of (26) are of the form

Z1 = A1(α − t, ε2t)+ A2(α + t, ε2t). (28)

Letting T = ε2t , this yields

ε2(−2∂α∂T (A1 − A2))+ ε4∂2
T (A1 + A2)

= ε2(( 1
3 − µ)∂4

α(A1 + A2)+ 3
2∂

2
α((A1)

2 + (A2)
2)+ r1)+ O(ε4)

with r1 = 3∂2
α(A1A2). Since A1 and A2 are spatially localized and since the two

wave packets only meet on a time scale O(1/ε) which is relatively short compared
to the overall time scale O(1/ε3), we claim that the influence of the term r1 on the
dynamics ofA1,2 is of order O(ε2) and as a consequence we claim that up to terms
of O(ε4), the water-wave problem can completely be described by two decoupled
KdV equations

2∂T A1 = −( 1
3 − µ)∂3

αA1 − 3
2∂α((A1)

2),

2∂T A2 = ( 1
3 − µ)∂3

αA2 + 3
2∂α((A2)

2).
(29)

This has been shown in [Sch98] for (27) as a model problem and in [SW00a] for the
water-wave problem without surface tension. The model problem in the Kawahara
case has been handled in [SW00c].

Remark 17. The Kawahara equations are obtained if we setµ = 1
3 +νε2, T = ε4t ,

X1(ε, α, t) = ε3X1(α, t) and X2(ε, α, t) = ε4X2(α, t).

With exactly the same calculations we end up with two decoupled Kawahara equa-
tions

2∂T A1 = ν∂3
αA1 − 2

90∂
5
αA1 − 3

2∂α((A1)
2),

2∂T A2 = −ν∂3
αA2 + 2

90∂
5
αA2 + 3

2∂α((A2)
2).

(30)

The details are left to the reader.

3.2. The approximation and estimates for the residual

It is the aim of this section to construct an approximation ε2Fe out of (23)
and (29) for the extended system (12). This has to be done in such a way that the
extended residual

Rese(We) = (ResZ1(We),ResX2(We),ResU1(We),ResV1(We))

with

ResZ1(We) = −∂tZ1 + K0U1,

ResX2(We) = −∂tX2 + K0U1 + S1(W)U1,

ResU1(We) = −∂tU1 + V1,

ResV1(We) = −∂tV1 + L(W)U1 +G5
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is small. The residual contains all terms which do not drop out after inserting the
extended approximation ε2Fe into system (12). We additionally define

Res(W) = (ResZ1(W),ResX2(W),ResU1(W)),

where in computing ResU1(W), we use the fact that ∂tU1 can also be rewritten as
in (34) and hence,

ResU1 = − ∂tU1 + (1 − M2Z1 + (∂αX2)K(W))−1

× (−(∂αX2)(1 + [∂t ,K(W)]U1)

+ µR(∂αX, ∂2
αX)+ µS(∂αX, ∂3

αX)).

With these preparations we define the approximations

ε2F = (ε2ψZ1 , ε
2ψX2 , ε

2ψU1) and ε2Fe = (ε2ψZ1 , ε
2ψX2 , ε

2ψU1 , ε
3ψV1),

(31)

where

ε2ψZ1(α, t) = ε2(A1(α − t, ε2t)+ A2(α + t, ε2t)),

ε2ψX2(α, t) = ε2ψZ1 + ε4(ψZ1)
2,

ε2ψU1(α, t) = ε2∂tK−1
0 ψZ1(α, t),

ε3ψV1(α, t) = ε3∂2
t K−1

0 ψZ1(α, t).

(32)

Note that the V1 component is scaled with ε3.

Remark 18. The motivation for the definitions of ψU1 and ψV1 are that ε2ψU1 =
ε2∂tψX1 whereψX1 = K−1

0 ψZ1 . But K−1
0 ψZ1 is undefined unless

∫
ψZ1(α, t)dα =

0. However, since A1 and A2 satisfy the KdV equations,
∫
(∂tψZ1(α, t))dα = 0

and hence ψU1 is well defined. A similar argument applies to ψV1 . The motivation
for the definition of ψX2 is the formal calculation (23).

The approximation ε2Fe has the following properties.

Lemma 5. Fix s � 1. For all CA > 0 there exist CF , ε0 > 0 such that for all
ε ∈ (0, ε0) the following is true. Let A1, A2 ∈ C([0, T0], H s+6) be solutions of
(29) with

sup
T ∈[0,T0]

‖(A1, A2)(T )‖Hs+6 � CA.

Then,
sup

t∈[0,T0/ε3]
‖Fe(t)‖Hs

e
� CF.

Proof. This follows more or less line for line the proof of [SW00a, Lemma 5.4].
��

The following lemma ensures that the approximation ε2Fe defined in (31) is
at least formally a good approximation. Let us define (τtu)(α) = u(α + t) and
(SεA)(α) = A(εα).
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Lemma 6. Fix s � 1. For all CA > 0 there exist CRes, ε0 > 0 such that for all
ε ∈ (0, ε0) the following is true. Let A1, A2 ∈ C([0, T0], H s+6(2)) be solutions of
(29) with

sup
T ∈[0,T0]

‖(A1, A2)(T )‖Hs+6(2) � CA

or let A1, A2 ∈ C([0, T0], H s+6) be solutions of (29) with A2 = 0 and

sup
T ∈[0,T0]

‖(A1, A2)(T )‖Hs+6 � CA.

Then for

Q1 = Rese(ε
2Fe(s)) and Q2 =




0
0

− 1
2ε

5∂α((τ−t SεA1)(τtSεA2))

− 3
2ε

6∂t∂α((τ−t SεA1)(τtSεA2))




the following estimates hold:

sup
t∈[0,T0/ε3]

‖Q1 −Q2‖Hs
e
� CResε

13/2

and

ε7/2q(t) := ‖Q2(t)‖Hs
e
� CResε

9/2/(1 + (εt)2).

Proof. The proof is very close to the [SW00a, Lemma 5.5]. Recalling that Z1 =
K0X1 and Z1 = −∂αX1, we obtain

ResX2(We) = − ε3∂tX2 − ε3∂αU1

+ ε5(− 1
3∂

3
αU1 − Z1∂αU1 −X2∂αU1)+ O(ε7),

ResU1(We) = − ε3∂tU1 − ε3∂αX2 + ε5(Z1∂tU1)+ µε5∂3
αX2 + O(ε7)

= − ε3∂tU1 − ε3∂αX2 − ε5(Z1∂αX2)+ µε5∂3
αX2 + O(ε7),

ResV1(We) = − ε4∂tV 1 − ε4∂t∂αX2 − ε6(∂tZ1)(∂αX2)

− ε6Z1(∂t ∂αX2)− µε6∂3
αU1 + O(ε8)

= − ε4∂tV 1 + ε4∂2
αU1

− ε6∂α((µ− 1
3 )∂

3
αU1 − Z1∂αU1 −X2∂αU1)

+ ε6(∂αU1)(∂αX2)+ ε6Z1(∂
2
αU1)+ O(ε8)

= − ε4∂tV 1 + ε4∂2
αU1 + ε6(

1

3
− µ)∂4

αU1 + 2ε6Z1∂
2
αU1

+ 2ε6(∂αX2)(∂αU1)+ ε6(∂αZ1)(∂αU1)+ ε6X2(∂
2
αU1)+O(ε8).
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Inserting We = ε2Fe gives by construction

ResZ1(ε
2Fe) = 0,

ResX2(ε
2Fe) = 0 + O(ε7),

ResU1(ε
2Fe) = − 1

2ε
5∂α((τ−t SεA1)(τtSεA2))+ O(ε7),

ResV1(ε
2Fe) = − 3

2ε
6∂t∂α((τ−t SεA1)(τtSεA2))+ O(ε8),

where the cancellation in the second line is due to the quadratic terms inψX2 . Using
[SW00a, Lemma 2.3] which shows that

‖f (i∂α)(SεA)(α)‖Hm � Cεn−1/2‖A‖Hm+n

if |f (k)| � C|k|n, establishes

sup
t∈[0,T0/ε3]

‖Q1 −Q2‖Hs
e
� CResε

13/2.

FromAj ∈ C([0, T0], H s+6(2)) and Sobolev’s embedding theorem which we apply
in the form

‖Sε(uv)‖Hs � ‖Sε(ρ1ρ2)
−1‖Csb‖Sε(uρ1)‖Hs‖Sε(vρ2)‖Csb

� ‖Sε(ρ1ρ2)
−1‖Csbε−1/2‖uρ1‖Hs‖vρ2‖Csb

� ‖Sε(ρ1ρ2)
−1‖Csbε−1/2‖uρ1‖Hs‖vρ2‖Hs+1 ,

we have

‖(τ−t SεA1)(τtSεA2))‖Hs � C sup
α

|((1 + (ε(α − t))2)(1 + (ε(α + t))2))−1|
× ε−1/2( sup

T ∈[0,T0]
‖A1‖Hs(2))( sup

T ∈[0,T0]
‖A2‖Hs+1(2))

� CResε
−1/2/(1 + (εt)2),

and so with ∂T Aj ∈ C([0, T0], H s+3(2)) and ∂α∂T Aj ∈ C([0, T0], H s+2(2)) the
estimate aboutQ2 follows. ��

For the case µ = 1
3 + νε2 the details are again left to the reader. The results are

summarized in the following lemma.

Lemma 7. Fix s � 1. For all CA > 0 there exist Cψ , CRes, ε0 > 0 such that for all
ε ∈ (0, ε0) the following is true. Let A1, A2 ∈ C([0, T1], H s+8(2)) be solutions of
(30) with

sup
T ∈[0,T1]

‖(A1, A2)(T )‖Hs+8(2) � CA

or let A1, A2 ∈ C([0, T1], H s+8) be solutions of (30) with A2 = 0 and

sup
T ∈[0,T1]

‖(A1, A2)(T )‖Hs+8 � CA.
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Then we find, for

ε4ψZ1(α, t) = ε4(A1(α − t, ε4t)+ A2(α + t, ε4t)),

ε4ψX2(α, t) = ε4ψZ1 + ε8(ψZ1)
2,

ε4ψU1(α, t) = ε4∂tK−1
0 ψZ1(α, t),

ε5ψV1(α, t) = ε5∂2
t K−1

0 ψZ1(α, t),

(33)

that
sup

t∈[0,T1/ε5]
‖Fe(t)‖Hs

e
� CF.

Moreover, for

Q1 = Rese(ε
4Fe(s)) and Q2 =




0
0

− 1
2ε

9∂α((τ−t SεA1)(τtSεA2))

− 3
2ε

10∂t∂α((τ−t SεA1)(τtSεA2))


 ,

the following estimates hold:

sup
t∈[0,T1/ε5]

‖Q1 −Q2‖Hse � CResε
21/2

and
ε11/2q(t) := ‖Q2(t)‖Hse � CResε

17/2/(1 + (εt)2).
Remark 19. We recall here that we use T1 rather than T0 to denote the existence
interval of solutions of the Kawahara equations in the function space Hs+8(2)
because in contrast to the case of the KdV equations we are unaware of any results
of the global well-posedness of the Kawahara equations in these weighted function
spaces.

4. The error estimates

Now we are ready to formulate our main result. For (1) and (2) written as the
first order system

∂tZ1 = K0U1,

∂tX2 = K0U1 + S1(X)U1,

∂tU1 = − (1 − M2Z1 + (∂αX2)K0

+ (∂αX2)S1(X))
−1[(∂αX2)(1 + [∂t ,S1(X)]U1)

− µR(∂αX, ∂2
αX)− µS(∂αX, ∂3

αX)]

(34)

in the variables collected in W , we show that there exist solutions which behave
in approximately the same way as predicted by the approximation ε2F defined in
(32) and constructed via the solutions of the two decoupled KdV equations (29).



274 Guido Schneider & C. Eugene Wayne

Theorem 5. Fix s � 6 and let β = 7/2. Then for all CA, C0, T0 > 0 there exist
CR , ε0 > 0 such that for all ε ∈ (0, ε0) the following is true. Let A = (A1, A2) ∈
C([0, T0], (H s+6(2))2) be solutions of (29) with

sup
T ∈[0,T0]

‖(A1, A2)‖(Hs+6(2))2 � CA

or let A = (A1, A2) ∈ C([0, T0], (H s+6)2) be solutions of (29) with A2 = 0 and

sup
T ∈[0,T0]

‖(A1, A2)‖(Hs+6)2 � CA,

and let W|t=0 = ε2F|t=0 + εβR|t=0 ∈ Hs with ‖R|t=0‖Hs � C0. Then there is a
unique solution W = ε2F + εβR ∈ C([0, T0/ε

3],Hs) of (34) which satisfies

sup
t∈[0,T0/ε3]

‖R(t)‖Hs � CR.

Remark 20. This is not in contradiction with Section 2. Local existence and unique-
ness of solutions for (34) follows indirectly since (34) is a subsystem of (12), namely
the system of all solutions of (12) in Cp.

Proof of Theorem 1. From [SW00a, Lemma 2.5] we have the estimate

sup
t∈[0,T0/ε3]

|X1|α=0(t)| � C2ε
1/2.

Also, [SW00a, Lemma 2.6] ensures that in the long-wave limit the initial conditions
φ1 and φ2 of (34) can be separated into the initial conditions A1|T=0 and A2|T=0
of the two decoupled KdV equations and that we have a reparametrization of the
physical solution with an initial error ε7/2R|t=0 such that Theorem 5 can be applied.
Then by [SW00a, Lemma 6.3] we construct via (32) a formal approximation of the
solutions of (34) for all t ∈ [0, T0/ε

3] with T0 > 0 finite, but arbitrarily large. Then
Theorem 5 ensures that the water-wave problem (34) in the long-wave limit really
can be described approximately by two decoupled KdV equations (29). So the only
step remaining in the proof of Theorem 1 is to establish the validity of Theorem 5.
��

Preliminaries. The operator S1(X) is split into its quadratic and its higher order
terms.

Lemma 8. The operator K(W) possesses the expansion

K(W)U1 = K0U1 + B1(W)U1 + S2(W)U1

with

B1(W)U1 = M1(Z1, ∂αU1)− (X2 + K0(X2K0))∂αU1

= M1(Z1, ∂αU1)− (1 + K2
0)(X2∂αU1)− K0([X2,K0]∂αU1),

S2(W)U1 = O(‖W‖2)U1.
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Proof. See [SW00a, Lemma 3.8] and [SW00a, Remark 3.9]. ��
Remark 21. Due to Lemma 3 and Lemma 4 the operator B1 is smoothing. Thus,

‖B1(W)U1‖Hs � C‖W‖Hs‖U1‖H 3 .

This quantity can also be estimated with the aid of Remark 11, obtaining

‖B1(W)U1‖Hs � Cmin(‖Ŵ‖L1(s)‖U1‖H 3 , ‖W‖Hs‖Û‖L1(s)). (35)

As noted in Remark 11, this latter estimate is useful if we wish to minimize the loss
of powers of ε due to the scaling of the L2 norms.

As a direct consequence of the smoothing properties of B1 and Lemma 1 we
have the following corollary.

Corollary 3. Assume the situation of Lemma 1. Then, for all s � 6,

‖S2(W)U1‖Hs � C‖W‖2
Hs‖U1‖H 3 ,

‖∂t (S2(W)U1)‖Hs−3 � C‖W‖2
Hs
e
(‖U1‖H 3 + ‖V1‖H 3),

‖[∂2
t ,S2(W)]U1]‖Hs−3 � C‖We‖2

Hs
e
(‖U1‖H 4 + ‖V1‖H 4),

‖∂α(S2(W)U1)‖Hs−1 � C‖W‖2
Hs‖U1‖H 3 .

With these preparations we can begin the Proof of Theorem 5.

Remark 22. In the following, many estimates have to be made. In order to avoid
each time restating all of the quantifiers explicitly, we use the following standing
hypothesis:

(HS) For allCR > 0 there exist ε0 > 0 and constantsC > 0 such that the following
holds for all ε ∈ (0, ε0) and t � 0 as long as supτ∈(0,t) ‖Re‖Hs

e
� CR .

We proceed as follows. As explained in [SW00a], and as can be seen just by
examining the linearized equations, outside the set Cp there is a secular growth of the
solutions of (12). However, this growth occurs only in the size of the components of
W – not for the derivatives of these functions. In order to control the error over the
very long time scales of interest here we must use the property W(t) ∈ Cp by taking
(34) for the evolution of W and then using (12) for the evolution of the derivatives
of W and for V1. We follow Remark 5 and write a solution W = (Z1, X2, U1) of
(34) as a sum of the approximation ε2F and an error εβR with

ε2F = (ε2ψZ1 , ε
2ψX2 , ε

2ψU1) and εβR = (εβRZ1 , ε
βRX2 , ε

βRU1),

and we write a solution We = (Z1, X2, U1, V1) of (12) as a sum of the approxi-
mation ε2Fe and an error εβRe with

ε2Fe = (ε2ψZ1 , ε
2ψX2 , ε

2ψU1 , ε
3ψV1) and

εβRe = (εβRZ1 , ε
βRX2 , ε

βRU1 , ε
βRV1).
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We expand (34) up to terms of quadratic order. With

Q = (1 + 2∂αX1 + (∂αX1)
2 + (∂αX2)

2)1/2 = 1 + ∂αX1 + h.o.t.

= 1 − M2Z1 + h.o.t.,

R = −3(∂2
αX1)(∂

2
αX2)+ h.o.t. = 3(∂αM2Z1)(∂

2
αX2)+ h.o.t.,

S = (1 + 3M2Z1 + h.o.t.)((∂αX2)(∂
2
αM2Z1)+ (1 − M2Z1)∂

3
αX2)

= ∂3
αX2 + (∂αX2)(∂

2
αM2Z1)+ 2(M2Z1)∂

3
αX2 + h.o.t.

we obtain

∂tZ1 = K0U1,

∂tX2 = K0U1 + M1(Z1, ∂αU1)− (X2 + K0(X2K0))∂αU1 + O(‖W‖3),

∂tU1 = − ∂αX2 − (M2Z1)∂αX2 + (∂αX2)K0∂αX2

+ µ∂3
αX2 + µ(∂αX2)(∂

2
αM2Z1)

+ 2µ(M2Z1)∂
3
αX2 + 3µ(∂αM2Z1)(∂

2
αX2)+ O(‖W‖3).

(36)

Now insert the ansatz W = ε2F + εβR into (36), which yields

∂tRZ1 = K0RU1 ,

∂tRX2 = K0RU1 + ε2M1(ψZ1 , ∂αRU1)− ε2(ψX2 + K0(ψX2K0))∂αRU1

+ ε3M1(RZ1 , ∂αψU1)− ε3(RX2 + K0(RX2K0))∂αψU1 + N1

= K0RU1 + ε2M1(ψZ1 , ∂αRU1)− ε2(ψX2 + K0(ψX2K0))∂αRU1 + N2

= K0RU1 + ε2s1(F, ∂αRU1)+ N2,

∂tRU1 = − ∂αRX2 − ε2(M2ψZ1)∂αRX2 + ε3(∂αψX2)K0∂αRX2

− ε3(M2RZ1)∂αψX2 + ε3(∂αRX2)K0∂αψX2

+ µ∂3
αRX2 + µε3(∂αψX2)∂

2
αM2RZ1 + µε4(∂αRX2)∂

2
αM2ψZ1

+ 2µε5(M2RZ1)∂
3
αψX2 + 2µε2(M2ψZ1)∂

3
αRX2

+ 3µε3(M2∂αψZ1)(∂
2
αRX2)+ 3µε4(M2∂αRZ1)(∂

2
αψX2)+ N3

= − ∂αRX2 − ε2(M2ψZ1)∂αRX2

+ µ∂3
αRX2 + 2µε2(M2ψZ1)∂

3
αRX2 + N4 (37)

with

‖N1‖Hs � C(ε3‖R‖Hs + εβ‖R‖2
Hs + ε3CRes + q(t)),

‖N2‖Hs � C(ε3‖R‖Hs + εβ‖R‖2
Hs + ε3CRes + q(t)),

‖N3‖Hs−3 � C(ε3‖R‖Hs + εβ‖R‖2
Hs + ε3CRes + q(t)),

‖N4‖Hs−3 � C(ε3‖R‖Hs + εβ‖R‖2
Hs + ε3CRes + q(t)),

ε2s1(F, ∂αRU1) = ε2M1(ψZ1 , ∂αRU1)− ε2(ψX2 + K0(ψX2K0))∂αRU1

under the hypothesis (HS).
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Remark 23. Note that in order to avoid losing any further powers of ε in the esti-
mates of N2 and N4, we use estimate (35) to bound terms like ε3M1(RZ1 , ∂αψU1)

+ ε3(RX2 + K0(RX2K0))∂αψU1 that appear in these expressions. This allows us
to retain the factor of ε3 in front of the ‖R‖Hs term which is necessary to apply
Gronwall’s inequality over the long time intervals of interest here.

The term s1 is bilinear in its arguments with the regularity of ψ , i.e., ∂αRU1 is
smoothed by this operator according to Lemma 3 and Lemma 4. This term of order
O(ε2) in the equations for ∂tRX2 can be eliminated by the following procedure.
We replace ∂αRU1 in ε2s1(ψ, ∂αRU1) by

∂αRU1 = (∂αK−1
0 )(∂tRX2 − ε2s1(F, ∂αRU1)+ N2)

and so
∂tRX2 = K0RU1 + ε2s1(F, (∂αK−1

0 )∂tRX2)+ N2a,

where N2a obeys the same estimates as N2. With ∂tF = O(ε) we obtain

∂t (RX2 − ε2s1(F, (∂αK−1
0 )RX2)) = K0RU1 + N2b,

where N2b obeys the same estimates as N2. Then we make the change of variables

RY2 = RX2 − ε2s1(F, (∂αK−1
0 )RX2), (38)

or equivalently

RX2 = RY2 + ε2s1(F, (∂αK−1
0 )RY2)+ O(ε4),

which is of the form identity plus something small and smooth in RY2 . Thus, we
obtain the system

∂tRZ1 = K0RU1 ,

∂tRY2 = K0RU1 + N5,

∂tRU1 = −∂αRY2 + µ∂3
αRY2 + ε2s2(F,RY2)+ N4a

(39)

with

‖N4a‖Hs−3 � C(ε3‖R‖Hs + εβ‖R‖2
Hs + ε3CRes + q(t)),

‖N5‖Hs � C(ε3‖R‖Hs + εβ‖R‖2
Hs + ε3CRes + q(t)),

ε2s2(F,RY2) = −ε2∂α(s1(F,K−1
0 ∂αRY2))− ε2ψZ1∂αRY2 + 2µε2ψZ1∂

3
αRY2

which holds under (HS). Here we used M̂2(k) = 1 + O(k2) for small |k| and the
fact that ψZ1 is a scaled function.

It is easy to see that the Hs−3/2 norm of RU cannot be estimated by the term
N4 since we would loose regularity. Therefore, to estimate the highest derivative
we have to use the equation ∂tU1 = V1 and extend (34) by the fourth equation of
(12). For clarity, we recall that solutions of (12) which lie in the subset Cp describe
the same solutions of the water-wave problem as (34). We also recall that while
general solutions of (12) are expected to grow “rapidly” with time, which is why
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we cannot use that form of the equations for all our estimates, the derivatives of We

are not expected to exhibit this secular growth and hence we can use (12) to control
the derivatives of RU without losing control of our estimates of the remainder.

When we introduce the normal form transformation (38), the vectorR is changed
to R̃ = (RZ1 , RY2 , RU1) and extended to R̃e = (RZ1 , RY2 , RU1 , RV1). For ε > 0
sufficiently small, R can be estimated by R̃ in Hs and vice versa.

Writing V1 = ε3ψV1 + εβRV1 we find formally that

∂tRU1 = RV1 ,

∂tRV1 = −∂αK0RU1 + µ∂3
αK0RU1 + ε2∂t s2(ψ,Ry2)+ O(ε3),

where we have used the above calculations. Looking more carefully at this system
and retaining all terms whoseHs−3 norm cannot be bounded by ‖Re‖Hs

e
, we obtain

∂tRV1 = −∂α(h0∂
2
αK0RU1)− h2∂

2
αRU1 − K0∂αRU1 + ε2∂t s2(F,RY2)+ N8,

where we have

‖N8‖Hs−3 � C(ε3‖Re‖Hs
e
+ εβ‖Re‖2

Hs
e
+ ε3CRes + q(t))

under (HS). As in the equation for RX2 , we eliminate the terms of O(ε2) by a
smooth near identity change of coordinates. In order to do so let

RW1 = RV1 − ε2s2(ψ,RY2).

We finally find

∂tRW1 = ∂α(h0∂
2
αK0RU1)+ h2∂

2
αRU1 − K0∂αRU1 + N9,

where N9 obeys the same estimates as N8.

Now collect the new variables in ˜̃
Re = (RZ1 , RY2 , RU1 , RW1). Again for small

ε the vector ˜̃
Re can be estimated by Re and vice versa.

With these preparations we now start to obtain the estimates for the error. In
a first step, the variable RZ1 is estimated in terms of the remaining variables. In
the second step we construct a new scalar product Es(· , ·) for the (RX2 , RU1 , RV1)

variables. It is equivalent to the usual Hs
l = Hs×Hs−3/2×Hs−3 scalar product. We

defineRl = (RY2 , RU1 , RV1) the “ lower” part ofRe. As explained in Remark 14 the
main part of Es(· , ·)must be constructed so that in the computation of d

dt
Es(Rl, Rl)

all quasilinear terms from (12) cancel and d
dt

Es(Rl, Rl) can be estimated in terms
of Es(Rl, Rl) in such a way that Gronwall’s inequality can be applied. On the other
hand, in order to apply the ideas of Remark 5 we have to modify Es(·, ·) further so
that the influence of the linear terms of order O(ε2‖Rl‖Hs

e
), when measured in the

norm defined by Es(· , ·), is of order O(ε3). Finally, the (RY2 , RU1) part of the scalar
product Es(· , ·) has to be modified so that the linear terms of order O(‖Re‖Hs

e
)

coming from the term N5 in the equation for ∂tRY2 cancel.
We begin by estimating RZ1 in terms of RK. From the first two equations for

the error it follows that

∂tRY2 − ∂tRZ1 = N10,
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where

‖N10‖Hs � C(ε3‖R‖Hs + εβ‖R‖2
Hs

+ ε3CRes + q(t)).
Integration with respect to time and Gronwall’s inequality show the estimate

∀CA, T0 ∃C4, C5 ∃ ε0 > 0 ∀ ε ∈ (0, ε0) :
sup

t∈[0,T0/ε3]
‖RZ1(t)‖Hs � C4 + C5‖Rl(t)‖Hsl (40)

as long as supt∈[0,T0/ε3] ‖Rl(t)‖Hs
l
� CR .

For We ∈ Cp we can relate V1 = ∂tU1 to µ∂3
αX2 − ∂αX2. Thus, by the implicit

function theorem we obtain

µ∂3
αRX2 − ∂αRX2 = RV1 + Ñ12

or equivalently
µ∂3
αRY2 − ∂αRY2 = RW1 + N12

with

‖Ñ12‖Hs−3 + ‖N12‖Hs−3 � C(ε2‖R‖Hs + εβ‖R‖2
Hs

+ ε3CRes + q(t)).
In particular, we can estimate the highest derivatives ∂sαRY2 appearing in the fol-
lowing by

‖∂sαRY2‖L2 � µ−1(‖∂s−3
α RW1‖L2 + ‖∂s−2

α RY2‖L2 + ‖∂s−3
α N12‖L2), (41)

so we can control ‖RY2‖Hs by ‖RY2‖L2 , ‖RU1‖Hs−3/2 , and ‖RW1‖Hs−3 by applying
an interpolation inequality to ‖∂s−2

α RY2‖L2 .

Remark 24. Note that the preceding estimates are not uniform in µ as µ tends
toward zero.

We look more closely at the term −ε2∂αs1(ψ, ∂αK−1
0 RY2) which appears on

the right-hand side of the equation for ∂tRU1 before we start to construct the final
energy. It can be rewritten as

∂αs1(F, ∂αK−1
0 RY2)

= ∂α{M1(ψZ1 , ∂αK−1
0 RY2)− ψX2∂αK−1

0 RY2 − K0(ψX2K0)∂αK−1
0 RY2}

= ∂α{M1(ψZ1 , ∂αK−1
0 RY2)

− (1 + K2
0)(ψX2∂αK−1

0 RY2)+ K0[K0, ψX2 ]∂αK−1
0 RY2)}.

The last term can be estimated to be of order O(ε) (considered as an element of
Hs−1) by using the following lemma which shows that commutators with the scaled
function F gain an order of ε.

Lemma 9. Let R ∈ H 2 and let F ∈ Hs+1 be the approximation defined above.
Then there exists a C > 0 such that, for all ε ∈ (0, 1),

‖[K0, F]R‖Hs � Cε‖∂XF‖Hs‖R‖H 2 .
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Proof. See [SW00a, Section 6; e.g., (6.8)]. ��
By the preceding estimates it remains to estimate ‖RY2‖L2 , ‖RU1‖Hs−3/2 and

‖RV1‖Hs−3 . After these preliminary simplifications we come to the final energy
estimates.

Note that the operator M2 = −∂αK−1
0 is self-adjoint and positive. Thus we

can take its square root and we find

∂t

∫
(M1/2

2 RY2)
2 dα/2 =

∫
RY2(M2∂tRY2) dα

=
∫
RY2(M2(K0RU1 + N5)) dα

=
∫
(∂αRY2)RU1 dα + Ne1,

where

|Ne1| � C(ε3‖Rl‖2
Hs
l
+ εβ‖Rl‖3

Hs
l
+ ε3Cres‖Rl‖Hs

l
+ q(t)‖Rl‖Hsl )

under (HS). Similarly we find that, for the positive self-adjoint operator M3 =
µK−1

0 ∂3
α ,

∂t

∫
(M1/2

3 RY2)
2 dα/2 =

∫
RY2(M3∂tRY2) dα

=
∫
RY2(M3(K0RU1 + N5)) dα

= −
∫
(µ∂3

αRY2)RU1 dα + Ne2,

where Ne2 obeys the same estimates as Ne1.
Next using the evolution equation for U1 we see that:

∂t

∫
(RU1)

2 dα/2 =
∫
RU1(∂tRU1) dα

=
∫
RU1(−∂αRY2 + µ∂3

αRY2 − ε2ψZ1∂αRY2

+ 2µε2ψZ1∂
3
αRY2 + ε2∂αM1(ψZ1 , ∂αK−1

0 RY2)

− ε2∂α(1 + K2
0)(ψX2(K−1

0 ∂αRY2))+ Ñ4) dα,

where we have used ψZ1 = ψX2 + O(ε) and where Ñ4 equals N4 plus the or-
der epsilon terms that we discarded from ∂αs1(ψ, ∂αK−1

0 RY2) in our preliminary
investigations. The term

∫
RU1Ñ4dα obeys the same estimates as Ne1.

The first two terms on the right-hand side cancel with the corresponding term
in the time derivatives of

∫
(M1/2

2 RY2)
2 dα and

∫
(M1/2

3 RY2)
2 dα.

For the third term, by using ∂αψZ1 = O(ε), we obtain

−ε2
∫
RU1ψZ1∂αRY2 dα = ε2

∫
(∂αRU1)ψZ1RY2 dα + O(ε3).
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With ∂tRY2 = K0RU2 + O(ε), this term can be rewritten

ε2
∫
∂t (∂αK−1

0 RY2)ψZ1RY2 dα + O(ε3).

The operator M2
3 = −∂αK−1

0 is positive and self-adjoint. Hence

ε2
∫
∂t (M2

3RY2)ψZ1RY2 dα = ε2
∫
∂t (M3RY2)[M3, ψZ1 ]RY2 dα

+ ε2
∫
∂t (M3RY2)ψZ1(M3RY2) dα

= 1
2ε

2∂t

∫
ψZ1(M3RY2)

2 dα + O(ε3),

where we again exploited the fact that commutators with the approximationF gain
one order of ε and where we used ∂tψZ1 = O(ε). In a similar fashion we obtain,
for the fourth term,

2ε2µ

∫
RU1ψZ1∂

3
αRY2 dα = −ε2∂t

∫
ψZ1(M3∂αRY2)

2 dα + Ne2.

For the fifth term, by partial integration and by using ∂tRY2 = K0RU1 + O(ε), we
obtain

− ε2
∫
(∂αRU1)M1(ψZ1 , ∂αK−1

0 RY2) dα

= −ε2
∫
(∂t ∂αK−1

0 RY2)M1(ψZ1 , ∂αK−1
0 RY2) dα + O(ε3).

The last expression defines a trilinear mapping M5(F)[R1, R2] which is given in
Fourier space by

̂M5(F)[R1, R2] =
∫∫

R̂1(k)
K̂0(l)− K̂0(k)

K̂0(l − k)
ψ̂Z1(k − l)R̂2(l) dl dk + c.c.

This operator is symmetric in the argumentsR1 andR2. Therefore, we finally obtain

ε2
∫
RU1∂αM1(ψZ1 , ∂αK−1

0 RY2) dα

= 1
2ε

2∂tM5(F)[∂αK−1
0 RY2 , ∂αK−1

0 RY2 ] + Ne3.

Finally, we again use

∂tRY2 = K0RU2 + O(ε)
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to rewrite the sixth term as as

− ε2
∫
RU1∂α(1 + K2

0)(ψX2(K−1
0 ∂αRY2)) dα

= ε2
∫
∂t (∂αK−1

0 RY2)(1 + K2
0)(ψX2(K−1

0 ∂αRY2)) dα + O(ε3).

Since M2
4 = (1 + K2

0) is again a positive self-adjoint operator, and using the
fact that commutators with F gain an additional order of ε, we again have∫

(M4∂αK−1
0 RY2)M4(ψX2∂αK−1

0 RY2) dα

=
∫
(M4∂αK−1

0 RU1)ψX2M4∂αK−1
0 RY2 dα

+
∫
(M4∂αK−1

0 RU1)[M4, ψX2 ]∂αK−1
0 RY2 dα

=
∫
(M4∂αK−1

0 RY2)ψX2M4∂αK−1
0 RY2 dα + O(ε).

Therefore,

− ε2
∫
RU1∂α(1 + K2

0)(ψX2(K−1
0 ∂αRY2)) dα

= ε2∂t

∫
ψX2(M4∂αK−1

0 RY2)
2 dα + Ne4.

Furthermore, under (HS), the remainder terms Nej satisfy the estimates

|Nej | � C(ε3‖Rl‖2
Hs
l
+ εβ‖Rl‖3

Hs
l
+ (ε3CRes + q(t))‖Rl‖Hs

l
). (42)

To reiterate, the point of these definitions is that the energy functional must
be chosen so that both the quasilinear terms and the terms of O(ε2) in the time
derivative cancel, and by adding to the energy the terms of order ε2 on the right-
hand side of the above expressions we can arrange for this to be the case.

For the quasilinear terms, we proceed as in the proof of Theorem 4. We introduce
Ru = λ1RU1 and Rw = λ1RW1 and then we consider

1

2

d

dt
((*rRv,*

rRv)L2 + (*r+1/2Ru,*
r+1/2Ru)L2)

= (*rRv,*rλ1N9)L2 + (*rRv, ∂t (*r)Rv)L2

+ (*r+1/2Ru, ∂t (*
r+1/2)Ru)L2),

where as in Section 2, 3r = s − 7
2 . The estimates for N9 can be found above – in

particular, we have

|(*rRv,*rλ1N9)L2 | � C(ε3‖Rl‖2
Hs
l
+ εβ‖Rl‖3

Hs
l
+ (ε3CRes + q(t))‖Rl‖Hs

l
).

Thus it remains only to consider the behavior of ∂t*r and ∂t*r+1/2. While the
estimates of Section 2 insure that these terms are bounded, we must also determine
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how they depend on ε. The terms ∂th0 and ∂th2 which appear in these expressions
will be combinations of expressions of the form (εFe+ εβRe). If a time derivative
falls on Fe, we get a factor of ε3 due to the scaling of ψe with ε2 and the fact that
time derivatives of ψe give an additional ε. On the other hand, if the derivative falls
on Re, we get a factor of εβ , with β > 3. Therefore ∂t (*r+1/2) and ∂t (*r) obey
the same estimates as N9.

With all these preliminary considerations out of the way the calculation of the
time derivative proceeds rapidly. We define

Es(Rl, Rl) =
∫
(M1/2

2 RY2)
2 +

∫
(M1/2

3 RY2)
2 +

∫
(RU1)

2

+ ε2M5(F)[∂αK−1
0 RY2 , ∂αK−1

0 RY2 ]
+

∫
ψZ1(M3RY2)

2 dα + 2µ
∫
ψZ1(∂αM3RY2)

2 dα

+ ε2
∫
ψX2(M4∂αK−1

0 RY2)
2 dα

+ (*rRv,*rRv)L2 + (*r+1/2Ru,*
r+1/2Ru)L2 .

We easily see by using (40) and (41) that the scalar product Es(·, ·) is equivalent
to the usual Hs

l scalar product, i.e., there exist positive constants c1 and c2 and an
ε0 > 0 such that for all ε ∈ (0, ε0) we have

‖Wl‖2
Hs
l
� c1Es(Wl ,Wl ) � c2‖Wl‖2

Hs
l
. (43)

Therefore, we can follow line for line [SW00a] and sum up our above estimates. We
see that there exist constantsC1 = C1(CF,CRes, cj ),C2 = C2(CF,CRes, CR, cj ),
and C3 = C3(CF,CRes, cj ), such that

1
2∂tEs(Rl, Rl) � ε3C1Es(Rl, Rl)+ εβC2Es(Rl, Rl)3/2

+ (ε3C3 + q(t))Es(Rl, Rl)1/2
� ε3C1Es(Rl, Rl)+ εβC2Es(Rl, Rl)3/2

+ (C3ε
3 + q(t))+ (ε3C3 + q(t))Es(Rl, Rl),

Thus, for y(T ) = Es(Rl(t), Rl(t))with T = ε3t we obtain the differential inequal-
ity

ẏ = (C1 + C3 + ε−3q(t))y + εβC2y
3/2 + C3 + ε−3q(t))

� (C1 + C3 + 1 + ε−3q(t))y + C3 + ε−3q(t)).

The application of Gronwall’s inequality shows, for all t ∈ [0, T0/ε
3], that

yε(t) = yε(0)+
∫ T

0
e−

∫ s
0 (C1+C3+1+ε−3q(ε−3τ))dτ (C3 + 1 + ε−3q(ε−3s)) ds,
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where we have chosen ε0 > 0 so small that εβ−3C2(CR)(c2CR)
2 � 1, where

CR = 2 lim supε→0 yε(T0) = O(1). With (38), (40), (41), and (43), this yields

sup
t∈[0,T0/ε3]

‖Re‖2
Hs
e
� c1C1.

This completes the proof. ��
Remark 25. With the ansatz We = ε4ψ + εβR, where β = 11

2 , the error estimates
for the approximation by the Kawahara equations follow more or less line for line
the proofs of Theorem 5, and Theorem 2 follows. Again the details are left to the
reader.
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