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Abstract

In a previous paper we proved that long-wavelength solutions of the water-
wave problem in the case of zero surface tension split up into two wave packets,
one moving to the right and one to the left, where each of these wave packets
evolves independently as a solution of a Korteweg-de Vries (KdV) equation. In this
paper we examine the effect of surface tension on this scenario. We find that we
obtain three different physical regimes depending on the strength of the surface
tension. For weak surface tension, the propagation of the wave packets is very
similar to that in the zero surface tension case. For strong surface tension, the
evolution is again governed by a pair of KdV equations, but the coefficients in
these equations have changed in such a way that the KdV soliton now represents a
wave ofdepression on the fluid surface. Finally, at a special, intermediate value of
the surface tension (where the Bond number eq@)aibe KdV description breaks
down and it is necessary to introduce a new approximating equation, the Kawahara
equation, which is a fifth order, nonlinear partial differential equation. In each of
these regimes we give rigorous estimates of the difference between the solution
of the appropriate modulation equation and the solution of the true water-wave
problem.

1. Introduction

We consider the irrotational flow of an incompressible, inviscid fluid in an
infinitely long canal of fixed depth with impermeable bottom under the influence
of gravity and surface tension. We prove that the evolution of long-wavelength
initial data can be accurately approximated for very long times by the motion of
a pair of wave packets, one moving to the right and one moving to the left, and
depending on the values of the various physical parameters in the problem, each of
these wave packets evolves according to either the Korteweg-de Vries or Kawahara
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equations. What is more, to the order of approximation typically considered in the
formal derivation of these approximate equations, there is no interaction between
the counterpropagating waves.

To state our results more precisely, we introduce coordinateswi¢hR and
x2 in the bounded direction. The fluid fills the domdi(z) between the bottom
{(¢, —1)|a € R} and the free surface

L) = {(X1(e, 1), X2(at, 1)) = (@ + X1(o, 1), X2(t, 1)) | & € R}.

For fixed timer, T" is a Jordan curve which remains bounded inthelirection
and which has no intersection witfw, —1) | @ € R}.

%

X
' Q () 2y

Fig. 1. The water-wave problem.

It turns out that under these assumptions [Yo83, equations (1.10)—(1.12)] the
dynamics of the problem is completely determined by the evolution of the free
surface I' (¢) which is governed by the pair of partial differential equations,

OZX1(1+ 0, X1) + du X2(1 4 97X2) = uR(0u X, 02X) + S (X, 33X), (1)
X2 =K(X)d X1, @)

where
R X, 92X) = —30(8.X) " >((1+ 9, X1)92X1 + 8, X202 X2)
X (—0,X202X1 + (1+ 32 X1)92X2),
S (X, 93X) = Q0 X) "3 (— 0, X203X1 + (1 + 8, X193 X2),
00 X) = (1+ 3. X1)? + (3 X2)H)Y2

The parameter 1 iscalled the Bond number and isproportional to the strength of the
surface tension, and the bounded operator K is related to the Dirichlet-Neumann
operator. It depends linearly on 9, X1, but nonlinearly on X. Properties of K(X)-
are explained at the beginning of Section 2. Also, we have “nondimensionalized”
the equations so that the unperturbed fluid depth and gravitational acceleration are
both equal to one.

For relatively flat surfaces we could assume without | oss of generality aninitial
parametrization X1|;—0 = 0, and so it turns out that we have essentialy two inde-
pendent initial conditions X2|;—o and 9; X1|;—0. However, the freedom to choose
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anonzero initial parametrization for X, is essentia for our approximation results
and we use that freedom in both Theorem 1 and Theorem 2.

Notation. We denote Fourier transformby (Fu) (k) = ii(k) = 5= [ u(x)e™** dx.
The Sobolev space H* is equipped with the norm [lullgs = ([ 12 (k)|?(1 + |k|?)*
dk)Y2. Moreover, let [ul gmmy = [[up" || am, where p(x) = (14 x2)Y/2, and let

lullcp =70 ||8)€ullcg, where [|u|co = SUp,ep |u(x)].

Our goal isto approximate the evolution of solutions of (1) and (2) with general
long-wavelength initial conditions. In order to make such an approximation, it is
necessary to consider two different approximating equations since, as we explain
below, the value of 1 = £ leads to a degeneracy in the equations. For u # %, the
evolution of (long-wavelength) solutions of (1) and (2) can be split into aleft and
right moving wave packet, each of which is described by the Korteweg—de Vries
(KdV) equation and thereis no interaction between the left and right moving waves
to the degree of approximation considered here. Nonethel ess, aswe shall seeinthe
discussion following Theorem 1, the nature of the wave trains described by the two
KdV equations is quite different depending on whether or not w is greater or less
than 3. We now state our first approximation result.

Theorem 1. (Thenondegenerate case: TheKdV limit). Let u # % The solutions of
the water-wave problemin the long-wave limit split up into two wave packets, one
moving to the right and one to the left, where each of these wave packets evolves
independently as a solution of a Korteweg-de Vries equation.

More precisely: Fixs = 6; then, for all C1, Ty > 0, thereexist C2, &g > 0 such
that for all ¢ € (0, gg) the following istrue.

Let X1li—0 = 0, X2l=0(e) = £?®1(e) and 8, X1l=o(@) = £*® () With

(D1, ¢2)||HA'+6(2)mHs+ll(0) é Ci.

Define amplitudes A1 = A1(a, T) € Rand A2 = Ax(x, T) € R satisfying the
KdV equations

207 A1 = (n— $)33A1 — 3A19,A1 and

©)
207 A2 = (5 — 1)33A2 + 3 A2du Az,
With 2A1|7—0 = ®2 + &1 and 2A5|7—g = ®» — P3.
Thenthereexistsareparametrization of the fluid surface (denoted with the same
symbols) such that the solution of the water wave-problem (1) and (2) satisfies

sup  [X1(0,1)] £ Coe??
t€[0,Tp/e3]

and
aozXl
sup X2 | —vwi(e, - 1) < Cpe'/?,

3
tG[O,To/S 1 8t)(l HS—1x HS x H5—3/2
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where

1 —1
Yiwe (6, o, 1) = e2A1(e(a — 1), £31) ( 1 ) + 2 As(s(a + 1), &%) ( 1 ) .
~1 1

Proof. See Section4. O

Remark 1. It might seem surprising that the error estimateis O (¢’/2). Onthebasis
of formal calculations it would be expected to be O(¢4). The loss of ahalf a power
of ¢ results from the way the Sobolev norms scale— i.e,, if the error termis of the
form e%€ (sar), for some € € L2, then ||e%E(e-) || ;2 = /2| €| .

While most rigorous studies of the water-wave problem have focused on the
Lagrangian description used in Theorem 1, for comparison with experiments it
is necessary to re-express these results in terms of Eulerian coordinates. Define
ur(X1(e, 1), 1) = 9 X1(e, ) and n(X1(e,1),1) = Xa(a, 1). In terms of these
variables, we have the following approximation result.

Corollary 1. Assume that Theorem 1 holds. Then the following estimate holds:

(:1) — e2A1(e(- — 1), &%) (_11> — 2An(e(- + 1), £%) G)

< C285/2.

-3/2

1€[0,To/e3] c

Proof. Thisfollowsfrom Theorem 1 exactly as[SWO00a, Corollary 1.5]. O

The long-time behavior for the water-wave problem in the long-wave limit is
sketched inthe Figs. 2 and 3. On atime scale O(1/¢) the solutions split up into two
wave packets one moving to the right and one to the left, regardless of whether . is
greater or lessthan % . Each of these wave packets evolveindependently as solutions
of the KdV eguations whose long-time behavior can be computed explicitly with
the help of the inverse scattering transform. However, the behavior of these wave
packets is dramatically different depending on the value of w, in spite of the fact
that they areall governed by the KdV equation. For i < % (“weak” surfacetension)
the KdV solitons correspond to solitary waves of elevation on thefluid surface. The
largest solitary waves propagate fastest, followed by dispersiveripples. Thisisvery
similar to the case of zero surface tension studied in [SWO004a]. However, if > % ,
the KdV solitonsrepresent solitary waves of depression on the fluid surface and the
largest waves move most slowly, preceded by the dispersivewaves. Experimentally,
it isdifficult to observe these solitary waves of depression on the surface of water at
room temperature since values of u > % correspond to very shallow water depths
where dissipation is no longer negligible, and also because the dispersive ripples
propagating in front of the solitary wave tend to obscure it. However Benjamin
[BeB2] reports tentative experimental observation of such solutions. See also the
comment before Corollary 2.
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Fig. 2. The long-time behavior for the water-wave problem in the long-wave limit for
1

Remark 2. In what follows we prove Theorem 1 for all 0 < u, u # % However,
the constants C» and gg in the theorem depend on . and in particular the estimates
arenot uniformin u as e tendsto zero. Thus, while the statement of the theoremis
truefor © = 0 dueto theresultsof [SW00a], we cannot recover our previousresults
from those proved below. The technical reason for this difficulty is that the surface
tension enters as a singular perturbation of the © = 0 problem, and this requires
very significant modifications of theformer proof. Thus, whilethe general approach
here parallelsthat of [SW00a], we must develop acompletely new existence theory
for solutions of (1) and (2) in Section 2, since that of [SW00a] no longer applies.

If u= % the coefficient of thethird order dispersivetermsin (3) vanish. These
terms in the KdV equation represent the leading order dispersive effects in the
water-waves problem and their disappearance meansthat in this parameter regime
water waves are amost dispersionless. This fact has been recognized for a long
time by the fluid-mechanics community and has been experimentally exploited in
an interesting way. Sound waves in air are also dispersionless, but in contrast to
water waves, are hard to observe visually. By studying surface-tension-driven water
waves, in water with © = % (which corresponds to awater depth of about 5 mm at
20° C) it has been possible to exhibit visually many of the theoretically predicted
properties of two-dimensional sound waves [Li78, Sections 1.8 and 3.4].

Furthermore, the point © = % is a codimension-two bifurcation point for the
stationary water-wave problem and thisfact has been exploited in aseries of recent
works([BGT96,BG99]) to construct ahost of interesting traveling water waves. The
waves constructed in those works require very special choices of initial conditions
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Fig. 3. The long-time behavior for the water-wave problem in the long-wave limit for
1

and our goa here is to derive equations that describe the evolution of general
long-wavelength initial conditions. If we try to approximate such solutions using
Theorem 1, the coefficients of the third derivative terms in (3) are equa to zero,
and the resulting equations are just Burgers equation whose solutions typically
form shocks in finite time. Thus, if we wish to model interesting behavior in the
water-wave problem for this parameter regime, we must modify the scaling and the
approximating equations (3). The next theorem explains how this can be done.

Theorem 2 (The degenerate case: The Kawahara limit). Let u = % + ve?. The
solutions of the water-wave problem in the long-wave limit split up into two wave
packets, one moving to the right and one to the left, where each of these wave
packets evolves independently as a solution of a Kawahara equation.

More precisely: Fixs = 6; then, for all C1, Ty > 0, thereexist C», g > 0 such
that for all £ € (0, gg) the following istrue.

Let X1),—0 = 0, X2|;—0(er) = e*®1(ear) and §; X1|,—0(er) = e*Pp(eax) With

(D1, ®2)||HA'+S(Z)QHS+17(O) § Ci.

Define amplitudes A1 = A1(a, T) and A2 = Ax(a, T) satisfying the Kawahara
equations

207 A1 = vd3A1 — £05A1 — 3A19,A1 and

g Q)
207 Az = —vi3A2 + 05 A2 + 3 A204 Az,
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With2A1|7—g = &2+ ®1and2A4z|r—g = &2 — ®1. Denoteby [0, T1] theexistence

interval of the solutions A1 and A, in H518(2) and set 7> = min(Tp, T1).
Thenthereexistsareparametrization of thefluid surface (denoted with the same

symbols) such that the solution of the water wave-problem (1) and (2) satisfies

sup  |X1(0,1)| £ Cpel/?
t€[0,T2/e5]

0o X1
X2 | —vYrwL(e, - 0)
0: X1

-1 -1
YiwL (e, o, 1) = e A1(e(a — 1), £°1) ( 1 ) + e*As(e(a + 1), €21) ( 1 )

and

sup < Cpe™2,

1€[0,T2/e5]

HS"1xHsx Hs—3/2

where

-1 1
Proof. See Section4. O

Remark 3. Thelocal existence and unigueness of solutions of the Kawaharaequa-
tionsin H8*(2) isguaranteed for initial conditionsin A8+ (2) N H16+5(0). How-
ever, we are not aware of any studies of the global existence of solutions to (4),
in contrast to the case of the KdV equation. The work of I’ ichev [1190] shows
that the Kawahara eguations (4) possess stable solitary waves at least when v = 1.
Thisgivesglobal existence for solutionswith initial conditions closeto the solitary
waves.

Asremarked above, for water at room temperature, thevalueyu = % corresponds
to a depth of about 5 mm. Because dissipation is no longer negligible in such thin
layers, it isdifficult to observe Kawaharadynamicsin such shallow fluids. However,
as noted by Marchenko [Ma88], athin layer of ice floating on the top of the water
can lead to effects similar to those that would arise from agreatly enhanced surface
tension. Therefore, the evolution of waves on fluids of moderate depth, under a
thin layer of ice are also expected to be described by the Kawahara equations at
wavel engths where dissipation should be negligible.

Corollary 2. Assume that Theorem 2 holds. Then, for the Eulerian variables
up = ui(x,t) and n = n(x,) defined by u1(Xa1(e,1),1) = 9 X1(e, t) and
n(X1(a, 1), 1) = Xa(a, t), the following estimate holds:

(ui) —e*A1(e(- — 1), &%) (_11) — e*Ax(e(- + 1), £1) (D

< C289/2.

1€[0,Tp/e5]

s—3/2
Cb

Proof. Thisfollows exactly as[SWO00a, Corollary 1.5]. O
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The plan of the paper is asfollows. In Section 2 we discuss the local existence
and uniqueness theory for (1) and (2). In Section 3 we consider the formal long-
wave limit and derive the KdV and Kawahara equations. Finaly, in Section 4 we
prove the error estimates given in Theorems 1 and 2.

Before we start let us make some remarks.

Remark 4. The main difficulty in proving these results stems from the long time
scales, O(1/¢2) in the KAV case and O(1/¢°) in the Kawahara case, which have
to considered. Since the amplitudes of the approximations are of order O(¢2) in
the KdV case and O(g*) in the Kawahara case a simple application of Gronwall’s
inequality would only give estimates on a“short” time scale O(1/¢?) in the KdV
case and O(1/¢%) in the Kawahara case. To close the gap we must exploit some
additional structure of the water-wave problem. With the introduction of asuitable
energy norm and some normal form transformations we are able to take advantage
of the gradient-like structure of the nonlinearity, allowing usto extend the estimates
to the desired time scale.

Remark 5. For asystem
oW =AW+ BOW, W) (A linear, B bilinear)
and an approximation 2y, the error e# R = W — 2y for ap > 3 satisfies
&R = AR+ 2°B(yr, R) + ¢ B(R, R) + e PRes(¢?y),

where the formal error Res(e2y) is small by construction. In order to estimate R
an energy functional E;(-, -) hasto be constructed which simultaneously yields the
local existence and uniqueness of the solutions of the quasilinear system and allows
usto follow the solution for long enough to obtain the desired error estimates, i.e.,

39 Es(R, R) = E;(R, AR) + 26°E,(R, B(, R)) + h.ot
< 0 + Ce3E4(R, R) + h.ot

Then by Gronwall’s inequality the O(1) boundedness of E(R, R) and so aso of
R onan O(1/¢3) time scale follows.

Remark 6. The cases of zero and nonzero surface tension must be distinguished
sincethelocal existence and uniquenesstheory for the solutionsisdifferent and the
energy E; (-, -) described in Remark 5 is (somewhat surprisingly) quite differentin
the two cases.

Remark 7. Thetheory of modul ation equationsisaweakly nonlinear theory, where
the dispersion relation
22 = —(k 4+ uk®) tanhk

for the eigenvalues A of the linearization of (1) and (2) plays acrucial role. In the
long-wave limit the Fourier modes are concentrated in an O(¢g) neighborhood of
the Fourier wave number k = 0. Blowing up this neighborhood yields

K>+ 0O@E"K.

3u—1 2_5
ri(6K) = ieKi3“6 K3+ 65 oM
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Fig. 4. Expansion of the eigenvaluesfor . < 3 and 11 > 3.

The O(¢) termscorrespond to transport to theright and to theleft, whereastheterms
of order O(e3) contribute to the linear part of the KdV equations. This expansion
showswhy thecaseu = % isexceptional and higher order termshaveto beincluded.

Remark 8. Inthelocal existence and uniquenesstheory we usein an essential way
thefact that R + S isagradient, in detall

R+ S = 0,(Q(0X) "3 (— (9 X2)92X1 + (L4 8, X1)32X2)).

Remark 9. We refer to [SW004] for a discussion of the mathematical literature
about the approximation by the KdV equation [Cr85,KN86,Kal89]. Other mod-
els for the long wave limit are described in [Bo1877,L064,BS71,BBM72,Me79,
Ma91]. A mathematical description of thelong-wavelimit by theKdV or the Kawa-
hara equation in various other problems can be found in [ Sch98, SW00b, SW00c].
In contrast to other models the KdV or Kawahara description has the advantage of
being ssimple, exactly solvable in the KdV case, and independent of ¢.

Notation. Throughout this paper, we assume 0 < ¢ « 1. The j-th component
of avector v is denoted by (v)(;). The commutator of two operators L and M is
definedas[L, M] = LM — ML.
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2. Formulation as evolutionary problem

In this section we prove local existence and uniqueness for the solutions of (1)
and (2). Dueto Remark 5 our local existence and uniqueness approach differsfrom
the existing literature. We obtain the result by embedding (1) and (2) into a bigger
system which is quasilinear in the sense of [Kat75], such that standard existence
and uniqueness theory can be applied. In order to do so we construct out of (1) and
(2) anonlinear wave eguation.

Notation. We introduce U1 = 9,X1, and V1 = 0,U1. All variables are collected
in the vector V = (X1, Xo, U1, V1). Later on we need the additional variable
Z1 = KoXa, where Ko is the linear part of the operator XC(X) and has Fourier
symbol Ko(k) = —i tanh(k), and the collections of variables W = (Z1, X2, U1)
and W, = (Z1, X2, U1, V1). The vectors W and W, will be in the spaces H® =
H* x H® x H* 3?2 and H = H® x H* x H*~%2 x H*~3 respectively. We abuse
notation and do not distinguish between operators which depend on V or W; for
instance, we write for (X) also (V) and K(W).

Preliminaries. Before we start to construct the quasilinear system out of (1) and
(2) we recall some facts. For more details we refer to [SW00a] and the literature
cited there. The operator K (X) is of the form K(X) = Ko + S1(X), where the
operator S1(X)- has certain smoothing properties. As arule, a term with S1(X)-
in front will have the regularity of X. More precisely, in terms of the variables W
used later on:

Lemmal. Fix s
1(Z1, X2) | s x us

11/2. Then there exist C > 0 and C; > 0 such that for
C, the operator S;(W) = K(W) — Ko satisfies

Z
<

ISIOWVUllEs = ClIW Il U |l -
Proof. See[SW00a Lemma3.14]. O

Lemma 2. Assume the situation of Lemma 1. Then, for all s > 6,

10: (St O UD N gs-3 = ClIIW s (ULl gz + V2l g3),
1187, SIOMIU | grs—2 < ClIWellgs (10Ul g2 + [ Vall 2),
10 (SIOVUD | s-1 = ClIIWllggs |1 Unll 3.

Proof. See[SW00a Lemma3.15]. O

In the construction of the quasilinear system commutators [a, Ko]- play abig
role. Asarule, [a, Kolu smoothes u and has the regularity of the function a.

Lemma3.Letr 20,g > 3 and0 < p < g. Thenthereexistsa C > 0 such that
Ila, Kolullgr = Cllallgr+rlull ga—r-

Proof. See[SW00a Lemma3.12]. O
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Asmentioned in the beginning of this section, it will be convenient to introduce
anew variable Z; = KoX1. We associate with Z1 the operator

Ma(Za, 1) = [X1, Kol-
which satisfies
Lemmad4. Letr 20,9 > % and0 < p < g. Thenthereexistsa C > 0 such that
IMia, wllar = Cllallgre lull ga-p-
Proof. See[SWO00a, Corollary 3.13]. O

Remark 10. The operator M1 iswell defined, even though g is not invertible in
general, due to the commutator in its definition.

Remark 11. Examining the expression for ||[a, Colu||m- on [SW00a, p. 1499]
(whichisexpressed in terms of the Fourier transforms of a and u), we also see that
it can be bounded by

Ia, Kolullgr = Cmin(llall p1¢y pyllull o, Nall gree il 2 —p))

where || fll 1, = [(1+ k22| f(k)|dk. There is then a similar bound for
Ma(a, )| gr, namely

IMa@@, w)llgr < Cmin(1all i pllulla-r, lalgre il g —p))-

Estimates of this kind were also used in [SWO00a]: see, for example, (6.8). These
alternate forms of Lemmas 3 and 4 will sometimes be used in Section 4 since they
do not suffer from the loss of half a power of ¢ described in Remark 1, i.e, if
f(x) = &?F(ex), then || f | 110y < %[ F ) Whereas || fllan < e¥2|[ F | g

In order to express the term 9, X1 in terms of Z1 we define additionally the
operator
Mz = —3,(Ko) ™"

whichisamap from H+1 to H*.

Finaly, the operator (1 + IC%)- is infinitely smoothing due to the fact that in
Fourier space its symbol (1 + I@o(k)z) vanishes with some exponential rate for
|k| — oo.

Remark 12. Asageneral rule, it is possible to obtain existence and uniqueness of
solutions of the nonlinear wave eguation

32u = a(u)L(3)u + b(u), (a > 0) (5)

with L an éliptic operator, provided the coefficients a(u) and b(u) contain not
more than half the number of derivatives of L and terms with 9;u. In the water-
wave problem (1) and (2) the operator L is essentially given by the multiplier
L(k) = —(k + uk®) tanhk in Fourier space. As a consequence |L (k)| ~ |k|3 for
lk| — oo. Thus, if we look for solutionsu in H*~3/2 we can allow for coefficients
a,b € H 3, i.e, the coefficients « and b can Ioseg derivatives. Moreover, we
then have d,u € H* 3.
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The nonlinear wave equation will be constructed for the variable U;. We have
tochoose X12 € H®, Uy = & X1 € H*~¥/?,and V1 = 3?X; € H*~3. Sodl terms
upto 83X12 € H* 3 and 8,U € H*~>2 have the right regularity to be included
in the functions a and b. Terms containing 32U € H*~/2 create difficulties and
must be included in the operator L.

Thequasilinearization. With this schemein mind we begin with the construction
of the quasilinear system. With the notation U, = 9, X» the equations (1) and (2)
become
(1+ 8uX1)8, U + 8, X2(1 + 9,U2) = uR (3 X, 02X) + nS(d. X, 9°X),
Uy = KoU1 + S1(X)Us.

Differentiation of (1) with respect to timeyields

(1+ 82 X1)82U1 + (3, U183, U1 + (1 + 8,U2)8, Uz + (3, X2)8?U>
= 1R (34X, 02X)0u U + 192R (3, X, 02X)02U (6)
+ ud1S(u X, 03X) 0, U + 19253, X, 9°X)03U.
Differentiation of (2) with respect to time and space yields

0 U2 = Kody U1 + 04, (S1(X)U1),
32U = Kod2U1 + 02(S1(X)U1),
93Uz = Kod3U1 + 93(S1(X)Uy),
08Uz = Kod,; U1 + 9;(S1(X)U1),
32Uy = K0d2U1 + S1(X)92U1 + [82, S1(X)]U1.

Replacing 8, Uz, 32Uz, 32U>, and 8?U> in (6) gives

(14 8, X1)82U1 + 8, U3 U1 + (1 + 8, U2) (Kode U1 + 3 (S1(X)U1))
+ (30 X2) (K0d?U1 + S1(X)92U1 + [02, S1(X)1U1)
= LR (3 X, 02X)0e U + 11018 (0 X, 83X) 8, U
— 303 X) " 2((1+ 8, X1)82U1 + 3 X2(K0d2U1 + 82(S1(X)U1)))
X (—8X202X1 + (1 + 9, X1)92X2))
— 300 X) (14 8, X1)82X1 + 9 X202X2)
X (—aX202U1 + (1 + 8, X1) (K095 U1 + 92(S1(X)U1))))
+ 10 B X) (=8, X203U1 + (1 + 3, X1) (K0dZU1 + 33(S1(X)U1))),
and so
(f1+ f2(Ko+ S1())3ZUL + ho(— f2 + fiK0)3U1
+ 3107 °((— f20u f1 + fLda f2)(f1+ f2K0)32U1) @)
+ 300 ((Ada fL + f2da f) (— 2 + f1K0)IGUD) + G1 = O,
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with

fi= A+ 0,X1),

f2 = 0. X2,

ho= — nQ@X) > = —u(fZ + 5732

G1= 8 U1(1+ K§)3, U + (1 + 8,U2)34 (S1(X)U1),
+ (32 X2)([02, S1(X)1UD) + (1 + 8, U2) — 8 U1K0)Kode Ut
— wdIR (3 X, 92X) 05U — 1818 (3a X, 05X) 0 U
— nQ 3, X)3(A103(S(X)U1)))
+ 3007 °((— f20u f1 + f10a f2) [205(S(X)U1))
+ 30> ((fLda f1 + f200 f2) FLOZ(S(X)UD).

Thetermsare separated according to the following rules: G containsthe obviously
semilinear terms, and the terms written explicitly are the quasilinear ones.
The quasilinear term (— f2 + f1K0)83U1 is rewritten as
(—f2+ AK0IZUL = (1 + f2K0)Kod3U1 — f2(1+ KB)aSUL.

Since 1+ IC% isinfinitely smoothing, the last term can be handled as a semilinear
one. In asimilar fashion we obtain

(f10a f1 + 200 f2)(— f2 + f1K0)82U1)
= (f10a f1+ 200 f2) (f1 + [2K0)K0d2U1
— (f1daf1 + f200 f2) f2(L+ K3)2U1.

Therefore, we arrive at

(fi+ f2(Ko + S1(X)))07U1 + ho(f1 + f2K0)Kod3Us
+ 310> ((— f29u f1 + [10a f2)(f1 + f2K0)OZU1) ®
+ 310 °((f1da f1 + f2du f)(f1+ f2K0)K0dZUD) + G2 =0,
with
G2 = G1— hof2(1+ K§aJU1
+ 30> (fLdu f1 + f20a f2) f2(1 + K§)ZUL.
Wemultiply (8) with (f1— f2/Co) andfind that thefirst termin the equation becomes

(f1— f2Ko)(f1+ f2(Ko + S1(X))d2Us
= (f1297U1 — f2Ko(f102U1) + (f1 — f2Ko) f251(X)82U1
+ f12K007U1 — f2Ko( f2KodZU)
= (f0%02U1 — folKo, f1107U1+ (f1 — f2Ko) f2851(X)82Us
+ f2lColKo, f2102U1 — f2(1+ KB)(f202U1) + f£2U1.
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The second term can be rewritten as;

(f1— f2Ko)ho(f1+ f2Ko)KodZUs
= [(f1 = f2K0), hol (f1 + f2K0)KodgUs
+ ho(f1 — f2Ko)(f1 + f2Ko)Kod3Us
= [(f1 — f2K0). hol(f1+ f2K0)K0dJUr
+ ho(f1)2K0d3U1 — ho f2lKo. f11K0d3U1
+ ho f2Kol Ko, f21K0d3UL — ho f2(1+ K3)(f2K0d3U1)
+ ho f2K0d3Us.
For the third and fourth term, we obtain in the same fashion, with
h1=3u07°,
a1 = (—f20q f1 + f10a f2),
az = f10a f1+ f20a f2

the value

(f1— f2Ko)h1(ar((f1 + f2K0)d2Ur + az(f1 + f2Ko)KodZUs))
= [(f1 — f2K0), h1a1l(f1 + f2K0)d2U1
+ [(f1 — f2Ko), h1az](f1 + f2K0)K0dZU1
+hiar(ff + fHOZUL + haaz(fE + fHKodiUL
— hiay f2[Ko, f1102U1 — h1az f2[Ko, f11K0d2U1
+ haa1 f2Kol Ko, f2102U1 4 hiaz f2KolKo, f21K0d2U1
— h1ay fo(1+ K§)(f202U1) — h1az fo(1+ K3)(f2K0d2U1).

Therefore, (7) transformsinto

(fs — HD)d2U1 + ho f3Kod3Us
+ hia1 f302U1 + h1az f3K092U1 + G3 = 0 9
with
fa= 2+ 15

Hy- = fo[Ko. f1l- — foKolKo, f2l - + f2(1 4+ K§)(f2°)
— (f1 — f2K0o) foS1(X)-,

Ho- = f2[Ko, f1l- — f2KolKo. f2] - + f2(L + K§)(f2),

Gz = (f1— 2K0)G2 + [(f1 — f2Ko)., hol(f1 + f2K0)KodU1
+[(f1 = foKo), hia1](f1 + f2K0)dZUs
+[(f1 = f2Ko), h1a2](f1 + f2K0)K0d2Us
— hoH2K 092Uy — h1a1 H202Us — hia HaKod2U1.
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We multiply thiswith
(fs—H) = (- fytH) ™ = A - f3 H) st

=> (f5tHY 51 = 31+ Hs

n=0
and obtain

92U1 + hoKod U1 4 h1a192U1 + h1a2Kod2U1 + G4 =0 (10)
with
Ga = (f3— H1) " G3 + Ha(ho faKod3U1 + hia f395U1 + hiaz f3K0d Un).

By the above Lemmas [-, Kol-, (1 + IC%), S1(X), and consequently H1, H», and
H3 have smoothing properties. Hence, it is easy to see that al termsin Ga, ho,
h1, a1 and ap are at least in HS~3 provided that X1, X» € H®, Uy € H*~%/2, and
V1 € H*~3 and have sufficiently small norm that the sum defining Hz converges.
Finally, we take out the linear term from G4 and introduce the abbreviations

LOWV)U1 = =0, (hoK0d2U1) — h232U1 — Kode Uz
Gs = —G4+ Kooy Us,
wherewe set o = h1aq and used
hiaz = 3uQ 20, (£ + f5)/2 = 310 "%0,(0%)/2
=310 9,0 = —pdy (Q3) = daho.

Remark 13. Notethat 2o = —u +h.o.t. (higher order terms) and that it is essential
for thelocal existenceand uniquenesstheory that 21a2 can bewritten asthegradient
duho. A linear system 92U = KodZUs + 8182U1 + 82K092U1 with 81 2 € R has
the eigenvalues 1 satisfying 12 = —(tanhk)k® — 81k2 + i8o(tanh k)k2. The real
term 8142 can be dominated by — (tanh k)2 in the sensethat the eigenval ues stay on
the imaginary axisfor |k| sufficiently big. Thisis no longer true for the imaginary
term i 5,(tanh k)k? which leads to eigenvalues leaving the imaginary axis by order
O(k/?) for |k| — oo. Thiswould yield to an unacceptable loss of regularity of the
solutions. Because the coefficient in front of thisterm isagradient, d, Ao, it can be
merged into the leading order term —a,, (holcoagUl) and thisloss of regularity can
be avoided. (See the discussion following (15) for more details.)

Rewriting (10) and the associated equationsfor X, and X, asafirst order system
we obtain

0; X1 = U,

0; X2 = KU1 + S1(X)Uq,

: X2 o1 1(X)U3 (11)
0,Uyp = Vq,

0;V1=LV)U1+ Gs
for which the local existence and uniqueness of solutions can be established.
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Theorem 3. For all s = 6 there existsa C; > 0 such that, for all C> € (0, C1],
thereisa Ty > O such that thefollowing istrue. For eachinitial condition Vo € H;
with [[Voll 2 < C thereexists a unique solution V € C ([0, Tpl, #H;) of (11) with
Vl]i=0 = Vo.

Remark 14. The existence proofs are based on the choice of a suitable energy
E;(V, V) whichisequivalent to the usual 1 scalar product. Theenergy E; (-, -) is
chosen in such away that in the computation of %Es WV, V) dl quasilinear terms
from (11) cancel and we can estimate %ES(V, V) in terms of E (), V). Then
Gronwall’s inequality can be applied and a priori estimates on the solution can be
obtained. We provide additional details in the proof of Theorem 4, which is the
form of the existence theorem that we actually use.

Remark 15. Variousformulationsof (1) and (2) asan evol utionary problem and as-
sociated local existence and uniqueness theorems have been obtained for the water-
wave problem with and without surface tension for finite and infinite depth in two
dimensions ([Na74,Sh76,Yo082,Yo83,Wu97]) and in three dimensions ([Wu99]).
For a more complete historical discussion of the existence theory for the water-
wave problem, see [SW00a, Remark 4.4].

Not al initia conditions V) of (11) lead to solutions of the water-wave problem (1)
and (2), only those which have been computed from X1|;—o, X2|;—0, and U1|;—o.
Therefore, weintroduce the spaceC),, x of functionswhich satisfy the compatibility
conditions.

Definition 1. We define

Cp.x =1{V = (¢0, 1, $2, $3) |
(@ (14 0a¢0)93 + (Bup1) (1 + ¢4)

= LR (By ($0, D1), 82(d0, D1)) + 1S (Bx (0, H1), B2 (0, D1)),
(b) ¢4 = K(¢o, p1)P3 + [;, K(do, p1)12}.

We know that [9;, KC(¢o, ¢1)] is afunction of ¢g, ¢1 and ¢» since 3;¢9 = @2
and 9;¢1 = K(¢o, p1)¢2. From V|, € C, x it follows that V(¢) € C, x for all
t > 0 dueto the construction of (11).

Asexplained in [SW00a] for our approximation problem we must avoid trying
to estimate the variable X1 in some Sobolev space. So asin [SW004] the variable
X1 will now be replaced by the variable Z; = KpX1 which is possible due to
[SWO00a, Section 3, especially Lemma 3.14].

Thus, we finally consider

0:Z1 = KoUy,

0; X2 = KU1 + S1OW) U1,

X2 ol1 1W)U1 (12)
0,Uyr =V,

V1 =LW)U1 + Gs

for W, = (Z1, X2, U1, V).
For this system we now prove the local existence and uniqueness of solutions.
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Theorem 4. For all s = 6thereexistsaC1 > Osuchthat, for all C» € (0, C1],there
isa Tp > 0 such that the following is true. For each initial condition W, o € H;
with [[We oll74s < (7 there exists a unique solution W, € C([0, Tol, HZ) of (12)
with Welt:O = We,O-

Proof. The proof of Theorem 4 is based on estimating the time derivative of the
energy function

E;OW, W) = (Z1, Z1)gs + (X2, X2)gs + (U1, Ur) gs-32 + (V1, V1) gs-3.
(13)

We see immediately that for any r = 1, if we differentiate along solutions of (12),
there exists a constant Cr such that

d
—E W, W) £ Ce((Z1, ZY) ar + (X2, X2)ar + (U1, U ur + (V1, VD) 7).

dt
(14)

We use (14) to control derivatives of the solutions of (12) withr < s — 3. Itisnot
suitable for controlling the highest derivatives because it bounds time derivatives
of ||U1|l yr-32 and || V|| -3 on theleft-hand sidein terms of || U1 || g and || V|l ar
on the right-hand side.

In order to estimate the highest order derivatives wefirst ook at the quasilinear
part of the last two equations of (12) which we write again as a nonlinear wave
equation

02U1 = —04 (hoK0d2U1) — h202U1 — Kode Us. (15)

We introduce the skew symmetric operators A1 and A, by A2 = —Kod, and A3 =
~ My = 3,Ky*. Thenu = 1,U; satisfies

02U = 9 21(hodar1u) — A1 (haMaoAiu) + A3u
= Oy A1(hoduA1u) + A1Ao(hoiidou) + )»iu — A1[A2, holr1dou,

wherewe used A 1A = AoA1. Thelast termis semilinear since A1 and A» both lose
half aderivative. Exploiting the smoothing property of the commutator, wefind that
[A2, h2] gains half a derivative and hence the combination A1[X2, 2]A142 lOSes a
total of one derivative. By Remark 12 we can still expect well-posedness of this
equation provided this term loses less than 3/2 of a derivative so we ignore this
part of the equation for the moment. (We intend here only to give a sketch of the
argument — precise details are supplied below.) The operator

A- = A1 (hodur1) - —A1r2(hohi)p) - —A%

isself-adjointin L2. For ||h2||c,} and ||h0+ﬂllcg sufficiently small itisalso positive

in L2 and hence according to [DS71] fractional powers of A can be defined. For
[Well3 sufficiently small thenorm || A%/3. |, 2 isequivalent to theusual H* norm.
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Again, in order to emphasize the essentia outline of the argument, we assume
for the moment that 9 and 4, are independent of time. Then

d s_7 s_7 s_2 s_2
—((AS 60,u, A3 Ga,u) +<A3 3u, A3 3u) ):O
dt L2 L2

and the local and global existence for solutions u € C([0, Tol, H*~%) N
cY([0, Tol, H*~"/?) of
3t2u =—Au

follows. Here (-, -); 2 stands for the L? scalar product.

We now fill in the details of the above sketch. Returning to the full system
we introduce, in addition to «, the variables z = X171, x = A1 X2, v = A1 Vq,
go = AS1(X)Ur and g5 = A1Gs + A1[A2, holiihou.

Then thevariablesw = (z, x, u, v) satisfy

a[Z = ’COM,
9rx = Kou + go,
atu =1,

0rv = —Au + gs.

We are looking now for solutions satisfying (A’ +t1z, A" *1x, A"+, ATv) €
(L)* wherer = § — &. By construction we then have A”*1go € L2 and A’ g5 €
L2, Rememberingx = A1X2andz = A1Z; shows A’ t%6phg e L2and A™+1Y/2h;
L2. Looking again at the definition of kg and /2, we see that their time derivatives
satisfy A7 TY39,hg € L2 and A" 9,hp € L2,

We begin by reconsidering the time derivative of (A v, A"v) 2+
(A7H12y, ATY/2y) 5, but now include the fact that 7.0 and /2 depend on time.

d
%E((ArU,Arv)LZ‘i‘(Ar-‘rl/zu,Ar+1/2u)L2)

= (A"v, A"gs5) ;2 + (A"v, 3;(A")v) 2 + (A T2, 8, (A" u) ).
L L L

By the Cauchy-Schwarz inequality, the first term can be immediately bounded
by C(IIA"v]|Z, + | A" gs||7,). Theterm (A" v, 8;(A")v) .2 can be written as

(A"v, 3 (A")v) 2
r—1 ) -
=Y (A0, A (022(9:70)dh1 + A1A2(3:h2)2ak2) A” ) 2.
j=0

Since A"1tY35,hg € L% and A"9,;hy € L? aswe observed above, we see that this
expression is bounded by

CUIA V22 + Es(We, We))
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wheres = 3r + 4. Theterm (A™+%2u, 3,(A"+Y2)u), » is bounded in like fashion
and we have

1d
5E((Z\}’v’ ArU)LZ + (Ar+1/2u’ Ar+1/2M)L2)
< C((A v, ATv) g2 + (N Y20, ATY20) 5) + E;We, We).

In order to estimate the the highest order derivatives of x and z we must take
advantage of the special form of the equations. Define it = KoU, and Z = 9, Z1.
Then

0 V1 = —0h0dy (dgtt) — hz(aa/Cal)(aaﬁ) — (0qut) + G5 = N(94u) + G5

3,2 = 3aﬁ

Recalling that |20 + |l gs-1 £ Cl|W|l9s, we see that if [V is sufficiently
small, N is invertible and maps H' — H'*2. Furthermore, if Z; € H® and
Uy e H "3, thenz € H*"Yand ii € H*~3. With this in mind, we consider the
quantity:

195712 = N=H@5 V) + N 1@ N)3y %212,

Note that if we know that V4 € H*3 and if [Wells is sufficiently small, this
quantity controls the L2 norm of 3571z, (and hence the L2 norm of 3:z.)
Differentiating this with respect to time gives:
(857 — N2 tvy) + N 10, N)9: 722, [05a — N™105 XN (8,i1) + Gs)
+ @ N"HOY V) + B IN 0 NS 2 + N3 NIy il 2
= ([9y7'2 = N1V + N M0 N3 %2,
[-N"H3yt N1oyii — N719Gs
+ @ NHO5 V) + (N @ MDY % + N1 (0N Yl 2
where we have simplified the expression by commuting the factor of N through

351 We now examine each of the remaining piecesin turn.
Note first that

s—1
N7 N1@it) = ) ¢;N™HOIN)Oy ™7 (daii) + N~ (3 N)D il
j=2

for some constants ¢;. But if i € H*~3/2, there exists a constant C, such that

1([8571% — N=2@3tve) + N0, N85 23],
[N7H35 ™, N1(dait) — N~ (0, N)3Sil]) 2|
< C{ll9y 72 = NTH@y V) + N TR0 NS |12,
+lul? s+ IWIEs,
H 2

s
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where the term ||W||§,S results from bounding the derivatives of hg and i, that
occur in (84 N).
Next observe that

@NYHf=-N1oNNLS.

Since (8;N) = —3, (9:h0)8e — (8,h2)(3:K5 %), and we know that 8, ko € H*~%/2,
while 3,12 € H~7/2, we have ||[(; N 1) f]l;2 £ C(IWIlgs) |l f |l gs—s, using the
factthat N1 : H*—3 — H’~1 and the fact that N~1(3,N) can be extended to a
bounded operator from L2 to L2. Thus,

(1857 — N72@3 V) + N 710 N33 221, (3, N1 (357 V) 2
< {1857 — N7 VD) + N 7@ NI 2212, + W15 + VA1, 5.
The time derivative of N~1(3,N) is computed in like fashion and we find

1185712 — N71351va) + N0, N)32 22, (8, [N L3 N (35 722)) 12
S {19712 — N7HOL V) + N TR0 NI 2212, + W5, + 11212,

Finally, using the estimate on Gs from above, we find
118572 — N 72037 ve) + N L0 N33 22], N 1837 1Gs) 12|
< C{l19y 12 = NTHOY V) + NNy 2 + IV )-
Collecting al of these pieces we see that we have the estimate
30,1957 — N5V + N0 NS 2212,
< ClI9y 2 — NTHOY V) + N RN 22, + I, (16)

where we used the fact that [|u|| ys-32 < W3-
Inasimilar way, if we define X = 9, X2, we then have the estimate

20,1957 5% — N1 v + N TR0 NS 213,
< C{10y75% — N7E@Y VD) + N TR0 NS N2, + W) (A7)
Hence, we introduce the pre-energy

Er(w, @) = (A"v, ATv) 2 + (A2, ATHY2y),
+ 1957 = NHOE V) + N TR0 N) 92212,
1183758 — NTHOE VD) + N @ N3 2212,

Summarizing these estimates shows that there exists a constant Cs, such that

%(Sr(w, w) + Es—3sOV, W) = C5(&r (0, ©) + E;(OV, W) (18)
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with 3r = s — £. Moreover, if [|[W||ys, is sufficiently small the norm defined by
either & (w, w) + Es_3(W, W) or & (0, w) + E;(W, W) isequivalent to the 1
norm.

With the help of this a priori estimate the existence theory locally in time
is completed by applying the usual fixed-point argument to the iteration scheme
[Kat75]:

0:Z1,; = KoUy,j,

0/ X2 ; = KoUyj +S1W;_1) Uy, -1,
0,U1,; = V1,

V1 =L W;_)U; +Gs 1

(19)

with W, jli=0 = W, for @l j € N in the space C([0, To], H) foraTg > O
sufficiently small, and hence Theorem 4 followsimmediately. O

Definition 2. The compatibility conditionsfor (12) aredenoted by C,,. They arethe
obvious analogues of C,, x.

3. Long wave analysis

Inthissection we derivethe KdV equationsin detail and sketch the very similar
derivation of the Kawahara equations. Then we construct an approximation for the
solutions of (1) and (2) and we estimate the formal error, the so-called residual.

3.1. Derivation of the KdV and Kawahara equations

We are interested in the long-wave limit, i.e., in the case when the initial con-
ditions are functions of the large spatial variable « = s« and the amplitudes are of
order O(¢2) inthe KdV case or O(g%) in the Kawahara case. We first consider the
former. There will be no fast dynamics, that isto say, no dynamics on time scales
of O(1), and so we also introduce the variable for the slow temporal scalet = er.
The amplitudeis scaled in such away that the leading linear and |eading nonlinear
terms are of the same order. We make the standard ansatz

Xi(e,a, 1) = eXq(a, 1) and  Xo(e, o, 1) = 2X,(a, 1), (20)

and we use the fact that the operator (X) possesses the expansion [Cr85, Lem-
ma3.7, p. 827]

K(X)U = KoU + [X1, KoldaU — (X2 + Ko(X2K0))du U + O(X*)U
so that in the long-wave limit we obtain

Ko(da) = —edy — 36393 — Z£6%02 + O(e”).
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Inserting (20) and the expansion for £(X) into (1) and (2), we find
Xy + 0, Xy = —62((0X1) (07 X)) + ne®0X 5 + O,
0 Xo+ 050, Xy = £2(—30,05X 1 + (0,X1) (310X 1) — X0,04X1) + O(e™).

The first order long-wave approximation focuses on those terms of O(¢°) and
O(e?), i.e., on the system of equations

OPX 1+ 0u Xy = —£2((0X 1) (07 X)) + ne®03 X, (21)
0 Xy + 00, Xy = e*(—30,00X 1 + (9aX1)(9;0aX1) — X80 X1).  (22)
We solve these equations (up to terms of O (¢%)) by choosing
X+ 0 X1 = £2(—§03X1 + (0uX1)%). (23)
Differentiating this with respect to time gives
0 Xy + 80, X1 = —36%030, X1 + 26% (340, X1) (9 X 1) (24)
= — 362000, X1 + £2(300,X1) (0 Xy) — 67X (050, X 1) + £°E7,

where
EF = (383X 1 + (9X1)?) (9 X1) -

This means that by the choice (23) equation (22) is satisfied up to terms of O(e?).
Inserting (23) into (21) gives

OFX1 — 02Xy = £%((3 — WXy — 0 X107 X1 — 05 (3 X1)?)) + O(e™)
(25)

and so
Xy = (1+ 20, X1) HOZX 1 + £%(§ — Wy Xy — £%0,((3X1)) + O(e™)
= 95X1 +e%(3 — g Xy — £%0,((0.X1)%) — 20, X195X 1 + O(e™)
= 02X, + 823 — )gX 1 — £230, (0. X?) + O(e).

Corresponding to our variable Z1 = Ko X1, weintroducein thelong-wavelimit
Z, = —0,X,. From (25), weseethat Z; = —0, X satisfies

0PZy — 022y = %((§ — W Zy + 302((Z?) + O(e™). (26)

Remark 16. Neglecting terms of order O(e%), system (26) is ill-posed. Using
02Z1 — 0271 = O(&?) givesthe well-posed system

022y — 022y = e%((3 — w2022, + 302((Z)H)). (27)

Equations (25), (26), and (27) havefirst been derived by Boussinesq (cf. [Bo1877]).
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Our godl is to obtain approximation equations which are independent of «.
Therefore, we make the hypothesis that solutions of (26) are of the form

Zy = Arle —1.6%) + Ag(a + 1, 6%1). (28)
Letting T = £, thisyields

£2(—20,07 (A1 — A2)) + £%95(A1 + A2)
_ 2001 4 342 2 2 4
= 6%((§ — 3(A1 + A2) + F02((AD% + (AD) + r1) + O(s%)
withry = 38§(A1A2). Since A1 and A, are spatially localized and since the two
wave packets only meet on atime scale O(1/¢) whichisrelatively short compared
to the overall time scale O(1/¢3), we claim that the influence of the term r1 on the
dynamics of A » isof order O(s?) and as a consequence we claim that up to terms

of O(%), the water-wave problem can completely be described by two decoupled
KdV equations

207 A1 = —(3 — 03341 — 30.((ADD),
207 Az = (3 — W3 A2 + 30, ((A2)D).

Thishasbeen shown in[Sch98] for (27) asamodel problem and in [SWO004] for the
water-wave problem without surface tension. The model problem in the Kawahara
case has been handled in [SW00c].

Remark 17. The Kawaharaequationsareobtainedif weset u = %+V€2, T = &%,

(29)

Xi(e,0,0) = e°X;(@, 1) and  Xa(e, 0, 1) = 6 X,(a, 1).
With exactly the same cal culations we end up with two decoupled Kawaharaequa-
tions
207 A1 = viS A1 — Z38A1 — 30, (A1),
207 Az = —vis Az + &3 A2 + 304((A2)?).

The details are | eft to the reader.

(30)

3.2. The approximation and estimates for the residual

It is the aim of this section to construct an approximation 2w, out of (23)
and (29) for the extended system (12). This has to be done in such away that the
extended residual

Res,(We) = (Resz, (W), Resx, (W), Resy, W), Resy, WV,))
with
Resz, We) = —0;Z1 + KoUs,
Resy, We) = —0: X2 + KoU1 + S1OV) U3,
Resy, (We) = —0,U1 + V1,
Resy, W,) = —0, V1 + LOV)U1 + Gs
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issmall. The residua contains al terms which do not drop out after inserting the
extended approximation £2W, into system (12). We additionally define

Res(W) = (Resz, (W), Resy, (W), Resy, (W),

where in computing Resy, (W), we use the fact that 8, U1 can also be rewritten as
in (34) and hence,

Resy; = — 8;U1+ (1 — M2Z1 + (3. X2)K(W)) ™+
X (=0 X2)(A + [0, KOW)]U1)
+ UR(3x X, 02X) + 1S (3, X, 33X)).

With these preparations we define the approximations

e2W = (62Yz,, e2Ux,, e2Yy,)  and  £2W, = (622, £%Yx,, €5y, £3Yyy),
(31)

where
%Yz (o, 1) = e%(Arle — 1. 1) + Aa(a + 1, £%1)),
2Py, (a ) = %Yz, + ' (Yz,)?,
e2Yu, (e, 1) = e29,Kg Mz, (@, ),

Yy, 1) = 392Ky Wz, (@, 1).

Note that the V1 component is scaled with €3,

(32)

Remark 18. The motivation for the definitions of vy, and vy, arethat ey, =
20,y x, where ¥y, = Koz, But Ky vz, isundefined unless [ vz, («, 1)da =
0. However, since A1 and A satisfy the KdV equations, f(a,wzl(a, t)da =0
and hence vy, iswell defined. A similar argument applies to vy, . The motivation
for the definition of v x, istheformal calculation (23).

The approximation ¢2W, has the following properties.

Lemmab. Fixs = 1. For all C4 > 0 there exist Cy, g9 > 0 such that for all
e € (0, gg) the following is true. Let A1, A> € C([0, To], H**®) be solutions of
(29) with
sup (A1, A2)(T) | gs+6 = Ca.
T€[0,To]
Then,
sup [ We(®)llpgs < Cu.
1€[0,Tp/€3]

Proof. Thisfollows more or less line for line the proof of [SW00a, Lemma 5.4].
]

The following lemma ensures that the approximation £2W, defined in (31) is
at least formally a good approximation. Let us define (t;u) (o) = u(a + ) and
(SeA) (o) = A(ea).
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Lemma6. Fixs = 1. For all C4 > 0O there exist Cres, €0 > 0 such that for all
e € (0, go) thefollowing istrue. Let A1, A» € C([0, Tol, H**+6(2)) be solutions of
(29) with

sup (A1, A2)(T) | gste(2) = Ca
T€[0,Tp]

or let A1, A» € C([0, Tol, H**8) be solutions of (29) with A, = 0 and

sup  [[(A1, A2)(T)llgs+s < Ca.

T €[0,Tp]
Then for
0
=R 2y d = 0
Q1 =Res(eWe(s) and Q2 =1 _1:5) ((r_,5,A1)(x,S:A2))

3689, (1, S A1) (11S: A2)
the following estimates hold:

sup  [|Q1— Q2llgs < Crest™/?
t€[0,Tp/e3]

and
e"2q(t) == | Q2(t)llgs < Crese™?/(1+ (e1)?).

Proof. The proof is very close to the [SW00a, Lemma 5.5]. Recalling that Z; =
KoX1and Z; = —3, X, weobtain

Resx,(W,) = — £%9,X, — £30,U;
+%(— 303U, — 210U — X500U7) + O(eD),
Resy,(We) = — e30,U3 — €304 X5 + €°(Z18,U ) + pne®33X2 + O(e")
= —e39,U; — 30X, — £2(Z104Xp) + 193 X2 + O(e),
Resy, W,) = — &%9, V4 — £%0,04 X, — £%(8,21) (3. X)
— £%21 (8,04 X ) — ne®3U1 + O (%)
= — "0,V +%5U,
— %04 (1 — 3)03U — Z10,Uy — X50,U )
+£%(0U 1) (0 X5) + £°Z1(05U4) + O(e®)

1
= — %,V + %20, + 86(§ — wWagU; +2e°Z2102U,

+ 26805 X ) (3.U7) + £%(90.Z1) (9 U 1) + £°X (82U 1) +O(e8).
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Inserting W, = £2W, gives by construction

Resz, (62¥,) = 0,

Resy, (62W,) = 0+ O(e),

Resy, (62W,) = —3£°0,((1—;Se A1) (1, S: A2)) + O(e"),
Resy, (e2W,) = — 359,00 ((7_1 Se A1) (1,5: A2)) + O(e9),

wherethe cancellation in the second lineisdueto the quadratic termsin v x,. Using
[SWO00a, Lemma 2.3] which shows that

Il f (i 86) (S A) (@) || g < Ce"~Y2|| Al g
if | f(k)| < C|k|", establishes

sup 01— Q2 < Crese™2.
t€[0,Tp/e3]

FromA; € C([0, Tol, H 5+6(2)) and Sobolev’ sembedding theoremwhichweapply
inthe form

1Se@o)llzs < 1Se(p12) ey 1 Se o) a5 11 Se (vp2) l g

-1 -1/2
< 1182 (p1p2) ey Y Pllupal s lvpzlicy

~1/2

-1
= 1Se(prp2) licge™ " “Nluprll as llvozll gs+1,

we have
1(r-1Se A1) (1S A2) |1, < CsUp|((L+ (et — )DL+ (e(ar +1)?) Y|
x e V2 sup [ Asllms@)( Sup Azl gstrz)
T €[0,Tp] T€[0,To]
< Crest Y2/(1+ (e1)?),

and so with 97 A; € C([0, Tol, H**3(2)) and 3,3 A; € C ([0, Tol, H**2(2)) the
estimate about Q- follows. 0O

Forthecase u = % + ve? the details are again | eft to the reader. Theresults are
summarized in the following lemma.

Lemma7. Fixs = 1. Forall C4 > Othereexist Cy, Cres, €0 > 0 such that for all
e € (0, go) thefollowing istrue. Let A1, A» € C([0, T1], H**+8(2)) be solutions of
(30) with
sup [|(A1, A2)(T) | sy < Ca
T€[0.T1]

or let A1, A» € C([0, T1], H**8) be solutions of (30) with A» = 0 and

sup (A1, A2)(T)llgs+8 = Ca.
T¢€[0,T1]



Long-Wavelength Capillary-Gravity Waves 273

Then we find, for

eMzi (e, 1) = eM(Ar(a — 1, &%) + Ag(a + 1, £*)),
My, (a, 1) = g%z, + e8(yz)?,
eMyy, (1) = 0, Kg Mz, (e, 1),

Yy, (@, 1) = 592Ky Mz, (e, 1),

(33)

that
sup [[We()llys = Cu.
1€[0,T1/€5]
Moreover, for
0
Res, (s*V, d 0
01 =Res. (¢ .(s)) an 02 = _%ggag((T—LSSAl)(TLSSAZ)) s

— 32109, 80 ((t—1 Se A1) (1, S: A2))
the following estimates hold:

sup 1|01 — Q2lly; < Crese?/?
tE[O,T1/€5]

and
e™2q(t) == |02l s < Crese™?/(L+ (e1)?).

Remark 19. We recall here that we use T; rather than Tp to denote the existence
interval of solutions of the Kawahara equations in the function space H**8(2)
because in contrast to the case of the KdV equations we are unaware of any results
of the global well-posedness of the Kawahara equationsin these weighted function
spaces.

4. Theerror estimates

Now we are ready to formulate our main result. For (1) and (2) written as the
first order system

0:Z1 = KoUx,
;X2 = KoUp + S1(X) Uy,
U1 = — (1= M2Z1+ (3. X2)Ko (34)

+ (02 X2)S1(X)) (8 X2) (L + [8;, S1(X)1U1)
— R0 X, 82X) — S (3, X, 83X)]
in the variables collected in W, we show that there exist solutions which behave

in approximately the same way as predicted by the approximation ¢2W defined in
(32) and constructed via the solutions of the two decoupled KdV equations (29).
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Theorem 5. Fix s > 6and let 8 = 7/2. Then for all C4, Co, To > 0 there exist
CRr, €0 > Osuchthat for all ¢ € (0, gg) the followingistrue. Let A = (A1, A2) €
C ([0, Tol, (H**(2))?) be solutions of (29) with

sup  [[(A1, A2)|l(gs+s(2)2 = Ca
T €[0,Top]

orlet A = (A1, A2) € C([0, Tol, (H**%)2) be solutions of (29) with A» = 0 and

sup (A1, A2)ll(gs+6y2 = Ca,
T [0, To]

and let W|;—o = e2W|,—g + £# R|;—0 € H* with || R|,oll7ys < Co. Thenthereisa
unique solution W = e2W + ¢f R e C([0, To/€3], H*) of (34) which satisfies

sup Rl = Cr.
1€[0,To/e3]

Remark 20. Thisisnot incontradictionwith Section 2. Local existenceand unique-
nessof solutionsfor (34) followsindirectly since (34) isasubsystem of (12), namely
the system of all solutions of (12) inC,,.

Proof of Theorem 1. From [SWO00a, Lemma 2.5] we have the estimate

SUp [ X1le—o(t)] < Coe/2.
te[0,Tp/¢3]

Also, [SW00a, Lemma2.6] ensuresthat inthelong-wave limit theinitial conditions
¢1 and ¢ of (34) can be separated into the initial conditions A1|7—o and Az|7—o
of the two decoupled KdV equations and that we have a reparametrization of the
physical solutionwith aninitial error ¢”/2R|;_o such that Theorem 5 can be applied.
Then by [SW00a, Lemma 6.3] we construct via (32) aformal approximation of the
solutionsof (34) for all ¢ € [0, To/e3] with Tp > Ofinite, but arbitrarily large. Then
Theorem 5 ensures that the water-wave problem (34) in the long-wave limit really
can be described approximately by two decoupled KdV equations (29). So theonly
step remaining in the proof of Theorem 1 isto establish the validity of Theorem 5.
O

Preliminaries. The operator S1(X) is split into its quadratic and its higher order
terms.

Lemma 8. The operator (VW) possesses the expansion
KOWV)Ur = KoU1 + BiOV)U1 + S200V) U
with
BiOW)U1 = M1(Z1, 3,U1) — (X2 + Ko(X2K0)) 9, U1

= M1(Z1, 3,U1) — (14 K3)(X28,U1) — Ko([X2, KoldeU1),
SoW)U1L = O(IWIIH)Us.
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Proof. See[SWO00a, Lemma 3.8] and [SW00a, Remark 3.9]. O
Remark 21. Dueto Lemma 3 and Lemma 4 the operator B1 is smoothing. Thus,
BIOM)Uills = ClIW I as U1 3-
This quantity can also be estimated with the aid of Remark 11, obtaining
IBL OV Uil < € min(IW 1) 10l s, IWI s 1011y (35)

Asnoted in Remark 11, thislatter estimateisuseful if we wish to minimizetheloss
of powers of ¢ due to the scaling of the L2 norms.

As a direct consequence of the smoothing properties of B; and Lemma 1 we
have the following corollary.

Corollary 3. Assume the situation of Lemma 1. Then, for all s = 6,

1S20MUlls < CIWIZ U1 2.
18:(S20MUD g3 £ CIWIB, (Wall gz + 1 Vall o),
112, S2OMNU g3 < CIWel3s (Ul ga + 1Vl ),

180 ( SOV UD -1 < CIWI3 U1l 2.

With these preparations we can begin the Proof of Theorem 5.

Remark 22. In the following, many estimates have to be made. In order to avoid
each time restating all of the quantifiers explicitly, we use the following standing
hypothesis:

(HS) Forall Cy > Othereexisteg > Oand constantsC > 0 suchthat thefollowing
holdsfor all & € (0, e0) and ¢ = O aslong assup, (o) I Rell3s = Cr-

We proceed as follows. As explained in [SWO00a], and as can be seen just by
examining thelinearized equations, outsidetheset C,, thereisasecular growth of the
solutions of (12). However, thisgrowth occursonly in the size of the components of
W —not for the derivatives of these functions. In order to control the error over the
very long time scales of interest herewe must usethe property W(t) e C, by taking
(34) for the evolution of W and then using (12) for the evolution of the derivatives
of W and for V1. We follow Remark 5 and write asolution W = (Z1, X, U1) of
(34) as a sum of the approximation e2W and an error ¢# R with

e2W = (e2Yz,, £2x,, e2¥y,) and P R = (¢PRz,, ¢ Rx,, P Ryy),

and we write a solution W, = (Z1, X»2, U1, V1) of (12) as a sum of the approxi-
mation £2W, and an error ¢# R, with

e2W, = (e%Yz,, e%Vx,, e2Yu,, 3¢y,  and

sﬂRe = (SﬂRzl, 8’6RX2, 8’3RU1, eﬂva).
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We expand (34) up to terms of quadratic order. With
0 = (1+ 20, X1+ (3 X1)? + (0. X2)H)Y? = 1+ 8, X1+ hot.
=1-— MyZ1+hot.,
R = —3(32X1)(32X2) + h.ot. = 3(8, M2Z1)(32X2) + h.o.t.,
S = (14 3M2Z1 + h.0.t) (0, X2)(82M2Z1) + (1 — M2Z1)d3X2)
= 33X2 + (0 X2) (95 M2Z1) + 2lM2Z1)33X2 + hot.

we obtain
0:Z1 = KoUs1,
9 X2 = KoU + M1(Z1, 3 U1) — (X2 + Ko(X2K0))3, UL + O(IW]3),
U1 = — 04 X2 — (M2Z1)0, X2 + (04 X2) K00y X2 (36)

+ X2 + (3. X2) (02 M22Z1)
+ 2u(M2Z1)33X2 + 33 M2Z1) (32 X2) + O(IWI3).
Now insert the ansatz W = ¢2W + ¢ R into (36), which yields
0;Rz, = KoRuy,,
Ry, = KoRu, + e2M1(¥zy, 8aRuy) — £2(¥x, + Ko(¥x,K0)) e Ruy
+ e3M1(Rzy, da V) — £3(Rx, + Ko(Rx,K0)de Yoy + N1
= KoRuy + e2M1(¥z,, 8 Ruy) — £2(¥x, + Ko(¥x,K0)) 80 Ruy + N2
= KoRuy, + €%s1(¥, 3 Ruy) + N2,
Ry, = — daRx, — e2(Ma¥rz,) 3 Rx, + 380V x,)Koda Rx,
— e3(M2R7))8uVx, + €380 Rx,) Koda ¥x,
+ RISRX, + 16300 Vx,) 05 MaRz, + pe* (9 Rx,)05 M2z,
+ 21> (M2R2,)83x, + 2ue? (M2, 93 Rx,
+ 3ue®(Madyz,) (02 Rx,) + 3ue*(Mady Rzy) (959x,) + N3
= — 3 Rx, — 2 (M2yr2,)d Ry,
+ ndSRx, + 2ue’ (Mayrz,)9Rx, + Na (37)
with
Nz £ CER s + eP IRIG, + e3Cres+ g (1)),
IN2llms £ CE3|IRIps + ePIRIZ, + e3Cres + (1)),
N3]l -3 < CE3IR s + e IRIF + e3Cres + g (1)),
INall -3 < CE3IR s + e |RIGy + e3Cres + g (1)),
e%51(W, da Ruy) = e2Ma1(Yz,. daRuy) — e2(Wx, + Ko(¥rx,K0))3a Ruy

under the hypothesis (HS).
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Remark 23. Note that in order to avoid losing any further powers of ¢ in the esti-
mates of A2 and Nz, We use estimate (35) to bound termslike s2 M1 (Rz,, 8, Vu;)
+ 293(Rx2 + Ko(Rx,K0)) ¥y, that appear in these expressions. This allows us
to retain the factor of 2 in front of the || R||ys term which is necessary to apply
Gronwall’sinequality over the long timeintervals of interest here.

The term s is bilinear in its arguments with the regularity of v, i.e., 9, Ry, is
smoothed by this operator according to Lemma 3 and Lemmad4. Thisterm of order
O(?) in the equations for 3, Rx, can be eliminated by the following procedure.
We replace 8y Ry, in e2s1(v, , Ry,) by

e Ry = (3K 1) (8 Rx, — £%51(W, 8y Ryy) + N2)

and so
3 Rx, = KoRu, + £%51(¥, (8.K4 18 Rx,) + N2,

where N>, obeys the same estimates as A>. With 3, = O(¢g) we obtain
3 (Rx, — £2s1(W, (3K ) Rx,)) = KoRuy + Nap,
where V2, obeysthe same estimates as \V>. Then we make the change of variables
Ry, = Rx, — £%51(¥, (0, K5 M) Rx,), (38)
or equivaently
Rx, = Ry, + £%51(¥. (0.K5 D) Ryy) + O(e%).

which is of the form identity plus something small and smooth in Ry,. Thus, we
obtain the system

3tRzl = ]CORUla
9 Ry, = KoRy, + Ns, (39)
% Ruy = —3a Ry, + 133 Ry, + 252(W, Ry,) + Nag

with
INaall ggs-3 < CE3|IRlges + ePIIRIIZ, + e3Cres + q (1)),
INslms < C(E3IR s + ePIRI3, + e3Cres + g (1)),
£252(W, Ry,) = —6204 (51(¥, Ko ' Ry,)) — €22, Ry, + 2116%Yr2,03 Ry,

which holds under (HS). Here we used Mo(k) = 1+ OK?) for small |k| and the
fact that vz, isascaled function.

It is easy to see that the H*~%/2 norm of Ry cannot be estimated by the term
N4 since we would loose regularity. Therefore, to estimate the highest derivative
we have to use the equation 9, U1 = V1 and extend (34) by the fourth equation of
(12). For clarity, we recall that solutions of (12) which liein the subset C,, describe
the same solutions of the water-wave problem as (34). We aso recall that while
general solutions of (12) are expected to grow “rapidly” with time, which is why
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we cannot use that form of the equationsfor all our estimates, the derivatives of W,
are not expected to exhibit this secular growth and hence we can use (12) to control
the derivatives of Ry without losing control of our estimates of the remainder.
Whenweintroducethenormal formtransformation (38), thevector R ischanged
to R = (Rz,, Ry,, Ry,) and extended to R, = (Rz,, Ry,, Ry, Ry,). Fore > 0
sufficiently small, R can be estimated by R in % and vice versa.
Writing Vi = e3¢y, + &f Ry, wefind formally that

3l‘RU]_ = RV19
&Ry, = =, KoRuy, + 1d3KoRy, + £29,52(¥, Ry,) + O(e),

where we have used the above calculations. Looking more carefully at this system
and retaining all termswhose H* 2 norm cannot be bounded by || R, || 73, weobtain

O Ry, = —3,(hod2KoRy,) — h202 Ry, — Kody Ry, + £20:52(¥, Ry,) + N,
where we have
INglle-3 < Cel| Rellags + 6P IR 135 + £>Cres + (1)

under (HS). As in the equation for Ry,, we eliminate the terms of O(e?) by a
smooth near identity change of coordinates. In order to do so let

Rw, = Ry, — €%52(/, Ry,).
Wefinally find
3 Rw, = 84 (h0d2KoRuy,) + h202 Ry, — Kode Ry, + N,

where Ng obeys the same estimates as N.
Now collect the new variablesin R, = (Rz,, Ry,, Ry,, Rw,).Again for small

¢ the vector R, can be estimated by R, and vice versa.

With these preparations we now start to obtain the estimates for the error. In
afirst step, the variable Rz, is estimated in terms of the remaining variables. In
the second step we construct anew scalar product E, (-, -) for the (Rx,, Ry,, Rv,)
variables. Itisequivalenttotheusual H; = H* x H*~%/2x H*~3 scalar product. We
define R; = (Ry,, Ry,. Ry,) the"lower” part of R,. Asexplained in Remark 14 the
main part of E; (-, -) must be constructed so that in the computation of % Es(R;, R))
all quasilinear terms from (12) cancel and %ES(RI, R;) can be estimated in terms
of Es(R;, R;) insuch away that Gronwall’sinequality can be applied. On the other
hand, in order to apply the ideas of Remark 5 we have to modify E, (-, -) further so
that the influence of the linear terms of order O(¢2|| R, ll74:), when measured in the
normdefined by E; (-, -), isof order O(¢2). Finally, the (Ry,, Ry,) part of the scalar
product E;(-, -) has to be modified so that the linear terms of order O(||Re ||74)
coming from the term A5 in the equation for 9, Ry, cancel.

We begin by estimating Rz, in terms of R,. From the first two equations for
the error it follows that

8tRYz - alRZ;L = NlOv
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where
INoll s < C(e3(IRlI3s + P [IRIF,, + £3Cres + (1))

Integration with respect to time and Gronwall’s inequality show the estimate

VCa,ToACs,Cs53eg>0Ve € (0, ) :

sup IRz, () llus = Ca+ CslRi()llgy  (40)
1€[0,To/e3]

aslong as sup; (o, 7/¢3) 1 R1 (D33 = Cr.
For W, € C, wecanrelate Vi = ;U1 to ud3 X2 — 8, X2. Thus, by theimplicit

function theorem we obtain
wdSRx, — 9 Rx, = Ry, + N12
or equivalently
wdSRy, — 4Ry, = Ry, + N12
with
IN2ll 52 + [Ni2ll -z < C(e2[I Rl + eP IRIZ,, + £3Cres + q(1)).
In particular, we can estimate the highest derivatives 33 Ry, appearing in the fol-
lowing by
195 Ry, ll 2 < =185 3 Rwyll 2 + 105 R ll 2 + 1105 N2l 2),  (41)

sowe can control || Ry, || s bY || Ry, |l 2, [|Ruy |l grs-3/2, and || Rw, || +—3 by applying
an interpolation inequality to |95~ Ry, || 2.

Remark 24. Note that the preceding estimates are not uniform in u as u tends
toward zero.

We look more closely at the term —&28,51(V, aalcalRyz) which appears on
the right-hand side of the equation for 9, Ry, before we start to construct the final
energy. It can be rewritten as

das1(¥, 3Ky Ryy)
= 8 {M1(¥z1, 3Ko  Ry,) — ¥x,00Kg Ry, — Ko(¥x,K0)8a Ko  Ry,)
= 3, {M1(¥z,, 3Ko Ry,)
— (14 K3 (Wx,0aKg  Ry,) + KolKo, ¥x,1aKg  Ry,)}.

The last term can be estimated to be of order O(s) (considered as an element of
H*~1) by using thefollowing lemmawhich showsthat commutatorswith the scaled
function W gain an order of ¢.

Lemma9. Let R € H? and let W € H**! be the approximation defined above.
Then there existsa C > 0 such that, for all ¢ € (0, 1),

1Ko, IR ps = Celldx Wlis Rl .
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Proof. See[SWO00a, Section 6; e.g., (6.8)]. O

By the preceding estimates it remains to estimate || Ry, |I;2, || Ry, || ys-32 and
| Ry, |l ys—3. After these preliminary simplifications we come to the final energy
estimates.

Note that the operator M, = —3,Ky " is self-adjoint and positive. Thus we
can take its square root and we find

3 / (M3 °Ry,)?da/2 = / Ry,(M2dRy,) da
=/RY2(M2(/C0RU1 + Ns)) da

= /(aa RYz)RUl do + Nelv
where
Wetl < CE3lIRilly + P IR + £3Cres I Rllagg + g IRl 1)

under (HS). Similarly we find that, for the positive self-adjoint operator M3 =
—143
/"L’CO aaa

o / (M3/*Ry,)?da/2 = / Ry,(M30; Ry,) da
= [ Res(MatKoR, + o) da

__ f (133 Ry,) Ry det + Nz,

where N, obeys the same estimates as N, 1.
Next using the evolution equation for U1 we see that:

o / (Ry,)?da/2 = f Ry, (% Ry,) da

= / RUl(_aaRYz + MagRYz - 82¢213aRY2

+ 21182y 72,83 Ry, + €28, M1(V 2y, 8K g Ry,)
— 620, (L + K3)(Wx, (Ko 3w Ry,)) + Na) da,

where we have used vz, = V¥x, + O(¢) and where Na equals Ny plus the or-
der epsilon terms that we discarded from 9,51 (v, 8aIC61RY2) in our preliminary
investigations. The term | RUl./\74da obeys the same estimates as NV, 1.

The first two terms on the right-hand side cancel with the corresponding term
in the time derivatives of [(My/*Ry,)2da and [ (Mg Ry,)? da.

For the third term, by using 3, ¥z, = O(¢), we obtain

—&? / Ry, 7,04 Ry, do = €2 / (8 Ruy) Wz, Ry, da + O(&®).
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With d; Ry, = KoRy, + O(e), thisterm can be rewritten
82/ 3 (8a Ko Ry,) ¥z, Ry, da + O(3).
The operator M2 = —aa/cgl is positive and self-adjoint. Hence

2 f 0, (MZRy,) ¥z, Ry, do = &2 f 8, (MaRy,)[Ma, ¥z, 1Ry, de
42 / 8, (MaRy,)¥z,(M3Ry,) da
_ 15%, / ¥z, (MaRy,)? da + O(3),

where we again exploited the fact that commutators with the approximation W gain
one order of ¢ and where we used 9;vz;, = O(e). In asimilar fashion we obtain,
for the fourth term,

2% f Ry, ¥7,02Ry, da = —&29, / V7, (M3dyRy,)? da + Noo.

For the fifth term, by partial integration and by using 9; Ry, = KoRy, + O(¢), we
obtain

_ 2 / (3 Ru) Mi(Vrz,. 9K5 Ry, da
_ 2 -1 -1 3
- f (300K YRy,) M1(W2,, 0K *Ry,) dot + O(E?).

The last expression defines a trilinear mapping Ms(W)[R1, R2] which isgivenin
Fourier space by

— —  Ko) = Ko(k) ~
Ms(D)[Ry, Ryl = / / a2 =Ko®) 5 1 Roydidk + cc.
Kol — 1)

Thisoperator issymmetricinthearguments R1 and R». Therefore, wefinally obtain

2 [ Ry MaWz,, 8,5 Ry do
= 36%0 Ms(¥)[0.Kg Ry,, 9Ky Ry, + Nea.
Finally, we again use

atRyz = ’CORUZ + O(e)
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to rewrite the sixth term as as
2 2 -1
e f Ry (1 + K2) (Y, (K 10 Ry,) da
.2 -1 2 -1 3
=e /at(aaKo Ry,) (L + K§) (¥x,(Ky =0 Ry,)) da + O(£7).

Since M2 = (1 + K3) is again a positive self-adjoint operator, and using the
fact that commutators with W gain an additional order of ¢, we again have

f (MadeKg  Ryy) Ma(hryy 3Ky Ry, da
— / (Made Ko Ry ¥x, Mady Ko Ry, da
+ / (MadaKy Ry [ Ma, Y10k Ry, der

= [ MG R it Ry, dt + O,

Therefore,
g2 f Ruy0 (L + K2) (Y, (K 204 Ry,) de

= &2, [ Yra(Madog Riy)? da -+ Noa
Furthermore, under (HS), the remainder terms \,; satisfy the estimates
el < CE IRy + P IRy + (3 Cres + gD RIll3g).  (42)

To reiterate, the point of these definitions is that the energy functional must
be chosen so that both the quasilinear terms and the terms of O(2) in the time
derivative cancel, and by adding to the energy the terms of order £2 on the right-
hand side of the above expressions we can arrange for this to be the case.

For thequasilinear terms, we proceed asin the proof of Theorem 4. Weintroduce
R, = MRy, and Ry, = A1 Rw, and then we consider

1d
EE((A’RU, ARy 2 + (N FY2R, ATHY2R)),2)

= (A"Ry, A"A1N9) 2 + (A" Ry, 9 (A")Ry) 2
+ (A"PY2R,, 8/(ANTY2)R,) 1 2),

whereasin Section 2, 3r = s — % The estimates for Ng can be found above —in
particular, we have

(A" Ry, A"MaNo) 2] < C3IRl3y + eP IRy + (e%Cres + 4 )| Rilly)-

Thusit remains only to consider the behavior of 9, A” and 8, A”t1/2. Whilethe
estimates of Section 2 insure that these terms are bounded, we must also determine
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how they depend on ¢. The terms 9,k and 9,2 which appear in these expressions
will be combinations of expressions of theform (W, + ¢ R,). If atime derivative
fallson W, we get afactor of 3 due to the scaling of v, with £2 and the fact that
time derivatives of v, give an additional ¢. On the other hand, if the derivativefalls
on R., we get afactor of ¢#, with 8 > 3. Therefore 9,(A"+1/2) and 9, (A") obey
the same estimates as \g.

With all these preliminary considerations out of the way the calculation of the
time derivative proceeds rapidly. We define

E,(R1. R)) = / (MY2Ry,)? + / MY2Ry)? + / (Ruy)?
+ 2 Ms5(W)[3, K  Ry,, 8 Ko Ry, ]

+ / Yz, (M3Ry,)? da +2p / ¥z, (0a M3Ry,)? da

462 / Yo (Mada Ky Ry,)? do
+ (A"Ry, A"Ry) 2 + (AFY2R, A"TY2R )2 .

We easily see by using (40) and (41) that the scalar product E (-, -) is equivalent
to the usual H; scalar product, i.e., there exist positive constants ¢ and ¢ and an
g0 > Osuchthat for all ¢ € (0, &g) we have

Wil < clBEsOVL WD) < c2lWilly. (43)

Therefore, wecan follow linefor line[ SW00a] and sum up our above estimates. We
seethat there exist constants C; = C1(Cy, CRes, ¢j), C2 = C2(Cy, CRres, Cr, ¢j),
and C3 = C3(Cy, CRes, ¢j), such that
$8,E(Ry, R) < e3C1Es(R, R) + e# C2E,(Ry, R)¥?
+ (e3Ca+ q(1)Es(Ri, R)Y?
< e3C1Es(Ry, Ry) + 6P C2E (R, R)¥/?
+(C3e3 +q(1) + (e3C3 + (1) Es (R, Ry).
Thus, for y(T') = Es(R;(r), Ri(1)) withT = &3¢ weobtain thedifferential inequal-
ity
¥ = (C1+ C3+e73q0)y + P Coy¥? + C3 + e3¢ (1))
S (C1+C3+1+ 8_3q(t))y + C3+ 8_3q(t)).

The application of Gronwall’s inequality shows, for al ¢ € [0, To/&3], that

T A — —_
Ye(t) = y:(0) +/0 e—fd(C1+C3+1+s Sq(e 31))dT(C3+ 1+8_3q(8_3s)) ds.
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where we have chosen g9 > 0 so small that ¢#3C2(Cr)(c2Cr)% < 1, where
Cr = 2limsup,_, ¢ y:(To) = O(1). With (38), (40), (41), and (43), thisyields

sup  [IReN3; < caCu.
1€[0,To/€3] ¢

This completesthe proof. O

Remark 25. Withthe ansatz W, = e*y + &P R, where g = 3, theerror estimates
for the approximation by the Kawahara equations follow more or lessline for line
the proofs of Theorem 5, and Theorem 2 follows. Again the details are |eft to the
reader.
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