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THIN POSITION AND THE RECOGNITION PROBLEM
FOR S3

Abigail Thompson

Abstract. We describe a modified version of Rubinstein’s algorithm to
detect the 3-sphere and use thin position combined with standard 3-manifold
techniques to prove that the algorithm works.

1. Introduction

In the spring of 1992, Hyam Rubinstein gave a series of lectures at the
Technion, Haifa, describing an algorithm to determine whether or not a tri-
angulated 3-manifold is the 3-sphere. Rubinstein’s proof that his algorithm
works uses the language of PL minimal surface theory. The substance of
this paper is a different approach to the proof that the algorithm works,
using techniques from knot theory. In addition, we simplify the original
algorithm by using a modified definition of almost normal 2-sphere.

There are two interesting points. One is simply that an algorithm exists,
requiring for its proof only fairly standard normal surface theory and knot
theory. The second is that PL-minimal surface theory and knot theory are
so closely connected; a given tool or concept in one area seems to have its
counterpart in the other. The correspondence between the two is likely to
be a fruitful area for further study.

Theorem 1. [8] There exists an algorithm to determine whether or not a
compact 3-manifold is S3.

We give some definitions, followed by an outline of the proof.

Definitions. Let M be a closed orientable 3-manifold with fixed triangu-
lation T . An arc in a 2-cell of T is normal if it connects distinct edges
of the 2-cell. Let c be a simple closed curve on the boundary of a tetra-
hedron H in the triangulation, such that c intersects each face of H in
normal arcs. c is a normal curve. The length of c is the number of times
c crosses the edges of H. A closed orientable surface F imbedded in M
is a normal surface if F intersects each tetrahedron in T in a collection
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Figure 1. A normal curve of length eight.

of disks all of whose boundary curves are normal curves of length three
or four, i.e., in normal triangles and quadrilaterals. F is almost normal
if F intersects each tetrahedron in T in a collection of normal triangles
and quadrilaterals and, in one of the tetrahedra, precisely one disk whose
boundary is a normal curve c of length eight, and possibly some normal
triangles.

Note. These definitions differ slightly from Rubinstein’s; in particular, he
considers a more general type of surface to be almost normal.

Outline of the proof of Theorem 1. Let Σ be a maximal collection of dis-
joint non-parallel (in (M, T )) normal 2-spheres in M . Notice that Σ is
not empty, since the boundary of a small neighborhood of each vertex is a
normal 2-sphere in M . Σ cuts M into three types of components M0:

(1) M0 is a 3-ball containing a single vertex.
(2) M0 has more than one boundary component.
(3) M0 has exactly one boundary component and is not of type 1.

Using simplicial homology, we can algorithmically check that H1(M ;Z2)
is trivial to ensure that M contains no closed non-orientable or non-
separating surfaces. In particular we assume from now on that all 2-spheres
are separating.

Notice that components of type 2 and 3 contain no vertices of T . We
prove the following lemmas:

Lemma 2. A component of type 2 is a punctured 3-ball.

Lemma 4. A component of type 3 is a 3-ball if and only if it contains an
almost normal 2-sphere.

Assuming lemmas 2 and 4, the algorithm is as follows:

(1) Search for Σ, a maximal collection of disjoint, non-parallel normal
2-spheres.

(2) Consider each component of M − Σ. In each component with a
single 2-sphere boundary, search for an almost normal 2-sphere.
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(3) The manifold is S3 if and only if each component considered in
step 2 contains an almost normal 2-sphere.

The search for Σ is accomplished via an algorithm due to Haken [3],
[4], [6], [7]. Haken’s work does not describe how to find almost normal
2-spheres, but a modification of the algorithm suffices.

Outline of the paper: Section 2 will be devoted to the proof of lemma
2. Section 3 consists of an unknotting lemma, which is used in section
4 to prove lemma 4. Section 5 will discuss the necessary modification of
Haken’s algorithm.

We first give some additional definitions, state some facts about normal
curves on the boundary of a tetrahedron and prove two useful claims.

Definitions. A separating surface F properly imbedded in a 3-manifold
is strongly compressible if there exist disjoint compressing disks for F lying
on opposite sides of F . If F is not strongly compressible it is weakly
incompressible. Note that a separating surface incompressible to one or
both sides is weakly incompressible.

Let F be a closed orientable surface imbedded in a 3-manifold M3. Let
X be a 1-complex properly imbedded in M , possibly puncturing F . We
define incompressible in the complement of X, strongly compressible in the
complement of X and weakly incompressible in the complement of X in the
obvious manner.

A parallel 2-sphere is a 2-sphere punctured twice by a single edge of T ,
boundary parallel to that edge.

Facts about normal curves on the boundary of a tetrahedron H:

(1) A normal curve of odd length has length 3.
(2) There are no normal curves of length 6.
(3) Any normal curve of length greater than 8 crosses some edge of H

at least 3 times.

Proof. First flatten the 1-skeleton of the tetrahedron out in the plane. The
proofs then proceed by first drawing in the vertices of the 1-skeleton, then
drawing in the normal curve c, which, w.l.o.g., can be drawn as a round
circle, and then adding in the edges of the 1-skeleton, which now may look
quite complicated (the more painful details are left to the reader):

(1) Any normal curve c of odd length must separate one vertex of H
from the other three; such a curve can only have length three.

(2) Any normal curve c of even length separates the vertices of H in
pairs. Suppose it separates v and v′ from w and w′. Examine the disk
D ⊂ ∂H bounded by c, containing v and v′. If an edge of H lies entirely
inside D, then c has length 4. Suppose no edge of H lies entirely inside
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Figure 2. A 2-sphere in S3, weakly incompressible in the
complement of the trefoil, and a parallel 2-sphere.

D; by considering the complementary disk D′ = ∂H −D, one can see that
the length of c is at least 8.

(3) Suppose c is a normal curve of length greater than 8. Note that
every edge of H connecting a vertex in D to a vertex in D′ intersects c an
odd number of times, and the edges connecting v to v′ and w to w′ each
intersect c an even number of times. Counting suffices to show that some
edge intersects c at least three times.

The following claim says that normal surfaces in (M, T ) are roughly
the same as surfaces which are incompressible in the complement of the
1-skeleton. More precisely:

Claim 1.1. A closed orientable normal surface F in (M, T ) is incompress-
ible in the complement of the 1-skeleton of T . If F is a closed orientable
surface which is incompressible in the complement of the 1-skeleton of T ,
there exists an ambient isotopy rel the 1-skeleton of T from F to a normal
surface F̃ or to a parallel 2-sphere.

Proof. An innermost disk/outermost arc argument suffices for the first part
of the claim. Now suppose F is a closed orientable surface in (M, T ) which
is incompressible in the complement of the 1-skeleton. Pick an innermost
simple closed curve c of intersection between F and a face of one of the
tetrahedra. The curve c bounds a disk D in the face with interior disjoint
from F , and hence it must also bound a disk D′ in F disjoint from the 1-
skeleton. D∪D′ together bound a 3-ball in M disjoint from the 1-skeleton.
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Figure 3. Doubling a boundary compression to yield a
compressing disk.

Isotop F across the 3-ball to remove the curve of intersection c. Hence we
can assume that F intersects any face of a given tetrahedron in arcs.

Let E be some face of a tetrahedron. Suppose some arc β of F ∩E ⊂ E
connects an edge of E to itself. Assume β is an outermost such arc in E.
Then β cuts off a subdisk E′ of E, which one can think of as a boundary
compressing disk for F with respect to the 1-skeleton. One can construct
a disk with boundary imbedded on F in the complement of the 1-skeleton
by banding together two copies of E′ across ∂E′ − β.

We will call this operation doubling a boundary compression (see figure
3). Unless F is a 2-sphere parallel to the edge of E incident to α, this
operation produces a compressing disk for F in the complement of T0.
Hence we can assume that every arc β of F ∩ E ⊂ E connects distinct
edges of E.

Let H be any tetrahedron in T . Examine F ∩H. We need to show that
if F ∩H consists of anything but normal triangles and quadrilaterals, then
F is compressible in the complement of the 1-skeleton.

Suppose F ∩H contains a component F̃ which is not a disk. Then F ∩H
is compressible in H. A compressing disk for F ∩H in H is a compressing
disk for F in the complement of the 1-skeleton (one needs to check such
a disk is not trivial when regarded as a compressing disk for F ), hence F
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Figure 4

is compressible in the complement of the 1-skeleton. So we can assume all
components of F ∩ H are disks.

Using facts 1, 2 and 3 about normal curves on the boundary of H,
as well as the observation that a normal curve of length eight on the
boundary of H must intersect some edge e of H at least twice, we see
that if F ∩H consists of anything but normal triangles and quadrilaterals,
then there is some component F̃ of F ∩ H whose boundary is a normal
curve c intersecting some edge E of H at least twice. Then there exists an
imbedded disk A, with ∂A = α ∪ β, where α ⊂ E and β ⊂ F̃ (see figure
4).

If the interior of A is disjoint from F , we can either double A across α
to produce a compressing disk for F in the complement of the 1-skeleton,
or conclude that F is a 2-sphere parallel to α. If the interior of A intersects
F , we first do an outermost arc/innermost disk argument on A ∩ F ⊂ A,
and then reach the same conclusion.

Let (S, ∂S) be a connected orientable separating surface properly imbed-
ded in a 3-manifold (M, ∂M). S splits M into two pieces; call these M1 and
M2. Suppose S is compressible into both M1 and M2. Let Di, i = 1, 2,
be a minimal complete collection of compressing disks for S in Mi; each
Di is non-empty by hypothesis. Let W ′ be the 3-manifold obtained by at-
taching 2-handles to a small neighborhood S × I of S along the collection
D = D1 ∪ D2. If any component of ∂W ′ bounds a 3-ball in M disjoint
from W ′, fill it in. Call the resulting object W . Then:
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Claim 1.2. At least one of the following must hold:

(1) M − S is reducible (this includes the possibility that M has a 2-
sphere boundary component disjoint from S).

(2) M1 and M2 are compression bodies, with ∂+Mi = S.
(3) S is strongly compressible in M .
(4) ∂W is incompressible in M . Note that this implies that every

component of ∂W is incompressible in M . Hence either
(a) M contains an incompressible non-boundary parallel sur-

face F . F is disjoint from S, and F is obtained by com-
pressing S entirely to one side. or

(b) ∂W consists of a collection of components, each of which is
parallel to some component of ∂M .

Proof. This is an application of Casson-Gordon’s work on Heegaard split-
tings (see Lemma 1.1 in [1]).

If ∂W = ∅, then (2) holds. Assume ∂W �= ∅.
Suppose some component of ∂W is a 2-sphere. Then (1) holds.
Assume no component of ∂W is a 2-sphere. Then W has a natural

Heegaard splitting with splitting surface S.
Assume ∂W is compressible in M . Since D1 and D2 are complete,

∂W is incompressible in M − W . Hence ∂W must be compressible in
W . By [1], this implies that the Heegaard splitting of w by S is weakly
reducible. Hence S is strongly compressible in M , and (3) holds.

If ∂W is incompressible in M , then each component of ∂W is incom-
pressible in M , and either (4a) or (4b) holds.

Notice that if X is a 1-complex properly imbedded in M , Claim 1.2 can
be generalized to surfaces S which are compressible in the complement of
X; if S is punctured by X, we can simply think of S as being properly
imbedded in the manifold M − n(X).

2. Proof of Lemma 2

Notation: Since all of the surfaces under consideration are punctured
2-spheres, we will sometimes use incompressible and weakly incompressible
in place of incompressible in the complement of the 1-skeleton and weakly
incompressible in the complement of the 1-skeleton.

Lemma 2. Let M0 be a component of M−Σ with more than one boundary
component. Then M0 is a punctured 3-ball.

Proof. Let T0 be the remnants of the 1-skeleton of T in M0. T0 consists
of imbedded arcs.

We need:



S1 S2
S
~

620 ABIGAIL THOMPSON

Figure 5

Subclaim 2.0.1. There exists an arc α of T0 connecting distinct boundary
components S1 and S2 of boundary(M0).

Proof. Suppose not. Then M0 − n(T0) is a connected manifold with more
than one boundary component. Notice that the faces of the tetrahedra
cut M0 − n(T0) into 3-balls. But cutting a connected manifold with more
than one boundary component open along disks yields a collection of com-
ponents, at least one of which has more than one boundary component; in
particular, it is not a collection of 3-balls. Hence such an α exists.

Construct a new 2-sphere S̃ by tubing push-offs of S1 and S2 together
via a tube parallel to α (see figure 5).

S̃ is compressible to both sides in the complement of T0; a meridian disk
E of the tube is the unique compressing disk to one side (the inside), while
a disk enclosing the arc α is a compressing disk to the outside. Notice that
S̃ is weakly incompressible in the complement of T0, since the boundary of
every compressing disk on the side containing α must run over the tube.
Let D be a maximal collection of disjoint compressing disks for S̃ in M0 in
the complement of T0 on the outside. Let M̃ be the manifold obtained by
attaching 2-handles to a small neighborhood of S̃ along ∂D ∪ ∂E. Notice
that M̃ is homeomorphic to a punctured 3-ball. We aim to show that M̃
is (more-or-less) all of M0.

Claim 2.1. M̃ is homeomorphic to M0 − (3-balls), hence M0 is a punc-
tured 3-ball.

Proof. The boundary of M̃ consists of a collection of punctured 2-spheres.
The two inside S̃, S′

1 and S′
2, are parallel to S1 and S2. Let S = ∂S̃−(S′

1∪
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S′
2). Apply Claim 1.2 to S̃. Options 1, 2 and 3 of Lemma 1.2 cannot occur,

so ∂M̃ consists of a collection of punctured 2-spheres incompressible in the
complement of T0. By Claim 1.1, we can isotop M̃ in M0 such that after
the isotopy, ∂M̃ consists of a collection of normal 2-spheres and parallel
2-spheres. We will continue to call the components of ∂M̃ S′

1, S′
2 and

S = ∂S̃ − (S′
1 ∪ S′

2). Each component of ∂M̃ is a separating sphere—
otherwise we’ve just found a non-separating normal 2-sphere, which could
not have been in our maximal collection Σ, a contradiction. S′

1 and S′
2 will

remain parallel to S1 and S2; we can imagine pushing them out to S1 and
S2. Let S′ ⊂ S. If S′ is a parallel 2-sphere, it must be parallel to the outside
(the side disjoint from S̃), and we can fill in the (3-ball+arc) that it bounds.
If S′ is a normal 2-sphere, it must be parallel to some component of ∂M0,
since Σ is maximal. It cannot be parallel to a boundary component of M0

on the inside, since it contains at least two components (S1 and S2) of
∂M0 on the inside. Hence it must be parallel to a component of ∂M0 on
the outside, i.e., we can push it out to ∂M0 disjoint from the rest of M̃ .
Hence each component ∂M̃ in S can either be filled in with a 3-ball or
pushed out to the boundary of M0. Conversely, each component of ∂M0

will have one component of ∂M̃ pushed onto it by this process. Hence M̃
is homeomorphic to M0 − (3-balls).

The claim concludes the proof of Lemma 2.

3. An Unknotting Lemma

This variant on the light bulb trick is a key ingredient in the proof of
Lemma 4. It implies that if you attach a circular (and very flexible!) light
bulb to the ceiling via a knotted cord you can unknot the cord without
detaching it from the ceiling or the bulb, if you’re willing to distort the
bulb. Generalizations and further details of this lemma can be found in [5].

3.1. The Fluorescent Light Bulb Trick.

Lemma 3. Let K be a closed connected subset of S3, and let v be a point
in S3 − K. Let α, β be arcs connecting v to a point p on ∂K, coincident
near p, with interiors disjoint from K. Then there is a homeomorphism h
of S3, isotopic to the identity rel v, such that h(K) = K, h(α) = β.

Proof. There is a homeomorphism hα (hβ) of S3 rel v which shrinks α (β)
to a very short arc, and straightens it out. It is helpful to imagine here
that α (β) is made of very stiff wire threaded through a bead at v: hα (hβ)
first pulls α (β) almost completely through v, then straightens out the re-
maining short piece. Call this resulting straight arc δα(β). A rotation r will
take δα to δβ . Then h = (h−1

β (r(hα))) is the desired homeomorphism.
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Figure 6

Corollary 3.1. Let K be a closed connected subset of B3 disjoint from
∂B3, and let v be a point on ∂B3. Let α, β be arcs connecting v to a
point p on ∂K, coincident near p, with interiors disjoint from K. Then
there is a homeomorphism of B3, isotopic to the identity rel v, such that
h(K) = K, h(α) = β.

Proof. Map B3 into S3 so that ∂B3 maps to a point and use Lemma 3.

4. Proof of Lemma 4

Lemma 4. A component M0 of type 3 is a 3-ball if and only if M0 contains
an almost normal 2-sphere.
Proof.

Step 1: We first show that if M0 contains an almost normal 2-sphere
then it is a 3-ball.

Proof of step 1: Let T0 be the remnants of the 1-skeleton of T in M0.
Let S be an almost normal 2-sphere in M0. Examination of the single
octagonal component of S yields the information that S is compressible
to both sides in the complement of T0, since one can double the obvious
boundary compressions (see figure 6).

We need to show that S is weakly incompressible in the complement of
T0. S divides M0 into two components, M1 and M2, with ∂M0 = M1. Let
E1 ⊂ M1 and E2 ⊂ M2 be the boundary compressing disks for S arising
from its octagonal component. Let D1 ⊂ M1 and D2 ⊂ M2 be compressing
disks for S in the complement of T0. Suppose ∂D1 ∩ ∂D2 = ∅. After an
isotopy which maintains ∂D1 ∩ ∂D2 = ∅, we can assume that D1 ∪ D2

intersects the 2-skeleton only in arcs. Minimize, up to isotopy maintaining
∂D1 ∩ ∂D2 = ∅, the number of points in (D1 ∪ D2) ∩ (S ∩ 2-skeleton).
Consider an outermost arc α in D1 of D1 ∩ (2-skeleton). α cuts off a
subdisk D′

1 of D1. D′
1 lies entirely in some tetrahedron H. If D′ lies in a

tetrahedron not containing the octagonal component, we could reduce the
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number of components in (D1 ∪D2)∩ (S ∪ 2-skeleton), maintaining ∂D1 ∩
∂D2 = ∅, contradicting our hypothesis. Hence D′

1 lies in the tetrahedron
containing the octagonal component of S, and in fact D′

1 must look like a
push-off of E1, disjoint from the edge incident to E1. Applying the same
argument to D2 yields a contradiction, since D′

1 and D′
2 must intersect.

Hence S is weakly incompressible in the complement of T0.
Let D ⊂ M1 and E ⊂ M2 be minimal complete collections of compress-

ing disks for S in the complement of T0. The proof now is similar to the
proof of Lemma 2. Let M̃ be the manifold obtained by attaching 2-handles
to a small neighborhood of S along ∂D ∪ ∂E. Notice that M̃ is homeo-
morphic to a punctured 3-ball. We aim to show that M̃ is (more-or-less)
all of M0.

Apply Claim 1.2 and Claim 1.1 to conclude, after an isotopy, that every
component of ∂M̃ is either a parallel 2-sphere or a (separating) normal
2-sphere. Since Σ is maximal, any normal 2-sphere in M0 is parallel to
∂M0. There is exactly one component, S′, of ∂M̃ , that separates S from
∂M0. Let S′′ be any other component of ∂M̃ . If S′′ is normal, then it
is boundary parallel, hence we have the almost normal 2-sphere S lying
between two parallel normal 2-spheres ∂M0 and S′′, a contradiction. So S′′

must be a parallel sphere, and we can fill it in with a (3-ball+arc). Filling
in all such S′′’s, we are left with the single component S′ of ∂M̃ , which
cannot be a parallel 2-sphere, hence must be parallel to ∂M0. Pushing this
component out to ∂M0 completes the argument.

Step 2: We now show that if M0 is a 3-ball then M0 contains an almost
normal 2-sphere.

Proof of step 2: We adjust the definition of thin position for knots in
the 3-sphere [2]: assume that T0 is a collection of arcs properly imbedded
in the 3-ball M0. Let F be a foliation of M0-(point) with 2-spheres, such
that all but a finite number of the 2-spheres intersect T0 transversely, and
every 2-sphere in F has at most one point of tangency with T0. Call the 2-
spheres having a point of tangency with T0 singular spheres, and all other
2-spheres in F transverse spheres. Between each adjacent pair of singular
spheres, choose a transverse sphere S0. Define the width of T0 with respect
to F to be the sum over i of [the number of times T0 intersects Si]. Define
the width of T0 to be the minimum width of T0 with respect to F over all
possible foliations F . If the foliation F realizes the width of T0 then T0

(rel F ) is in thin position.
Let F be the foliation realizing the width of T0. Beginning at ∂M0,

the foliation passes through critical levels with respect to T0. We see a
sequence of maxima with respect to F , then a sequence of minima, and
so on. Call a transverse 2-sphere in the region where the sequence shifts
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from maxima to minima (minima to maxima) a thick (thin) 2-sphere.
Call a simple closed curve lying in the interior of a face of a tetrahedron

a simple curve.
Let S be any transverse 2-sphere in F . Suppose S intersects the bound-

ary of each tetrahedron in normal curves and simple curves.

Claim 4.1. Let H be any tetrahedron in the triangulation of M . Then
S ∩ ∂(H) contains no parallel curves of length greater than or equal to
eight.

Claim 4.2. Let H be any tetrahedron in the triangulation of M . Then
S ∩ ∂(H) contains no curve of length greater than eight.

Claim 4.3. Let H1 and H2 be distinct tetrahedra in the triangulation of
M . Then S ∩ ∂(H1) and S ∩ ∂(H2) do not both contain curves of length
eight.

The proofs of Claims 4.1–4.3 proceed by exhibiting various violations
of thin position.

Recall from Section 1 the following facts about normal curves on the
boundary of a tetrahedron H:

(1) A normal curve of odd length has length 3.
(2) There are no normal curves of length 6.
(3) Any normal curve of length greater than 8 crosses some edge of H

at least 3 times.
For each tetrahedron H, S ∩ H is almost determined by S ∩ ∂H; we

can picture S ∩H as a collection of disks D with ∂D = the normal curves
of S ∩ ∂H, connected together and to the faces by tubes, which may, of
course, be quite complicated, and may run through each other.

S divides M0 into two pieces, the exterior, which contains ∂M0, and
the interior. Anything in the exterior of S lies above S, anything in the
interior lies below.

An upper (lower) disk for S is a disk K such that ∂K = α∪β, where α
is an arc imbedded in S, ∂α = ∂β, β is a subarc of T0, K − α intersects
S transversely, and a small product neighborhood of α lies above (below)
S. Call K a strict upper (lower) disk if β lies entirely above (below) S.
By an innermost disk argument, one can see that such a disk K can be
chosen to lie completely in the interior of M0. K describes an isotopy of T0

in which the arc β can be replaced by the arc α, and then pushed slightly
below (above) S. See [9] for further details.

Proof of claim 4.1. Suppose S∩∂H contains parallel normal curves c1 and
c2 of length greater than or equal to eight. Choose c1 and c2 to be adjacent
in ∂H, and such that c2 bounds a disk J in ∂H containing only normal
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Figure 7

curves of length three. Let E be one of the edges crossed at least twice
by c1 and c2. Let D1 and D2 be disks in D with ∂D1=c1, ∂D2=c2. Let
p1, p2, p3, p4 be consecutive (on E) points of intersection between E and
c1 ∪ c2, where the segment of E between p2 and p3 lies in J. So p1 and p4

are points on c1, while p2 and p3 are points on c2. Let K be an imbedded
disk in H, with ∂K consisting of the piece e of E connecting p1 to p4,
containing p2 and p3, together with an imbedded arc α in D1 connecting
p1 to p4. Further, choose K so that K intersects D2 in a single imbedded
arc connecting p2 to p3 (see figure 7).

K acts as a simultaneous upper and lower disk for T0; we now replace
e with α via an isotopy across K, which takes place in M0, reducing the
width of T0, a contradiction. Hence S ∩ ∂H contains no parallel normal
curves c1 and c2 of length greater than or equal to eight.

Proof of claim 4.2. Suppose S∩∂H contains a normal curve c with length
greater than eight. Let E be an edge of H intersecting c at least 3 times.
Let D ⊂ D be the element of D with boundary c. Let p1, p2 and p3 be
consecutive points (on E) of intersection between E and c (see figure 8).

Then there exist upper and lower disks K1 and K2 for S with respect
to T0 which intersect only at p2. The boundary of K1 consists of the piece
of E between p1 and p2, together with an arc α1 in D connecting p1 to
p2. The boundary of K2 consists of the piece of E between p2 and p3,
together with an arc α2 in D connecting p1 to p2, with α1 ∩ α2 = p2.
The idea is to replace the piece of E connecting p1 to p2 with α1 and the
piece connecting p2 to p3 with α2. This can be done by an isotopy of E;
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Figure 8

note that the isotopy in fact occurs entirely inside M0, since no normal 2-
sphere disjoint from S can intersect K1 or K2 non-trivially. This operation
reduces the width of T0, a contradiction. Hence S∩∂H contains no normal
curve c with length greater than eight.

Proof of claim 4.3. Suppose S ∩ ∂(H1) and S ∩ ∂(H2) contain curves c1

and c2 of length eight. Let D1 and D2 be disks in D1 and D2 respectively
with ci = ∂Di. c1 crosses two edges of H1 exactly twice. Let e1u and e1l

be the segments of these edges disjoint from the vertices of H. Note that
e1u begins above S, e1l begins below. Let K1u be a disk imbedded in H
with boundary consisting of e1u together with an arc α1u in D1 connecting
the ends of e1u. Define K1l similarly. We choose α1u and α1l to intersect
in a single point. Define e2u, e2l, K2u, K2l, α2u and α2l similarly in H2.
We use K1u and K2l to reduce the width of T0. If e1u and e2l are disjoint
or intersect in a single (end)point, replace e1u with α1u and e2l with α2l

via an isotopy. This reduces the width of T0. The other possibility is that
e1u, say, is a proper subarc of e2l. Then replacing e2l with α2l reduces the
width of T0, a contradiction. Hence S ∩∂(H1) and S ∩∂(H2) cannot both
contain curves of length eight.

Claims 4.1–4.3 imply that if a transverse S intersects the 2-skeleton
only in normal and simple curves, then S ∩ (2-skeleton) consists of normal
curves of lengths 3 and 4, simple curves and possibly one normal curve of
length 8.

Claim 4.4. There exists a transverse 2-sphere in the first thick region of F
which intersects the 2-skeleton entirely in normal arcs and simple curves.
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Proof. This is a straightforward application of [2], Lemma 4.4. The idea
is as follows: we can assume a transverse 2-sphere S′ at the top of the
thick region, i.e. immediately below a maximum of T0, cuts off a boundary
compressing disk, lying above S′, in a face of one of the tetrahedra. This
is an upper disk for S′. Similarly a transverse 2-sphere S′′ immediately
above the minimum occurring at the bottom of the thick region cuts off a
boundary compressing disk in a face which lies below S′′, forming a lower
disk for S′′. Because T0 is in thin position, we never see upper and lower
disks for a transverse S which are disjoint or which intersect at a single
point in S ∩ T0; hence somewhere between S′ and S′′ we can find an S
with no upper or lower disks contained in the faces of the tetrahedra. This
S intersects the 2-skeleton in normal arcs and simple curves.

By Claims 4.1–4.3, this sphere S intersects the boundary of each tetrahe-
dron in simple curves, normal curves of length three and four, and possibly,
on one tetrahedron, a single curve of length eight.

If S ∩ ∂H indeed contains a curve of length eight for some H, we are
done; simply compress S as much as possible (to both sides, in several
steps) along simple curves and disks interior to the tetrahedra. The re-
sulting collection of 2-spheres will all be normal, with the exception of the
component containing the curve of length eight. This will be the desired
almost normal 2-sphere.

Claim 4.5. S ∩ ∂H contains a normal curve of length eight for some H.

Proof. Suppose not. Then compressing S as much as possible, as described
above, yields a collection of normal 2-spheres. Since the only normal 2-
sphere in M0 is ∂M0, S is n copies of ∂M0 connected by tubes. The tubes
may run through each other. We aim to show that this is impossible.

Case 1: Suppose S consists of two copies of ∂M0 tubed together. Recall,
however, that S is boundary compressible above. Let D be a meridian disk
of the single tube. D lies above S. By an outermost arc argument, there
exists a boundary compressing disk for S disjoint from D. But then there
exists a boundary compressing disk for one of the two copies of ∂M0, a
contradiction.

Case 2: S consists of n > 2 (nested) copies of ∂M0 connected by tubes.
Beginning with the outermost copy of ∂M0, we can number the copies
of ∂M0. Let R be the third copy of ∂M0. Let P be the piece of R which
is coincident with S. P is a connected planar surface (see figure 9). We
will construct a new and thinner foliation on M0.

Since R is parallel to ∂M0, all the arcs exterior to R are parallel, say to
a single arc α, and connect R to ∂M0. Imagine that all the arcs exterior
to R are contained in a thick copy of the arc α. Since P is a subsurface
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Figure 9

of the level sphere S, we can connect ∂M0 to P ∩ α via an arc β which
intersects each 2-sphere in the foliation at most once. Now let K = n(P ∪
(arcs interior to R)), and apply Corollary 3.1 to replace α with β via a
homeomorphism h of M0. The original foliation F now describes a new
foliation F̃ with respect to h(T0) in M0 − (point), with the properties:

(1) width(arcs interior to R with respect to F )= width(arcs interior
to R with respect to F̃ .)

(2) The arcs exterior to R contribute nothing to the width of h(T0).
Since any arc exterior to R contributed at least two to the width of T0

with respect to F , h(T0) is thinner with respect to the foliation F̃ .

This completes the proof of Lemma 4.

5. Finding almost normal 2-spheres

Fix a tetrahedron H in M , and fix a normal curve c of length eight on
the boundary of H (there are three choices for c). We modify standard
normal surface theory algorithms to search for an almost normal 2-sphere
S with octagonal component bounded by c.

Let Z be a finite system of linear equations such that a positive integral
solution to Z corresponds to a (possibly immersed) surface F , where, ex-
cept in H, F is composed of normal triangles and quadrilaterals. In H, F is
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composed of normal triangles and octagonal components with boundaries
parallel to c. Just as for normal surfaces, there exists a finite collection
F1, F2, . . . , Fn of fundamental solutions to Z. Any solution to Z can be
written as a finite sum of fundamental solutions, where the addition oper-
ation is a regular alteration (a double-curve sum, where the the direction
of the sum is chosen to ensure the resulting surface will be normal) along
curves of intersection. We would like to show that if M contains an al-
most normal 2-sphere, then one of the Fi’s is an almost normal 2-sphere.
Since we can find the Fi’s algorithmically (see [4],[6]), this would finish the
problem, provided we repeat the search procedure for each normal curve
of length eight in each tetrahedron.

Unfortunately this doesn’t quite work; we will use in addition the obser-
vation that we need only search for almost normal 2-spheres lying in M0.

Lemma 5. If there exists an almost normal 2-sphere S in M0 then there
exists one which is a fundamental solution to Z.

Proof. We note :

(1) Recall that H1(M ; Z2) is trivial, hence M contains no closed non-
orientable surfaces.

(2) Euler characteristic is additive under the addition operation.

Let S be an almost normal 2-sphere in M0. If S is not a fundamental
solution to Z, then it can be written as the sum of fundamental solutions,
so S = G1 + G2 + · · · + Gk, where each Gi is a fundamental solution
to Z. One of the Gi’s is an almost normal surface and the rest are normal
surfaces. Since S lies in M0, each of the Gi’s also lies in M0. By notes 1
and 2, at least one of the Gi’s, say G1, is a 2-sphere. If it is an almost
normal 2-sphere, we are done. If not, it is a normal 2-sphere, hence parallel
to ∂M0.

There exists an isotopy i of M0, preserving the normal structure or
almost normal structure of the Gi’s, such that i(G1) is disjoint from i(G2∪
· · · ∪ Gk). To see the isotopy, in each tetrahedron, simply push the pieces
of G2 ∪ · · · ∪ Gk into M0 disjoint from the (2-sphere) × I bounded by G1

and ∂M0.
Since i doesn’t change the normal or almost normal structure of G1 or

G2 ∪ · · · ∪ Gk,

G1 + G2 + · · · + Gk = i(G1) + i(G2) + · · · + i(Gk).

But i(G1)+ i(G2)+ · · ·+ i(Gk) is not a connected surface. Hence S cannot
be written as a non-trivial sum of solutions to Z, hence S must be a
fundamental solution to Z.
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