
Linear Systems

MAT 67L, Laboratory II

Contents

Instructions 1
Linear Systems 1
Entering matrices and vectors in MATLAB 2
Solving linear systems 3
Gaussian Elimination 4
Reduced row echelon form in MATLAB 4
Problems 5

Instructions

(1) Read this document.
(2) The questions labeled “Experiments” are not graded, and should not be turned

in. They are designed for you to get more practice with MATLAB before you start
working on the programming problems, and they reinforce mathematical ideas.

(3) A subset of the questions labeled “Problems” are graded. You need to turn in
MATLAB M-files for each problem via Smartsite. You must read the “Getting started
guide” to learn what file names you must use. Incorrect naming of your files will
result in zero credit. Every problem should be placed is its own M-file.

(4) Don’t forget to have fun!

Linear Systems

Linear systems amounts to the study of functions

f : Rn −→ Rm

subject to the linearity property

f(αx+ βx′) = αf(x) + βf(x′) .

Here α and β are real numbers and x, x′ are points in Rn while the addition rule is the
usual componentwise one. To check your understanding, ask yourself what sort of objects
f(x) and f(x′) are? The classic linear systems problem is to solve

f(x) = y

for the vector x given the vector y.
For example consider f : R3 −→ R2 given by

f(x1, x2, x3) = (2x1 − x2, x1 + x2 + x3) .
1

2

and
y = (1,−1) .

Lets try to solve f(x) = y. For that we need to write our two equations (because both
f(x) and y live in R2):

(1)

{
2x1 − x2 = 1

x1 + x2 + x3 = −1 .

We could now solve these by hand using substitution or Guassian elimination. However,
once the number of equations and variables becomes larger, it is better to use our friend
MATLAB. For that we first rewrite our system in terms of MATrices!

The information of our example linear system (1) is encoded by the coefficients of
x1, x2, x3 on the left hand sides of the equations which we can arrange in a rectangular
array, or matrix

M :=

(
2 −1 0

1 1 1

)
and the vector y on the right hand side which we write as a column vector

y :=

(
1

−1

)

It is common to think of the unknowns x1, x2, x3 also as a column vector x :=

x1x2
x3

 and

rewrite our equation as (
2 −1 0

1 1 1

)x1x2
x3

 =

(
1

−1

)
.

(The juxtaposition of a 2×3 matrix and a 3×1 column vector denotes matrix multiplication
and is defined exactly so as to produce a 2 × 1 column vector whose entries are precisely
the left hand sides of the pair of equations in (1)).

Entering matrices and vectors in MATLAB

Lets solve for x for Mx = y using MATLAB. First, we need to type M and y into MATLAB.
We enter matrices and vectors by placing the numbers between the “[” and “]” symbols.
Rows are separated semicolons and columns are separated by spaces or commas.

>> M=[2 −1 0 ; 1 1 1]

M =

2 −1 0
1 1 1

3

>> y=[1; −1]

y =

1
−1

Solving linear systems

First let us solve this system the “easy” way. Type:

>> x=M\y

x =

0
−1
0

Hence M(0,−1, 0)T = y. But the story is not over. Is the solution unique? Next type

>> nu l l (M)

ans =

−0.2673
−0.5345
0 .8018

The null command returns an orthonormal basis for the null space of M. This means M
times a null space vector should give zero. Hence we can add a null space vector to our
x vector and still get a solution for y. Type the above null space vector in MATLAB into a
variable called z

>> M∗(x + z)

ans =

0.9999
−1.0000

Hence (0,−1, 0)T + (−0.2673,−0.5345, 0.8018)T is another solution. This is expected
because two equations with three unknowns is not expected to have a unique solution.

In the following sections we will solve this system again in a different way that will give
us more information about its solution space.

4

Gaussian Elimination

Many of you probably already have seen how to solve a linear system using Gaussian
elimination. If not, watch this short video

http://www.math.ucdavis.edu/~linear/67/videos/chapter1_RREF.mp4

For our example system (1) we would begin with an augmented matrix and then perform
row operations to achieve reduced row echelon form:(

2 −1 0 1

1 1 1 −1

)
∼ · · · ∼

(
1 0 1

3
0

0 1 2
3
−1

)
In this display, the · · · represent a bunch of row operations which would be laborious if
performed by hand. Your friend MATLAB can help.

Reduced row echelon form in MATLAB

First make an augmented matrix called A from the matrix M and the right-hand-side
vector y. Then type the command “rref” to row reduce the matrix A

>> A=[M y]

A =

2 −1 0 1
1 1 1 −1

>> format ra t
>> r r e f (A)

ans =

1 0 1/3 0
0 1 2/3 −1

The “format rat” command forces MATLAB to print fractions. If you want decimal nota-
tion, type “format short”.

Hence the solution is:

x1 = 0− 1/3x3

x2 = −1− 2/3x3

x3 = anything

Or in vector notation x1x2
x3

 =

 0
−1
0

+ w

−1/3
−2/3

1

 ,

http://www.math.ucdavis.edu/~linear/67/videos/chapter1_RREF.mp4

5

where w is any number. Notice that solving the system with the “rref” command, we can
easily find all solutions. Also the vector (−1/3,−2/3, 1)T is a scalar multiple of the null
space vector we found above.

Lets do another example that will help with the problems below. Let A defined below
and use MATLAB’s “rref” command. We want to find all x vectors such that Ax = 0.

(2) A =


16 80 −73 −16 −45
18 90 −117 −18 −39
2 10 −98 −2 24
18 90 −243 −18 3
12 60 −219 −12 21

 ; rref(A) =


1 5 0 −1 −13/3
0 0 1 0 −1/3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Solving for x1 and x3 we get x1 = −5x2 + x4 + 13/3x5 and x3 = 1/3x5. Or in vector

notation 
x1
x2
x3
x4
x5

 = x2


−5
1
0
0
0

+ x4


1
0
0
1
0

+ x5


13/3

0
1/3
0
1


Hence any linear combinations of these vectors will be mapped to 0 by A

Problems

Problem 1.
Given a matrix A and vector b, find the number of solutions x for Ax = b. The function

will return 1 if there is a unique solution, 0 if there are no solutions, and -1 if the solution
is not unique. The function signature is

%Input
% A: m x n matrix
% b : m x 1 vec to r
%Output
% p : number o f s o l u t i o n s .
% 1 : the re i s a unique s o l u t i o n
% 0 : the re i s no s o l u t i o n
% −1: the re are i n f i n i t l y many s o l u t i o n s .
f unc t i on [p] = ls_numberSolutions (A , b)

code here

end

6

Problem 2.
Given a (maybe not square) matrix A, find A−1 without using the MATLAB command

“inv”. If you use “inv” that is cheating! If the inverse does not exist, return the empty
list. The function signature is

%Input
% A: n x m matrix
%Output
% Ainv : Aˆ−1 i f t h i s ex i s t , o therw i s e [] .
f unc t i on [Ainv] = ls_inverse (A)

code here

end

Hints:

(1) Use “rref” on a the matrix [A B] where B is a special matrix.
(2) Non-square matrices are not invertible
(3) the i, j entry of a matrix in MATLAB is A(i, j). The ith row is A(i, :), and the jth

column is A(:, j).

Problem 3.
The goal of this problem is to solve Ax = b for x, where A is a general m × n matrix.

The answer should be an empty list if no solution exist, an n−vector if there is one unique
solution, and a n× (1+k) matrix if the system is under determined where the first column
(x(p)) is a particular solution to Ax(p) = b, and the other k columns (x(n)) are linearly
independent null space vectors (that is Ax(n) = 0).

You are not allowed to use MATLAB’s “null” function or your “ls numberSolutions” func-
tion. You should use MATLAB’s “rref” function, and then do a bunch of “if” and “for-loop”
analysis on the resulting matrix to build up the answer.

The function signature is

%Input
% A: m x n matrix
% b : m x 1 vec to r
%Output
% ansMatrix :
% [] i f the re i s no s o l u t i o n
% column vector i f the re i s a unique s o l u t i o n
% e l s e a matrix in the form [x , n1 , n2 , . . . , nk] :
% where Ax=b , Ani=0 f o r i=1 to k .
% The s e t {n1 , . . . , nk} are l i n e a r l y independent .
%Example
% see below
func t i on [n] = ls_findSolutions (A , b)

code here

end

Consider example (2) of solving Ax = 0 (here b = 0). The particular solution is the zero
vector, and the null space vectors are the ones computed in that example. If your MATLAB

7

function is given “ls findSolutions(A, 0),” the output should be
0 −5 1 13/3
0 1 0 0
0 0 0 1/3
0 0 1 0
0 0 0 1


Problem 4.

A permutation matrix is a matrix where every row and column has exactly one 1 in it
and all the outher elements are zero.

For example,

P =

1 0 0
0 0 1
0 1 0


is a 3×3 permutation matrix. Note that P 1 6= I but P 2 = I. The smallest positive integer
k such that P k = I is called the order of the permutation matrix P .

Write a function to find the order of a n×n permutation matrix. The function signature
is

%Input
% A: n x n permutation matrix
%Output
% x : order o f the permutation matrix .
%Example
% ls permutat ionOrder ([1 0 ; 0 1]) g i v e s 1
func t i on [x] = ls_permutationOrder (P)

code here

end

Hint: MATLAB’s “eye” and “size” functions may be used.

8

Problem 5.
Consider the purmutation patrix P

P =


0 0 1 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 .

Notice that Pe1 = e2, Pe2 = e3, Pe3 = e1, Pe4 = e5, Pe5 = e4 where ei is the ith standard
basis vector in R5. We say (1, 2, 3) is a 3-cycle because P can be identified with mapping
1 to 2, 2 to 3, and 3 back to 1. Likewise, (4, 5) is a 2-cycle.

Let an arbitrary permutation matrix have k1 many 1-cycles, k2 many 2-cycles, . . . , and kn
many n-cycles. The cycle type of the permutation matrix is the row vector (k1, k2, . . . , kn).
For the example above, the cycle type is (0, 1, 1, 0, 0)

Write a function to find the cycle type vector of a n × n permutation matrix. The
function signature is

%Input
% A: n x n permutation matrix
%Output
% t : c y c l e type vec to r .
%Example
% f o r the permutation example above , the output i s (0 , 1 , 1 , 0 , 0)
func t i on [t] = ls_cycleType (P)

code here

end

	Instructions
	Linear Systems
	Entering matrices and vectors in MATLAB
	Solving linear systems
	Gaussian Elimination
	Reduced row echelon form in MATLAB
	Problems

