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Question 1
Definitions:
Let V' be a vector space over F. Define the following:

(i) The vectors vy, ... v, are linearly independent.
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(ii) The vectors (vy, ..., v,) are a basis for V.
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Counting bit bases:
Consider the vector space V = Z; over Z, . In the following include a brief
Justification for each answer.
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(b) Which element of Zj is never a basis vector?
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(c) Suppose you are given a basis for Z;l whose first basis vector is f;, how
many choices remain for the second basis vector f,?
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To be continued...
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(d) Suppose your basis now includes f; and f,. How many choices are there
for the third basis vector f;?
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(e) Suppose your basis now includes f,, f; and f3. How many choices are there
for the fourth basis vector f;?
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(f) How many (ordered) bases are there for Z;?

o (272)e (372 x s x (202"

= (™) 2.L"T) X ) x e x 20T (2m1)

i =n _
nee = 2 T [2na) (27T a) - (24)

/\-ic(" i
R

(n-l)f)

2 T

\|
=5

¢
\



Question 2

Definition:
Define what it means for a knea#map to be injective:

Jo) = fol = Fu=v

Application:
Let V and W be vector spaces over F, and suppose that T_e€ L(V,W) is
injective. Given linearly independent vectors vy,...,v, in V' pr disprove

that the vectors T'(vy), ..., T(v,) are linearly independent in W',
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Question 3
Definition:

Define what it means for two vector spaces to be isomorphic.
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Application: :
Let Ry := (0, 00) and define

@:Ri—)R+ and @:RXR+_)R+,
by
uUPv=uv and 2@ v =",

(i) Show (R, ®, R, @) is a vector space.
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(ii) Prove that the vector spaces (R, d, R, ®) and (R, +.R,.)

are isomor-
phic. Hint: Try a constructive proof by choosing a spec.:l invertible SJunc-
tionR — R,.
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