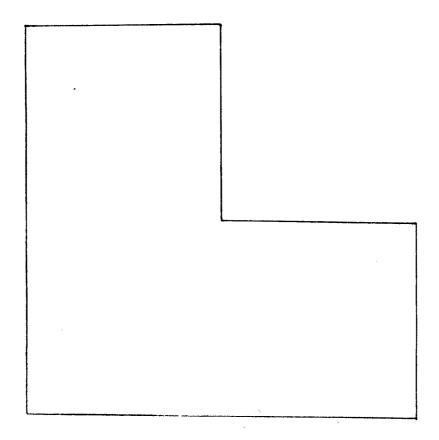
Math 21D

Vogler

Discussion Sheet 5

- 1.) Show that the curve plotted by projectile motion, $\vec{r}(t) = (|\vec{v}_0| \cos \alpha \cdot t)\vec{i} + (|\vec{v}_0| \sin \alpha \cdot t (1/2)gt^2)\vec{j}$, is a parabola in the *xy*-plane.
- 2.) Show that the maximum downrange distance for projectile motion with a given initial speed $|\vec{v}_0|$ occurs when $\alpha=45^o$ and is $x=\frac{|\vec{v}_0|^2}{g}$ (Hint: See formula III on Projectile Motion Handout.).
- 3.) Consider path C plotted by vector function $\vec{r}(t) = t \vec{i} + \sqrt{t} \vec{j}$ for $0 \le t \le 9$.
 - a.) Sketch C.
 - b.) Find $\vec{v}(t)$, $\vec{T}(t)$, $\vec{N}(t)$, and $\vec{a}(t)$.
- c.) Plot $\vec{r}(1), \vec{v}(1), \vec{T}(1), \vec{N}(1),$ and $\vec{a}(1)$. Also compute the speed and acceleration of motion when t=1.
- 4.) Let $\vec{r}(t) = (12\sin t) \vec{i} + (-12\cos t) \vec{j} + (5t) \vec{k}$ be a position vector function.
 - a.) Determine the position vector when
 - i.) t = 0 ii.) $t = 7\pi/6$
- b.) Write t as a function of arc length s. Write $\vec{r}(t)$ as a function of arc length s, i.e., write $\vec{r}(t) = \vec{r}(t(s))$.
 - c.) Determine the position vector when
 - i.) s = 0 ii.) $s = 39\pi$
- 5.) Determine the length of path C determined $\vec{r}(t) = (\cos^3 t) \ \vec{i} + (\sin^3 t) \ \vec{j}$ for $0 \le t \le 2\pi$.
- 6.) Evaluate the following line integrals.

a.)
$$\int_C 2x \ ds$$
 , $\vec{r}(t) = (1/2)t^2 \ \vec{i} + (1/4)t^4 \ \vec{j}$ for $0 \le t \le 2$


b.)
$$\int_C \sqrt{x^2 + z^2} \ ds$$
, $\vec{r}(t) = (2\cos t) \ \vec{j} + (2\sin t) \ \vec{k}$ for $\pi \le t \le 2\pi$

c.)
$$\int_C 3xyz \ ds$$
 , $\vec{r}(t) = t \ \vec{i} + 2t \ \vec{i} - t \ \vec{j}$ for $0 \le t \le 4$

- 7.) A spring lies on the path determined by $\vec{r}(t) = (\sin t) \ \vec{i} + (\cos t) \ \vec{j} + (2/3)t^{3/2} \ \vec{k}$ for $0 \le t \le 4\pi$. Sketch the wire and find it's length.
- 8.) Find the area of the vertical wall sitting on the xy-plane on the line y=2x from x=0 to x=4, if the height of the wall at the point (x,y) is xy^2 .
- 9.) A wire lies on the path determined by the helix $\vec{r}(t) = \cos t \ \vec{i} + \sin t \ \vec{j} + t \ \vec{k}$ for $0 \le t \le 2\pi$. It's density at point (x, y, z) is given by $\delta(x, y, z) = xy + z + 3$. Compute the
 - a.) length of the wire.
 - b.) mass of the wire.
 - c.) x-coordinate for its center of mass.
 - d.) z-coordinate for its centroid.
 - e.) moment of the wire relative to the plane y = 1.
 - f.) moment of inertia of the wire about
 - i.) the origin
- ii.) the z-axis

THE FOLLOWING PROBLEM IS FOR RECREATIONAL PURPOSES ONLY.

10.) Divide the following figure into 4 parts each of the same size and shape.

