Math 21D Vogler

Discussion Sheet 7

- 1.) Show that each vector field is conservative. Then evaluate the work integral $\int_C \vec{F} \cdot \vec{T} \, ds$ for each along the given path C.
 - a.) $\vec{F}(x,y)=(2xy)\ \vec{i}+(x^2+y^3)\ \vec{j}$, where C: curve $y=x^3(x-1)^2$ for $-1\leq x\leq 2$
 - b.) $\vec{F}(x,y) = (\sin y) \vec{i} + (x \cos y + 3) \vec{j}$, where C: ellipse $(\frac{x}{2})^2 + (\frac{y}{3})^2 = 1$
 - c.) $\vec{F}(x,y)=(2x)\;\vec{i}+(2yz^2)\;\vec{j}+(2y^2z)\;\vec{k}$, where C : any path from (0,0,0) to (2,3,4)
- 2.) Use Green's Theorems (Theorem 1, 2, or 3 from class) to evaluate each line integral.
 - a.) $\int_C \vec{F} \cdot \vec{n} \ ds$, where $\vec{F}(x,y) = (3x) \ \vec{i} + (2y) \ \vec{j}$ and C: circle $x^2 + y^2 = 1$
- b.) $\int_C (xy)dy (x^2y)dx$, where C: rectangle with vertices (0,0), (3,0), (3,2), and (0,2)
- c.) $\int_C \vec{F} \cdot \vec{T} \ ds$, where $\vec{F}(x,y) = (\cos(x+y)) \ \vec{i} + (\sin(x+y)) \ \vec{j}$ and C: triangle with vertices (0,0), (3,0), and (0,4)
- d.) $\int_C (xy)dx + (e^x)dy$, where C: line segment joining (0,0) to (2,0), then the curve $y = 2x x^2$ from (2,0) to ((0,0)
- e.) $\int_C \vec{F} \cdot \vec{n} \, ds$, where $\vec{F}(x,y) = (x-y) \, \vec{i} + (x^2-2y) \, \vec{j}$ and C is given in the diagram below. Assume that the top edge of path C is y=k, an unknown constant greater than 1, and that the area of the shaded region is 10: (HINT: Use Green's Theorem 3.)

3.) Use the fact that the area of region R enclosed by loop C is given by

Area of
$$R = (1/2) \int_C (x)dy - (y)dx$$

to find the area inside the ellipse $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$.

"He who is not courageous enough to take risks will accomplish nothing in life." – Muhammad Ali, former world heavyweight boxing champion