Math 17A

Vogler

Recursions, Sequences, Fixed Points, and Limits

EXAMPLE: The following recursions and inital values determine a sequence. Find a_n for n = 1, 2, 3, 4, 5.

1.)
$$a_{n+1} = 2a_n + 3$$
, $a_0 = -1$
 $a_1 = 2a_0 + 3 = 2(-1) + 3 = 1$,
 $a_2 = 2a_1 + 3 = 2(1) + 3 = 5$,
 $a_3 = 2a_2 + 3 = 2(5) + 3 = 13$,
 $a_4 = 2a_3 + 3 = 2(13) + 3 = 29$,
 $a_5 = 2a_4 + 3 = 2(29) + 3 = 61$. Hence $\lim_{n \to \infty} a_n = \infty$ (DNE).

2.)
$$a_{n+1} = 2a_n + 3, a_0 = -3$$

 $a_1 = 2a_0 + 3 = 2(-3) + 3 = -3,$
 $a_2 = 2a_1 + 3 = 2(-3) + 3 = -3,$
 $a_3 = 2a_2 + 3 = 2(-3) + 3 = -3,$
 $a_4 = 2a_3 + 3 = 2(-3) + 3 = -3,$
 $a_5 = 2a_4 + 3 = 2(-3) + 3 = -3$. Hence $\lim_{n \to \infty} a_n = -3$.

DEFINITION: Let $a_{n+1} = f(a_n)$, $a_0 = L$, for $n = 1, 2, 3, 4, \cdots$ be a recursion and initial value which determines a sequence. The initial value L is called a fixed point for the recursion if all successive values of a_n are equal to L, i.e., if L = f(L).

NOTE:

- I.) The number -3 is a fixed point for the previous example.
- II.) The initial value is sometimes critical in determining if the sequence converges or diverges.
- III.) A fixed point represents a potential limit for the sequence generated by the recursion and its initial value.
 - IV.) Every limit of an associated sequence is a fixed point for the recursion.

EXAMPLE : Find all fixed points for each recursion.

1.)
$$a_{n+1} = (1/2)a_n - (3/4)$$

$$2.) \ a_{n+1} = \frac{2}{a_n - 1}$$

$$3.) \ a_{n+1} = \frac{a_n^2}{a_n^2 - 12}$$

$$a_{n+1} = \frac{2}{a_n - 1}$$

n	a{n}		n	a{n}		n	a{n}	
0	5.0000	0.5000	0	-10.0000	-0.1818	0	2.0000	2.0000
1	0.5000	-4.0000	1	-0.1818	-1.6923	1	2.0000	2.0000
2	-4.0000	-0.4000	2	-1.6923	-0.7429	2	2.0000	2.0000
3	-0.4000	-1.4286	3	-0.7429	-1.1475	3	2.0000	2.0000
4	-1.4286	-0.8235	4	-1.1475	-0.9313	4	2.0000	2.0000
5	-0.8235	-1.0968	5	-0.9313	-1.0356	5	2.0000	2.0000
6	-1.0968	-0.9538	6	-1.0356	-0.9825	6	2.0000	2.0000
7	-0.9538	-1.0236	7	-0.9825	-1.0088	7	2.0000	2.0000
8	-1.0236	-0.9883	8	-1.0088	-0.9956	8	2.0000	2.0000
9	-0.9883	-1.0059	9	-0.9956	-1.0022	9	2.0000	2.0000
10	-1.0059	-0.9971	10	-1.0022	-0.9989	10	2.0000	2.0000
11	-0.9971	-1.0015	11	-0.9989	-1.0005	11	2.0000	2.0000
12	-1.0015	-0.9993	12	-1.0005	-0.9997	12	2.0000	2.0000
13	-0.9993	-1.0004	13	-0.9997	-1.0001	13	2.0000	2.0000
14	-1.0004	-0.9998	14	-1.0001	-0.9999	14	2.0000	2.0000
15	-0.9998	-1.0001	15	-0.9999	-1.0000	15	2.0000	2.0000
16	-1.0001	-1.0000	16	-1.0000	-1.0000	16	2.0000	2.0000
17	-1.0000	-1.0000	17	-1.0000	-1.0000	17	2.0000	2.0000
18	-1.0000	-1.0000	18	-1.0000	-1.0000	18	2.0000	2.0000
19	-1.0000	-1.0000	19	-1.0000	-1.0000	19	2.0000	2.0000
20	-1.0000	-1.0000	20	-1.0000	-1.0000	20	2.0000	2.0000
21	-1.0000	-1.0000	21	-1.0000	-1.0000	21	2.0000	2.0000
22	-1.0000	-1.0000	22	-1.0000	-1.0000	22	2.0000	2.0000
23	-1.0000	-1.0000	23	-1.0000	-1.0000	23	2.0000	2.0000