Math 17A Vogler

Intermediate Value Theorem (IMVT): Let f be a continuous function on the closed interval [a, b]. Let m be any number between f(a) and f(b). Then there is at least one number c in [a, b] which satisfies

When applying the IMVT to a problem, the following five steps must be clearly established:

- 1. Define a function f.
- 2. Define a number m.
- 3. Establish that f is continuous.
- 4. Choose an interval [a, b].
- 5. Indicate that m is between f(a) and f(b).

Once these five steps have been established, the conclusion of the IMVT can be invoked.

Table for Bisection Method

Let $f(x) = x^3 + x - 4$. Goal: Find f(x) = 0 for x in [1,2]up to 2 decimal places.

а	b	1/2(a+b)	f(a)	f(b)	f(1/2(a+b))
ante f actoria	2	1.500	2.000	6.000	0.875
1	1.5	1.250	-2.000	0.875	-0.797
1.25	1.5	1.375	-0.797	0.875	-0.025
1.3756	1.5	4.438	-0.025	0.875	0.408
1.875	1.438	1.407	-0.025	0.412	0.189
1.375	1.407	1.391	-0.025	0.192	0.082
1.375	1.391	1.383	-0.025	0.082	0.028
1,375	1.383	1.379	-0.025	0.028	0.001
1.375	1.379	1.377	-0.025	0.001	-0.012

Note: The shaded region represents the choice of new interval in the bisection method.

Conclude: $x \approx 1.37$ is such that f(x) = 0.