NIINH [} 1
independent.

I/R

N,

Figure 2.7 The graph of the
parent-offspring ratio N—"": asa
function of N, when N, > 0,
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offspring, regardless of the current population density. Such growth is called density

When R > 1, itfollows that 1/ R, the parent-offspring ratio, is less than 1, imply-
ing that the number of offspring exceeds the number of parents. Density-independent
growth with R > 1 results in an ever-increasing population size. This model eventu-
ally becomes biologically unrealistic, since any population will sooner or later expe-
- rience food or habitat limitations that will limit its growth. (We will discuss models
that include such limitations in Section 23)

The density independence in exponential growthis reflected in a graph of N, /N
as a function of N,, which is a horizontal line at level 1/R (Figure 2.7).

As before, only a selected number of points are realized on the graph of N,/ N,

as a function of N, and time is implicit in the graph. (See Figure 2.8, with R = 2 and

No=1)

0.6

0.5

N(@BING+1)

0 ;

0 S

Figure 2.8 The graph of the parent-offspring ratio

N =1land R =2

 Section 2.1 Problems

In Problems 14, produce a table fort = 0,1,2,...,5and graph
the function N,.

LN=3% 2N =10-2
LN = %?- 4. N, = (0.3)(0.9)

In Problems 5-10, give a formula forN(),t =0,1,2,..., on the
basis of the information provided.

S. Ny = 2; population doubles every 20 minutes; one unit of time
is 20 minutes

6. Ny =4; population doubles every 40 minutes; one unit of time
is 40 minutes
7. No = 1; population doubles every 40 minutes; one unit of time

is 80 minutes

8. Ny =6; population doubles every 40 minutes; one unit of time
is 60 minutes

9. Ny = 2; population quadruples every 30 minutes; one unit of
time is 1S minutes

10. Ny = 10; population quadruples every 20 minutes; one unit
of time is 10 minutes

L. Suppose N, = 20 . 4,1 =0,1,2,..., and one unit of time
corresponds to 3 hours, Determine the amount of time it takes
the poputation to double in size.

12, Suppose N, = 100 - 2t =0,1,2,..., and one unit of time
corresponds to 2 hours. Determine the amount of time it takes the
population to triple in size.

30 35
N

N"l’: as a function of N, when

A

/13. A strain of bacteria reproduces asexually every hour. That is,
every hour, each bacterial cell splits into two cells, If, initially, there
is one bacterium, find the number of bacterial cells after 1 hour, 2
hours, 3 hours, 4 hours, and 5 hours,

14. A strain of bacteria reproduces asexually every 30 minutes.
That is, every 30 minutes, each bacterial cell splits into two cells.
If, initially, there is one bacterium, find the number of bacterial
cells after 1 hour, 2 hours, 3 hours, 4 hours, and § hours,

15. A strain of bacteria reproduces asexually every 23 minutes.
That is, every 23 minutes, each bacterial cell splits into two cells,
If, initially, there is 1 bacterium, how long will it take until there
are 128 bacteria?

16. A strain of bacteria reproduces asexually every 42 minutes.
That is, every 42 minutes, each bacterial cell splits into two cells.
If, initially, there is | bacterium, how long will it take until there
are 512 bacteria?

17. A strain of bacteria reproduces asexually every 10 minutes.
That is, every 10 minutes, each bacterial cell splits into two cells.
If, initially, there are 3 bacteria, how long will it take until there
are 96 bacteria?

18. A strain of bacteria reproduces asexually every 50 minutes.
That is, every 50 minutes, each bacterial cell splits into two cells.
If, initially, there are 10 bacteria, how long will it take until there
are 640 bacteria?
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19. Find the exponential growth equation for a population that
doubles in size every unit of time and that has 40 individuals at
time 0.

20, Find the exponential growth equation for a population that
doubles in size every unit of time and that has 53 individuals at
time 0.

21. Find the exponential growth equation for a population that
triples in size every unit of time and that has 20 individuals at time
0

22. Find the exponential growth equation for a population that
triples in size every unit of time and that has 72 individuals at time
0.

23. Find the exponential growth equation for a population that
quadruples in size every unit of time and that has five individuals
at time 0.

24. Find the exponential growth equation for a population that
quadruples in size every unit of time and that has 17 individuals at
time 0.

28, Find the recursion for a population that doubles in size every
unit of time and that has 20 individuals at time 0.

26. Find the recursion for a population that doubles in size every
unit of time and that has 37 individuals at time 0.

27. Find the recursion for a population that triples in size e¢very
unit of time and that has 10 individuals at time 0.

28. Find the recursion for a population that triples in size every
unit of time and that has 84 individuals at time 0.

29, Find the recursion for a population that quadruples in size
every unit of time and that has 30 individuals at time 0.
30. Find the recursion for a population that quadruples in size

In Problems 31-34, graph the functions f(x) = a*, x € [0, 00),
and N, = R', t € N, together in one coordinate system for the
indicated values of a and R.

M.a=R=2 32.a=R=3
B.a=R=1/2 Mqa=R=1/3

In Problems 35-46, find the population sizes fort =0,1,2,...,5
for each recursion. :

38. Niyy = 2N, with Ng =3

37. Niyi = 3N, with No =2

39. Niy1 = 5N, with No =1

4L Ny = N, with Np = 1024
42 N,y = 3N, with Ny = 4096
43, Ny = iN, with Np =729
44, Noyy = 3N, with Ng = 3645
48. Ny = N, with Ng = 31250
46. Ny41 = N, with Np = 8192

36. N,yy = 2N, with Ng = §
38, N,y = 3N, with N = 7
40, N, = TN, with Np = 4

M 2.2 Sequences

In Problems 47-58, write N, as a function of t for each recursion.
47. Nyyy=2N, with N =15 48, Ny = 2N, with Ny =7
49. Ny =3N, with Ng =12 50, N,y =3N, with Np =3
51. Ny, = 4N, with Ny =24 52, N,y = 5N, with Ny = 17
53. Ny = 3N, with No = 5000

54, Nyy1 = 3N, with N = 2300

55. Ny1 = 3N, with No = 8000

56. N, = 3N, with No = 3500

§7. Nyyi = N, with No = 1200

58. N1 = iN, with Ng = 6400

In Problems 5966, graph the line N,y = RN, inthe N\-N, ., plane

for the indicated value of R and locate the points (N,, Ny44), t =0,
1, and 2, for the given value of Ny.

59. R=2,No=2 60. R=2,No=3
6. R=3,Ny=1 62. R=4,Ny=2
63 R=1,Ny=16 64, R=1,Ny=64
65. R =13, N; =81 66. R =1 No=16

N L N,
In Problems 67-74, graph the line Fn = RN the N"F,‘i‘, plane

for the indicated value of R and locate the points (N, F’:'j:), t =0,
1, 2, for the given value of Ny. Find the parent—offspring ratio.

67. R=2,Ny=12 68. R=2,No=4
69. R=3,No=2 0. R=4,Ny=1
TL R=1} No=16 72 R =3, No=128
73 R=1} Ny =27 74 R=1}No=64

75. A bird population lives in a habitat where the number of
nesting sites is a limiting factor in population growth. In which of
the following cases would you expect that the growth of this bird
population over the next few generations could be reasonably well
approximated by exponential growth?

(a) All nesting sites are occupied.

(b) The bird population just invaded the habitat, and the

population size is still much smaller than the available nesting
sites.

(c) In the previous year, a hurricane killed more than 90% of the
birds in this habitat.

76. Pollen records show that the number of Scotch pine
(Pinus sylvestris) grew exponentially for about 500 years after
colonization of the Norfolk region of Great Britain about 9500
years ago. Can you find a possible explanation for this growth?
T7. Exponential growth generally occurs when population growth

is density independent. List conditions under which a population
might stop growing exponentially.

A 2.2.1 What Are Sequences?

Before we explore other discrete-time population models, we need to develop further
the theory of functions with domain N. The functions are of the form

f:N—-R
n— f(n)
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In Problems 1-16, determine the values of the sequence {an} for

n 221
n=012...,5
La,=n
1
3 an = n+2
/e
\ 2S00 =
D fm) = (n+1y?
9 a, = (—1)n
2
11, a, = "
n+1

"ig.)f(n) =eV"

1y
18 7= (5)

Thus, aj is the same as ay, a, is the same as a; and hence ap, and so on.

The last two examples illustrate that fixed points are only candidates for limi
and that, depending on the initial condition, the sequence {a,} may or may not cot
verge to a given fixed point. If we know, however, that a sequence {a,} does converg
then the limit of the sequence must be one of the fixed points.

There is a graphical method for finding fixed points, which we will mention brief
here: If the recursion is of the form a, ., = 8(a,), then a fixed point satisfiesa = g(a
This suggests that if we graph y = g(x) and y = x in the same coordinate systen
then fixed points are located where the two graphs intersect, as shown in Figure 2.1

y A
15 4 ,
/ 9
e y = flx) ——
,II y=EX = -
10 - L ‘
rd
rd
5 <
P4
rd
r'd
P
”
r'd
O T 1 ¥ T -
0 5 10 15 20 «x

Figure 2.13 A grdphical way to find fixed points. (See text for

explanation.)

We will return to the relationship between fixed points and limits in Sectic
5.6, where we will learn methods that allow us to_determine whether a sequenc
converges to a particular fixed point.

Section 2.2 Problems

2, a, =3n?

1
@)re =
1

6. a, = \/n_-i-—f
@f(n) =,/n+4

-1
0. = oy

12, a, =n’/n+1

@4) F(n) = 3e~01n

@Bf(") =202

In Problems 17-24, find the next four values of the sequence (a,)

on the basis of the values of ay, ay, as, . . . as.
17. 1,2,3,4,5 18. 0,1.,/2, /3. /4
11 1 1 I 11 1
191, 5, -, —, — B I
l491625 2014 916 25
1 23435 I 4 9 16 25
l' o ~o—v~v— - —.0 ‘-—' —l Py Pyl
223456 22510172637

B. Jl+e V2+6, /316, faTd, 5+
24, sin’r sin = sin = in =, sin —
5> ~Sin =, sin =, —sin —, sin —
2 PR 810
In Problems 25-36, find an expression for a, on the basis of t
values of ag, ay, ay, .. ..

25.0,1,2,3,4,... 26. 0,2,4,6,8, ...

27. 1,2,4,8,16, ... 28. 1,3,5,7,9,...
111 1 12345

29 Loz = o, 2285
3'9°27°81 30357911

31 -1,2,-3,4,-5, ... 32. 2, 4,6, -8, 10, ...
11T 11 1 1 11 11

Boo—o o = = =2 e s, e e — L
23 45 6 342 8 18 32°50

35. sin(xr), sin(2rr), sin(3), sin(4n), sin(5x), ...

36. c:osE cosz 0 T d il

o 2" 3 C56.Cosg, coslo....
w222 v

In Problems 3744, write the first five terms of the sequence {a,

n=0123, ..., and findtim,_ _ a,
1 2
37 a, = 38, a, =
4 n+2 ¢ n+1
39. ﬂ,,='L— 40, a, = 2n
n+1 n+2
i
41, g, = —no 42 a, = !
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(=1 _ =1y R n+l) . (n+2)
Ba = W= / g Py " e \WT =4
In Problems 45-52, write the first five terms of the sequence lanh o lim 1y + LY 80. lim (37" 4_")
n=0,1,2,3,..., and determine whether lim,_, , a,, exists. 1fj<ze n—oc 2 o0
imit exists, find it. . -n 3-n
limit erlss.ﬁ2 e &4 _ 40 1 8L lim " +2 82 tim " +
45, ap = —— 26. ay = \ am"’ nmoo N neeo N
"Tn41 n+l -
2 : ’ u 223
47, a, = /n 48. a, =n
" n Problems 83-92, the sequence |a,} is recursively definec
1 In Probl 83-92, th {a,) ly defi l
49, a, =2" 50. a, = 3 Compute a, forn=1,2,...,5
1\ 83, g, =2a,,a0=1 84, a,4, =2a,,a00=3
51 a, =3" 52. a, = (3) 85 auy1 =3a,~2,a0=1 86, a4y =3a,-2,ay=2

Formal Definition of Limits: In Problems 53-64, lim, ,  a, = a. 87 gy =4—-2a,,a0=5 88, a,. =4~ 2a,,a
Find the limit a, and determine N so that \a, —a| < € forallrn > N

a i [
for the giv«;n value of €. 3 89. apyy = I +"an vag=1 90, a4 = a3 =
—- - = 3 = —, € = .02 1 5
83. a, ' € =0.01 54. a, n € M. dpy1 =a, + T, ag =1 92. ayy; =5a, — —,a5 =2 .
1 1 Qn n
§5. a, = e 0.01 56 a, = n2’ € = 0.001 In Problems 93-102, the sequence {a,} is recursively defined. Find
‘ — all fixed points of {a, ).
§7. ay = —=,€ =01 58, a,.'=—1—,€=0-05 pss-s8 clfnedp 1 e 14
ﬁ I B \/_ . se f;u,ag 93 a,. = ~a, +2 9, a,, = -a, + =
(=" (=) F’ 2 3 3
W59, a, = € =00V A VA OOD e 2 9 1 1
o ._"ll._u-—-—-v' - — I, - - ‘Pg.d 98, Apyp = —5-(1,, - g 96. Apyy = —Sa,, + Z
| 6L a, = —-——l, e.=0.01 62. a, = - = .05 W 4 ”
; nt " o 9. 4y = — 9. aroi = — .
! n _ ’ n n
| 63. ap = peaary ,e=0.01 64, a,.=;l-z—_-+_——1-,e_.001 ‘9,,((('.4. 5 3
99, g, = 5 100, a,; =
Formal Definition of Limits: In Prablems-65-70, use-the jformal ap+ a, —2
definition of limits to show thatlim _,  a, = a; thatis, find N such 101 a,.) = /5a, 102. a,4 = /7a, v
that for every € > 0, there exists an N such that \a, — a} < € In Problems 103-110, assume that Yim,_, _ a, exists. Find all ﬁxey
‘f’he_'!q?fef_'l,?, N o ' points of a,), and use a table or other reasoning to guess which
65. lim 1 =0 66. lim =0 fixed point is the limiting value for the given initial condition.
—~oo 1t oo B 1
T . 103. apy; = ~(ay +5), ap = 1
67, lim — =0 68. lim =0 2
noo0 n? n—»00 n? +1 104 1 ( 1
e dpy1 =2 | @ +-).ao=l
6. tim 21— 1 70. lim :’H=1 "3\ T
noo N n—vco 1 105. a,yy = /28,00 = 1
In Problems 71-82, use the limit laws to determine lim a, =: a.
n—s00 106. Apyy = 20", ap = 0
. 1 1 . 2 1 107. a,, = 2a,(1 —a,), a, = 0.1
L. lim (Z * ﬁ) 72. lim (n Ty 1) 108. a,41 = 2a,(1 — ), ap = 0
1 . 2n-3 1 4
7. lim ("+ ) 74. lim ( - ) 109. ) = = (a,, + —),a(,;—l
R—s00 n n-00 n 2 a,
241 3n? -5 1 9 ’
75. lim (" "“: ) 76. lim ( "nz ) 10. 0,y = 5 (a,, + a——),ao -1
n—»00 n—00 n

W 2.3 More Population Models

The material presented in this section will be revisited in Section 5.6. Section 2.3 can
be postponed until then.

An important biological application of sequences consists of models of season-
ally breeding populations with nonoverlapping generations where the population
size at one generation depends only on the population size of the previous gener-
ation. The exponential growth model of Section 2.1 fits into this category. We denote
the population size at time r by N(t) or N;,t = 0, 1,2,.... To model how the
population size at generation ¢ + 1 is related to the population size at generation
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A rectangle whose sides bear the golden ratio is called a golden rectangle; it
is thought to be the visually most pleasing proportion a rectangle can have. Golden
rectangles were known to the ancient Greeks, who used them to scale the dimensions
of their buildings (e.g., the Parthenon). Ratios of successive Fibonacci numbers can
be found in nature as well. For instance, the florets on plants such as the sunfiower
run in spirals, and the ratios of the number of spirals running in opposite directions
are often successive Fibonacci numbers. :

w 2.3.1

In Problems 1-6, assume that the population growth is described
by the Beverton—Holt recruitment curve with growth parameter R
and carrying capacity K. For the given values of R and K, graph
N,/ N+ as a function of N, and find the recursion for the Beverton—
Holt recruitment curve.

LR=2K=15
JR=15K=40
5. R=25K=9%

2L R=2,K=50

4. R=3,K =120

6. R=2,K =150

In Problems 7-12, assume that the population growth is described

by the Beverton—Holt recruitment curve with growth parameter R
and carrying capacity K. Find R and K.

2N, 3N,
s =—"" 8 Nyy= ——t
T Nw=17 N,/20 T2 40
1.5N, ZNI
\ = 10, Ny = — 0
> N = T30 S TENaS
4N, 5N, .
. = e——— 12. N T e——————
. N =y + N,/150 T IE N2

In Problems 13-18, assume that the population growth is described
by the Beverton--Holt recruitment curve with growth parameter R
and carrying capacity K. Find all fixed points.

4N, 3N,
. = 18 Ny = —t
3. Now 1+ N,/30 T IY N, /60
2N, 2N,
A =t _ 16, Npjy = —t__
15. New L+ N,/30 T TY N /100
3N, 5N,
N = 18 18 Mo = N

In Problems 19-24, assume that the Ppopulation growth iy described
by the Beverton~Holt recruitment curve with growth parameter R
and carrying capacity K. Find the population sizes fort = 1,2, .. .,
5 and find lim,_, ., N, for the given initial value No.

19. R=2,K=10,Ny =2 20 R=2,K=20,N;=5
2L R=3,K=15N; =1 22, R=3,K=30,N, =0

. R=4,K=40,Ny =3 24, R=4,K =20, Ny = 10
2232

In Problems 25-30, assume that the discrete logistic equation is used
with parameters R and K. Write the equation in the canonical form

Xip1 = rx (1 — x,), and determine r and x; interms of R, K, and
N,.

2. R=1,K =10
2. R=2K =15
29. R=25K =30

26. R=1,K =20
28. R=2,K=20
3. R=25K=50

Section 2.3 Problems

In Problems 31-34, we will investigate the advantage of dimension-
less variables.

31 (a) Let N, denote the population size at time ¢ and let
K denote the carrying capacity. Both quantities are measured
in units of number of individuals, Show that X = N/K is
dimensionless.

(b) Let M, denote the population size at time ¢ and let L denote
the carrying capacity. Assume that M, and L are measured in units
of 1000 individuals. Show that » = M,/L is dimensionless,

(¢) How are N, and M, related? How are K and L related?

(d) Use(c)tofind M, and L if there are 20,000 individuals at time
t and the carrying capacity is 5000.

(e) Show that, for the population size and the carrying capacity
in (d), x, = y,.

32. To quantify the spatial structure of a plant population, it
might be convenient to introduce a characteristic length scale.
This length scale might be characterized by the average dispersal

distanc.goithiplantnndenstudy..Assume» that the characteristic.-

length scale is denoted by L. Denote by x the distance of seeds
from their source. Define 7 = x/L.Find z if x = 100cm and
L = 50 cm, and show that z has the same value if x and L are
measured in units of meters instead.
33. Suppose a bacterium divides every 20 minutes, which we call
the characteristic time scale and denote by T. Let t be the time
elapsed since the beginning of an experiment that involves this
bacterium. Define z = t/T. Find zift = 120 minutes, and show
that z has the same value if f and T are measured in units of hours
instead.
34. The time to the most recent common ancestor of a pair
of individuals from a randomly mating population depends on
the population size. Let ¢ denote the time, measured in units of
generations, to the most recent common ancestor, and let T be
equal to N generations, where N is the population size of the
randomly mating population. Define ; = t/T. Show that z is
dimensionless and that the value of z does not change, regardless
of whether t and T are measured in units of generations or in units
of, say, years. (Assume that one generation is equal to n years.)
In Problems 3546, we investigate the behavior of the discrete
logistic equation

Xipt =rx(l —x,)
Compute x, fort =0,1,2, ..., 20 for the given values of r and x,,
and graph x, as a function of t.
35, r=2,x=02
3. r=2,x=09
39 r=31,x =05
41 r=31,x,=0.9
43 r =38,x =05
45. r = 3.8, x5 = 0.9

36. r=2,x,=0.1
B.r=2,x%=0

40. r =3.1, x5 = 0.1
2. r=31,x =0
44, r=381x=0.1
46. r =3.8,% =0




31233
In Problems 47-50, graph the Ricker’s curve

N,
Ny =Neexp{R[1 - ra

in the Ny-N,4, plane for the given values of R and K. Find the
points of intersection of this graph with the line N,,, = N,.

47. R=2, K =10 48. R=3,K =15

49 R=25K=12 50, R=4,K=20

In Problems 51-54, we investigate the behavior of the Ricker’s curve

N,
Ny =Neexp|{R(1- X

Compute N, fort = 1,2,...,20 for the given values of R, K, and
Ny, and graph N, as a function of t.

5. a) R=1,K=20,Ny=35
() R=1,K =20,Ny =10
(@ R=1,K=20,N, =20

5. (@ R=18,K=20,Ny=5
(b) R=18K=20,N, =10
() R=18K =20,Ny; =20
5. (8) R=21,K=20,Ny =5
(b)) R=21,K =20, Ny =10
(¢) R=21,K =20,Ny =20

d) R=1,K =20, Ny =0

M R=18,K=20,N; =0

@ R=21,K=20,N=0

| Chapter 2 Key Terms:
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54. (a) R=28K=20,Ny =5
(b) R=28,K =20,N, =10
(¢) R=28,K =20,N, =20
2234

55, Compute N, and N,/N,, fort =2,3,4,..., 20 when

(d) R=28,K=20,Ny=0

N1+! = N1 + Nl-l

with Ny = | and Ny = 1.
56, Compute N, and N,/N,_  fort =2,3,4,...,20 when

Niyt = N, + 2N,

with Ng = land Ny = 1.
57. In the text, an interpretation of the Fibonacci recursion

NH—I =N+ N/—l

is given. Use a similar example to give an interpretation of the
recursion

Ny = N+ 2Nl—l

58. In the text, an interpretation of the Fibonacci recursion
Niyi= N+ N,y

is given. Use a similar example to give an interpretation of the -
recursion

Ny =2N, + N QOM

P

Discuss the following definitions and 8. Sequence 17. Carrying capacity
concepts: 9. First-order recursion 18. Growth parameter

L Exponential growth 10. Limit 19. Discrete logistic equation
2. Growth constant 11. Long-term behavior 20. Nondimensionalization
3. Fixed point 12. Convergence, divergence 21. Periodic behavior

4. Equilibrium 13. Limit laws 22. Chaos

5. Recursion 14. Difference equation 23. Ricker’s curve

6. Solution 15. Beverton-Hblt recruitment curve 24. Fibonacci sequence

7. Density independence 16. Density dependence 25. Golden mean

F Chapter 2 Review Problems
In Problems 1-10, find the limits.

1, lim 2™ 2, lim 3"
= n—-»oo
3. lim 401 -4 4, lim
n-+00 ( ) n—»o00 1 + 2“"
5. lim a”" whena > 1 6. lima"when0 <a <1
A—soc0 n—00
2tn-6
7. lim 22+ D 8 lim 2 +n-°
n—oo N — 1 n-00 n—2
1
9, lim Y 10. lim 21
n-so+1 n—sco ﬁ

In Problems 11-14, write a, explicitly as a function of n on the basis
of the first five terms of the sequence a,, n =0, 1,2, ...

135709 . 261220 30
"2'4'6'8° 10 2'4 816" 32
123 4 5 123 4
s, = =, — 14 0,-,5,2, =
2'5°10'17° 26 3'4°5'6

15. Density-Dependent Growth The Beverton-Holt recruit-
ment curve is given by the recursion

RN,
1+ 21y,

where R > 1and K > 0. When N, > 0, lim,_,,, N = K for all
valuesof R > 0. To investigate how R affects the limiting behavior
of Ny, find N, fors = 1,2,3,...,10 for K = 100 and Np = 20
when (8) R = 2, (b) R = 5,and (¢) R = 10, and plot N, as a
function of ¢ for the three choices of R in one coordinate system.

N'+| =

In Problems 16-18, we discuss population models when the
population size at time t + | depends not only on the population

size at time 1, but also on the growth conditions at time 1, which may
vary over time.

6. Temporally Varying Environment The recursion

NI+I = RN,
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describes growth in a temporally varying environment if we
interpret R, as the growth parameterin generationt. A population
was followed over 10 years and the population sizes were recorded
each year. Use the data provided to find R, for t = 0,1,2,...,9

N;

10
- 155
15.6
10.8
15.6
322
95.1
103.2
165.0
418.7
15.7

=3 --REE N NV, I N R SRR B

=)

17. Temporally Varying Environment The recursion
NH—l = R:Nr

describes growth in a temporally varying environment if we
interpret R, as the growth parameter in generations. A population
was followed over 20 years and the population sizes were recorded
every year. The following table provides the population size data
and the inferred values of R, for each of the 20 years:

t . Ny « Rg-v
0 10.0 2,78
1 278 0.29
2 8.10 0.43
3 3.49 0.25
4 0.87 2.90
5 2.52 1.67
6 4.21 117
7 4.94 0.69
8 3.39 145
9 492 1.13

10 5.56 0.08

11 045 0.88

12 0.40 2.69

13 1.06 0.36

14 0.38 0.08

15 0.03 2.34

16 0.07 2.13
17 0.15 2.20
18 0.34 2.80
19 0.94 0.29
20 0.28 1.22

The values of N, indicate that the population heads towarc
extinction. The long-term behavior of the geometric mean of the

growth parameter, denoted by R, (read “R sub r hat"), is definec
as

Ro=(RoRy - R_))""

and determines whether the population will go extinct. Specifi-
cally, if

lim 1?, <1
{—>00

then the population will go extinct. Compute R, for t =
1,2,...,20

18, Temporally Varying Environment The recursion
Nyt = RN,
describes growth in a temporally varying environment if we
interpret R, as the growth parameter in generation ¢,
(a) Show that
Ne=(R_ R --RiRy)N,
(b) The quantity R, (read “R sub ¢ hat”), defined as
Re= (RiiRy - Ry RV
is called the geometric mean. Show that
Ny = (R)' Ny

(¢) The arithmetic mean of a sequence of numbers xy, x;, . .
is defined as

sy Xp—y

= _xmEFXFFx,
X, =

n
Set 7, = In R, and show that

7 lnR,_1+lnR,_;+---+lnRo
1=
t

(d) Use (c) to show that
N, = Nye™

19. Harvesting Model Let N, denote the population size at time
t, and assume that

Ny =1 =0)N, exp [R (1 - L‘Kc‘)ﬁ)]

where R and K are positive constants and ¢ is the fraction
harvested. Find N, forr =1,2,...,20 when R =1 K = 100,
and Np = 50 for (a) ¢ = 0.1, (b) c = 0.5,and (¢) ¢ = 0.9,

20. Harvesting Model Let N, denote the population size at time
t, and assume that

Npet = (1= )N, exp [R (1 -~ QLKQ&)]

where R and K are positive constants and ¢ is the fraction
harvested. Find N, for ¢ = 1, 2,...,20whenR =3, K = 100,
and Ny = 50 for (a) ¢ = 0.1, (b) c = 0.5, and (©)c =009
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