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Solution
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Assume that f is continuous on [—1, 1] and differentiable on (-1, 1), with fO)y=2
and f'(x) = Oforall x € (—1, 1). Find f(x).

Corollary 2 tells us that f(x) is a constant. Since we know that f(0) = 2, we have
fx)=2forallx € [—1, 1]. -

Proof of Corollary 2 Letx,, x, c (a, b), x1 < x;.Then f satisfies the assumptions
of the MVT on the closed interval [x1, x2]. Therefore, there exists a number ¢ €
(%1, x2) such that

fx2) — f(x)

= f(c)
X2 — X
Since f'(c) = 0, it follows that f(x2) = f(x)). Finally, because x,, X2 are arbitrary
numbers from the interval (a, b), we conclude that [ is constant,. [ |
Show that

sin x +cos?x = 1 for all x € [0, 27]

This identity can be shown without calculus, but let’s see what we get if we use
Corollary 2. We define f(x) = sin’ x + cos? Xx,0 < x < 2. Then f(x) is continuous
on [0, 277] and differentiable on (0, 25), with ' :
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Section 5.1 Problems.

L f)=2x-1,0<x<1
L f)=—x+1,-1<x<1
3 f() =sin@2x),0<x <7

4. f(x) = cos %,0 <x <2r

S Sy =lxl-1<x<1

6. flx)=(x - D(x+2),-2<x<2

T f)=¢e 1<y <1
8 f(v) =Inx + 1),0<x <2

9. Sketch the graph of a function tha
interval [0, 3]and has a
a global minimum at th

'10. Sketch the graph of a function th
Interval {~2, 1] and has a global ma
1n the interior of the domain of
11. Sketch the graph of a function th
Interval (0, 2) and has neither a gl

minimum in its domain.

isfies the assumptions of the extreme-
p of a graphing calculator, graph each n51.2
bal extrema.

f'(x) = 2sinx cosx — 2cos x sinx =0

Using Corollary 2 now, we conclude that f(x) is equal to a constant on [0,27]. To
find the constant, we need only evaluate f(x) at one point in the interval, say,x = 0
We find that

f(0) =5sin0 + cos?0 = 1
This proves the identity, .

12. Sketch the graph of a function that is continuous on the closed
In Problems 1-8, each function is continuous and defined on a interval [1, 4], exceptatx =2, and has neither a global maximum

nor a global minimum in its domain,

(Note that a function may

one point.) In Problems 13-18, use a graphing calculator to determine ail local

and global extrema of the functions on their respective domains,
3. fx)=3-x,x¢ [-1,3)

M fx)=5+2.re (-2,1)

15 fr)=x'-2,x ¢ [-1,1)

16. f(x) = (x — 2%, x €0, 3]

17 f) = ~x?+ 1, x e [-2, 1]

8. fx)=x*-x,xelo, 1]

In Problems 19-26, find ¢ such that f'(€) = 0 and determine
whether f(x) has a local extremumat x = c.

19. f(x) = x? 20. f(x) = (x — 4)2
tiscontinuous on the closed 2L f(x) = —x2 2. f(x)=—(x+3)p
global maximum at the left endpointand 23, f(x) = 3 4. f(x)=1x5
e right endpoint, 25, f(x) = (x +1)3 26, f(x) = —(x - 3)°
at is continuous on the closed 27. Show that f(x) = x| has a local minimum at x = 0 but S0
Ximum and a global minimum is not differentiable at x = 0,
the function. 28. Show that S(x¥) = |x — 1] has a local minimum at ¥ = 1 but
at is continuous on the open f(x) is not differentiable at x = L
obal maximum nor a global 29. Show that f(x) = fx* — 1/ has local minima at x = | and

X = —1but f(x) is not differentiable atx = lory = —1,

bricsd
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30, Show that f(x) = —|x% — 4] has local maxima at x = 2 and
x = —2but f(x) is not differentiable at x = 2 or x = —2.
31, Graph 7 ‘
f@=1-], -1<x<2
and d etermine all local and global extrema on {1, 2}.

32. Graph
f@y=-|x|-2|, -3<x=<3

and dietermine all local and global extrema on [-3, 3].

33. Suppose the size of a population at time ¢ is N(r) and its
growth rate is given by the logistic growth function

dN N
-——--—rN(l"K),

t>0
dt

where r and K are positive constants.

(a) Graph the growth rate % as a function of N for r = 2 and
K = 100, and find the population size for which the growth rate
is maximal.

(b) Show that f(N) = rN(1 - N/K), N = 0, is differentiable
for N > 0, and compute f'(N).

in(a) whenr =2 and X = 100.

34, Suppose that the size of a population at time ¢ is N(¢) and its
growth rate is given by the logistic growth function

where r and K are positive constants. The per capita growth rate
is defined by

1dN
s =y

g(N)=r(1-—%)

(b) Graph g(N) as a function of Nfor N > Owhenr = 2 and
K = 100, and find the population size for which the per capita
growth rate is maximal,

25.1.3

35, Suppose f(x) = x%, x € [0,2].

() Find the slope of the secant line connecting the points (0, 0)
and (2, 4).

(b) Find a number ¢ € (0, 2) such that f’(¢) is equal to the slope
of the secant line you computed in (a), and explain why such a
number must exist in (0, 2).

36. Suppose f(x) =1/x,x €1, 2].

(8) Find the slope of the secant line connecting the points (1, 1)
and (2, 1/2).

(b) Find a number ¢ € (1, 2) such that f'(c) is equal to the slope
of the secant line you computed in (a), and explain why such a
number must exist in (1, 2).

37. Suppose that f(x) = x?, x € [-1, 1].

(a) Find the slope of the secant line connecting the points (—1, 1)
and (1, 1).

(b) Findanumberc € (—1, 1) such that f’(c) isequal to the slope
of the secant line you computed in (a), and explain why such a
number must exist in (-1, 1).

38. Suppose that f(x) =x*-x —2,x € [-1,2].

(a) Find the slope of the secant line connecting the points (—~1, 0)
and (2, 0).

(a) Show that

(b) Findanumberc € (-1, 2) such that f'(c) isequalto the slope
of the secant line you computed in (a), and explain why such a
number must exist in (-1, 2).

39. Let f(x) = x(1 = x). Use the MVT to find an interval that
contains a number ¢ such that f'(c) = 0.

40, Let f(x) = 1/(1 + x?). Use the MVT to find an interval that
contains a number ¢ such that f'(c) =0. ,

41, Suppose that f(x) = —x2 4 2. Explain why there exists a
point ¢ in the interval (—1, 2) such that f'(c) = ~1.
42. Suppose that f(x) = x3. Explain why there exists a point c in
the interval (—1, 1) such that f'(c) = 1.
43, Sketch the graph of a function f(x) that is continuous on the
closed interval (0, 1] and differentiable on the open interval (0, 1)
such that there exists exactly one point (c, f(c)) on the graph at
which the slope of the tangent line is equal to the slope of the
secant line connecting the points (0, f(0)) and (1, f(1)). Why can
you be sure that there is such a point?
44. Sketch the graph of a function f(x) that is continuous on the
closed intervatl [0, 1] and differentiable on the open interval (0, 1)
such that there exist exactly two points (¢, f(c1)) and (c;, f(c2))
the graph at which the slope of the tangent lines is equal to

the slope of the secant line connecting the points (0, £(0)) and
(1, £(1)). Why can you be sure that there is at least one such
point?

45, Suppose that f(x) = x%,x € {a, b).

(a) Compute the slope of the secant line through the points
(a, f(a)) and (b, f(b)).

(b) Find the point ¢ € (a, b) such that the slope of the tangent
line to the graph of f at {c, f(c)) is equal to the slope of the secant
line determined in (a). How do you know that such a point exists?
Show that ¢ is the midpoint of the interval (a, b); that is, show that
¢ = (a+b)/2

46. Assume that f is continuous on {a, b] and differentiable on
(a, b). Show thatif f(a) < f(b), then f’is positive at some point
between a and b.

47. Assume that f is continuous on [a, b] and differentiable on
(a, b). Assume further that f(a) = f(b) = O but f is not constant
on [a, b]. Explain why there must be a point ¢; € (a, b) with
f'(c1) > 0 and a point ¢; € (a, b) with f'(c;) < 0.

48. A car moves in a straight line. At time ¢ (measured in
seconds), its position (measured in meters) is

12
t)=—t*, 0<t <
s(n 10 =t=<10

(a) Find its average velocity between t = 0 and ¢ = 10.
(b) Find its instantaneous velocity for t € (0, 10).

(c) At what time is the instantaneous velocity of the car equal to
its average velocity?

49. A car moves in a straight line. At time ¢ (measured in
seconds), its position (measured in meters) is

1
=-—1, 0<t<5
s(t) oo 0=t=

(a) Find its average velocity betweent =0andt = 5.
(b) Find its instantaneous velocity for ¢ € (0, 5).

(c) At what time is the instantaneous velocity of the car equal ta
its average velocity? ‘

50. Denote the population size at time ¢ by N(r), and assume thaf

N(0) = 50 and |dN/dt| < 2 for all ¢ € [0, 5]. What can you say
about N(5)?



51. Denote the biomass at time ¢ by B(t), and assume that B(0) ==
3and |d B/dt} < 1forall: e [0, 3]. What can you say about B(3)?
52, Suppose that f is differentiable for all x € R and,
furthermore, that f satisfies f(0) = Oand 1 < f'(x) < 2 for
allx > 0.

(a) Use Corollary 1 of the MVT to show that

X< flx) <2

forallx = 0.

(b) Use your result in (a) to explain why f(1) cannot be equal to
3.

(c) Find an upper and a lower bound for the value of £(1).

53. Suppose that f is differentiable for all x € R with f(2) = 3
and f'(x) = O forallx € R. Find f(x).

54, Suppose that f(x) = ¢ ™, x € (-2, 2].

(a) Show that f(-2) = f(2).

(b) Compute f’(x), where defined.

(¢) Show that there is no number ¢ € (-2, 2) such that f'(c) = 0.

{d) Explain why your results in (a) and (c) do not contradict
Rolle’s theorem.

(e) Use a graphing calculator to sketch the graph of f(x).
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§6. We have seen that

flx) = foe™

satisfies the differential equation

g =rf(x)

with £(0) = f. This exercise will show that Sf(x) is in fact the
only solution. Suppose that r is a constant and f is a differentiable
function, '

(5.5)

forall x € R, and f(0) = f,. The following steps will show that
f(x) = foe™, x € R, is the only solution of (5.5). '
(a) Define the function

-Z{- =rf(x)

Fx)=f(x)e™™", xeR
Use the product rule to show that -

Fl(x) = ™[ f/(x) — rf(x)}

5 ~MVT 16 shiow that if F(x) is
differentiable for all x € R and satisfies

f) = fl < 1x =y (5.3)
for all x, y € R, then f(x) is constant. [Hint: Show that (5.3)

implies that

fim L&) = fO) _

x>y xX=y
and use the definition of the derivative to interpret the left-hand
side of (5.4).]

0 (5.4)

X 5.2 Monotonicity and Concavity

(b) Use (a) and (5.5) to show that F'(x) = Oforall x € R.

(¢} Use Corollary 2 to show that F(x) is a constant and, hence,
F(x) = F(0) = f,.

(d) Show that (c) implies that
fo= f(x)e™"*

and therefore,

f(x) = foe™

Fish are indeterminate growers; they increase in body size throughout their life. How-

ever, as they become

older, they grow proportionately more slowly. Their growth is

often described mathematically by the von Bertalanffy equation, which fits a large
number of both freshwater and marine fishes. This equation is given by

L(x) = Lo — (Loo - L())e—K'lr

where L(x) denotes the length of the fish at age x, Ly the length at age 0, and L,
the asymptotic maximum attainable length. We assume that Lo, > Ly. K is related
to how quickly the fish grows. Figure 5.20 shows examples for two different values of
K; Lo and Ly are the same in both cases. We see from the graphs that for larger X,
the asymptotic length L, is approached more quickly.

The fact that fish increase their body size throughout their life can be expressed
mathematically by the first derivative of the function L(x). Looking at the graph, we
see that L(x) is an increasing function of x: The tangent line at any point of the graph
has a positive slope, or, equivalently, L'(x) > 0. We can compute

L'(x) = K(Loy — Ly)e K~

Since L, > Ly (by assumption) and e~ %+ > @ (this holds for all x, regardless of K),
we sece that, indeed, L’(x) > 0, The graph of L'(x) is shown in Figure 5.21.

The graph of L'(x) shows that L'(x) is a decreasing function of x: Although fish
increase their body size throughout their life, they do so at a rate that decreases with
age. Mathematically, this relationship can be expressed with the second derivative of
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L Section 5.2 Problems:::

= 5.2.1 and 5.2.2

In Problems 1-20, determine where each function is increasing,
decreasing, concave up, and concave down. With the help of a
graphing calculator, sketch the graph of each function and label the
intervals where itis increasing, decreasing, concave up, and concave
down. Make sure that your graphs and your calculations agree.

1. y=3x—-x3xeR 2. y=x*+5x,xeR

3. y=x2+x—4,x€R 4. y=x2-x+3,x€R

S. y= —§x3+ %xz -3x+4,xeR

6. y=(x-2+3,x€eR

(a) Graph the growth rate 4 as a function of N for r = 3 and
K =10. )

(b) The function f(N) = rN(1 — N/K), N > 0,is differentiable
for N > 0. Compute f'(N), and determine where the function
f(N) is increasing and where it is decreasing,

27. Logistic Growth Suppose that the size of a population at time
t is N(t) and the growth rate of the population is given by the
logistic growth function

dN N
—=rN{1=-—=), 120
dt r ( K ) -
where r and K are positive constants. The per capita growth rate

1dN N
g(N)=N7h—...r(l—E)

(a) Graph g(N) as a function of N for N > 0 when r = 3 and

7. y=Jx+Lx>-1 8. y=0Cx-1D"xeR
1 —2 is defined b
= - 10, y = —— is defined by
9y x,x,.-éO Y=
1. x*+D¥B xeR 12. y=——75% £2
1 ? K = 10.
. = —>, -1 14. = s X 20
B y=qipt* Y= ET
18. y=smmx,0<x <Zm LEAL)

(b) The function g(N) = r(1-N/K), N = 0, is differentiable for

16. y =cos[r(x2 - 1)},2<x <3
17. y=¢,x€R 18. y=lnx,x >0

1
19. y=e* 2 xeR

Tve"
21. Sketch the graph of
(a) afunction that is increasing at an accelerating rate; and
(b) a function that is increasing at a decelerating rate.
(c) Assume that your functions in (a) and (b) are twice differen-
tiable. Explain in each case how you could check the respective
properties by using the first and the second derivatives. Which of
the functions is concave up, and which is concave down?
22. Show that if f(x) is the linear function y = mx + b, then
increases in f(x) are proportional to increases in x. That is, if we
increase x by Ax, then f(x) increases by the same amount Ay,
regardless of the value of x. Compute Ay as a function of Ax.
23. We frequently must solve equations of the form f(x) = 0.
When f is a continuous function on [a, b} and f(a) and f(b)
have opposite signs, the intermediate-value theorem guarantees
that there exists at least one solution of the equation f(x) = 0in
[a. b].
(a) Explain in words why there exists exactly one solution in
(a, b)if,in addition, f is differentiable in (a, b) and f'(x) is either
strictly positive or strictly negative throughout (a, b).
(b) Use the result in (a) to show that

€R

20, y =

X —4x+1=0

has exactly one solution in [—1, 1].

24. First-Derivative Test for Monotonicity Suppose that f is
continuous on [a, ] and differentiable on (a, b). Show that if
f’(x) < Oforallx € (a, b), then f is decreasing on [a, 6].

25. Second-Derivative Test for Concavity Suppose that f is twice
differentiable on an open interval /. Show that if f"(x) < 0, then
S is concave down.

26. Suppose the size of a population at time ¢ is N(¢), and the
growth rate of the population is given by the logistic growth

function
K '

where r and K are positive constants.

N G. Culuyu:v - IAAN )

is increasing and where it is decreasing,

28. Resource-Dependent Growth The growth rate of a plant
depends on the amount of resources available. A simple and
frequently used model for resource-dependent growth is the
Monod model, according to which the growth rate is equal to

aR
Ry =——, R>0
f(R) i+ R >

where R denotes the resource level and a and k are positive
constants. When is the growth rate increasing? When is it
decreasing?

29, Population Growth Suppose that the growth rate of a
population is given by

SNy =N (1 - (%)0)

where N is the size of the population, K is a positive constan
denoting the carrying capacity, and 9 is a parameter greater thar
1. Find f/(N), and determine where the growth rate is increasing
and where it is decreasing.

30. Predation Spruce budworms are a major pest that defoliate
balsam fir. They are preyed upon by birds. A model for the pe
capita predation rate is given by

aN

k2 + N2

where N denotes the density of spruce budworms and a an
k are positive constants. Find f’(N), and determine where th
predation rate is increasing and where it is decreasing.

31. Host-Parasitoid Interactions Parasitoids are insects that la
their eggs in, on, or close to other (host) insects, Parasitoid larva
then devour the host insect. The likelihood of escaping parasitis:
may depend on parasitoid density. One model expressing th
dependence sets the probability of escaping parasitism equal to

f(N)=

f(P) = e—-ul’

where P is the parasitoid density and a is a positive constan
Determine whether the probability of escaping parasitis
increases or decreases with parasitoid density.




32, Host-Parasitoid Interactions As an alternative to the model
set forth in Problem 31, another model sets the probability of
escaping parasitism equal to

-k

where P is the parasitoid density and a and k are positive con-
stants. Determine whether the probability of escaping parasitism
increases or decreases with parasitoid density.

33. Tree Growth Suppose that the height y in feet of a tree as a
function of the age x in years of the tree is given by

y=117e7" x50

(a) Show that the height of the tree increases with age. What is
the maximum attainable height?

(b) Where is the graph of height versus age concave up, and
where is it concave down?

(c) Use a graphing calculator to sketch the graph of height versus
age.

(d) Use a graphing calculator to verify that the rate of growth is
greatest at the point where the graph in (c) changes concavity.
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37. Population Size Denote the size of a population by N(¢), and
assume that N(¢) satisfies
dN
— =N ~aN _ NZ
dt ¢
where a is a positive constant,
(a) Show that the nontrivial equilibrium N* satisfies

e—nN' = N*

(b) Assume now that the nontrivial equilibrium N* is a function
of the parameter a. Use implicit differentiation to show that N* is
a decreasing function of a.

38. Population Size Denote the size of a population by N(¢), and
assume that N (¢) satisfies

dN N
—— = —=]-NIN
di (l K) "

where K is a positive constant.
(a) Show thatif K > 1, then there exists a nontrivial equilibrium
N* > 0 that satisfies

fe-reproductive strate:
gies: polycarpy, in which reproduction occurs repeatedly during
the lifetime of the organism, and monocarpy, in which repro-
duction occurs only once during the lifetime of the organism.
(Bamboo, for instance, is a monocarpic plant.) The following
quote is taken from Iwasa et al. (1995):

The optimal strategy is polycarpy (repeated repro-
duction) if reproductive success increases with the
investment at a decreasing rate, [or] monocarpy (“big
bang" reproduction) or intermittent reproduction if the
reproductive success increases at an increasing rate.

(a) Sketch the graph of reproductive success as a function
of reproductive investment for the cases of (i) polycarpy and
(i) monocarpy.

(b) Given that the second derivative describes whether a curve
bends upward or downward, explain the preceding quote in terms
of the second derivative of the reproductive success function.

35. Pollinator Visits Assume that the formula (Iwasaet al., 1995)

X(F)=cF?

where c is a pbsitive constant, expresses the relationship between
the number of flowers on a plant, F, and the average number of
pollinator visits, X(F).Find the range of values for the parameter
Y such that the average number of pollinator visits to a plant
increases with the number of flowers F but the rate of increase
decreases with F. Explain your answer in terms of appropriate
derivatives of the function X (F).
36. Pollinator Visits Assume that the dependence of the average
number of pollinator visits to a plant, X, on the number of flowers,
F.is given by

X(F)=cF”
where y is a positive constant less than 1 and ¢ is a positive
constant (Iwasa et al., 1995). How does the average number of
pollen grains exported per flower, E(F), change with the number
of flowers on the plant, F, if E(F) is proportional to

| —-exp l:— X(F)]
F

Where & is a positive constant?

*

N
l——=InN"
K n

(b) Assume now that the nontrivial equilibrium N* is a function
of the parameter K. Use implicit differentiation to show that N'*
is an increasing function of X .

39. Intraspecific Competition (Adapted from Bellows, 1981)
Suppose that a study plot contains N annual plants, each of which
produces S seeds that are sown within the same plot. The number
of surviving plants in the next year is given by

NS
1+ (aN)?

for some positive constants a and b. This mathematical model
incorporates density-dependent mortality: The greater the num-
ber of plants in the plot, the lower is the number of surviving
offspring per plant, which is given by A(N)/N and is called the
net reproductive rate,

(a) Use calculus to show that A(N)/Nisa decreasing function of
N.

(b) The following quantity, called the k-value, can be used to
quantify the effects of intraspecific competition (i.e., competition
between individuals of the same species):

A(N) = (5.6)

k = log [initial density] — log [final density]

Here, “log” denotes the logarithm to base 10, The initial density is
the product of the number of plants (N) and the number of secds
each plant produces (S). The final density is given by (5.6). Use
the expression for k and (5.6) to show that

k=log[NS] — Iog[

= log[1 + (aN)"]

S
L+ (aN)»

We typically plot & versus log N; the slope of the resulting curve is
then used to quantify the effects of competition.
(i) Show that

dlog N _ 1
dN  ~ NInlo

where In denotes the natural logarithm.
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(i) VShowr that

dk dk b
—— = (1N — = ————
Jiogy = MON 8 = THam=
iify Find
G i dk
nodlog N
(iv) Show that if
dk
<1
dlogN
then A(N) is increasing, whereas if
dk o1
dlogN

then A(N) isdecreasing. [Hint: Compute A’(N).] Explain in words
what the two inequalities mean with respect to varying the initial
density of seeds and observing the number of surviving plants the
next year. (Hint: The first case is called undercompensation and
the second case is called overcompensation.)

v) The case
) dk

Jiogl ="

41. Allometric Growth Allometric equations describe the scal-
ing relationship between two measurements, such as tree height
versus tree diameter or skull length versus backbone length. These
equations are often of the form

Y =bX® (5.8)
where b is some positive constant and a is a constant that can be
positive, negative, or zero,
(a) Assume that X and Y are body measurements (and therefore
positive) and that their relationship is described by an allometric
equation of the form (5.8). For what values of a is ¥ an increasing
function of X, but one such that the ratio Y/ X decreases with
increasing X ? Is Y concave up or concave down in this case?

(b) In vertebrates, we typically find
{skull length] o [body length]®

for some a € (0,1). Use your answer in (a) to explain what
this means for skull length versus body length in juveniles versus
adults; that is, at which developmental stage do vertebrates have
larger skulls relative to their body length?

is referred to as exact compensation. Suppose that you plot k
versus log N and observe that, over a certain range of values of
N, the slope of the resulting curve is equal to 1. Explain what this
means.
40. (Adapted from Reiss, 1989) Suppose that the rate at which
body weight W changes with age x is

dw "

—d—:r- x W
where a is some species-specific positive constant.
(a) The relative growth rate (percentage weight gained per unit
of time) is defined as

(G7)

1dw

W dx
What is the relationship between the relative growth rate and
body weight? For which values of a is the relative growth rate
increasing, and for which values is it decreasing?
(b) As fish grow larger, their weight increases each day but the
relative growth rate decreases. If the rate of growth is described by
(5.7), what values of g can you exclude on the basis of your results
in (a)? Explain how the increase in percentage weight (relative to
the current body weight) differs for juvenile fish and for adult fish.

hydrogen ions, denoted by [H*], and is defined as
pH = ~ log{H"*]

Use calculus to decide whether the pH value of a solution
increases or decreases as the concentration of H* increases.

43. Allometric Growth The differential equation

dy .y
nC AR P4

dx x

describes allometric growth, where k is a positive constant.
Assume that x and y are both positive variables and that y= f(x)
is twice differentiable. Use implicit differentiation to determine
for which values of k the function y = f(x) is concave up.

44, Population Size Let N(#) denote the population size at time

t, and assume that N(t) is twice differentiable and satisfies the
differential equation

—— =rN

dt
where r is a real number. Differentiate the differential equation
with respect to ¢, and state whether N (r) is concave up or down.

M 5.3 Extrema, Inflection Points, and Graphing

N 5.3.1 Extrema

If f is a continuous function on the closed interval [a, b], then f has a global
maximum and a global minimum in [a, b]. This is the content of the extreme-value
theorem, which is an existence result: It tells us only that global extrema exist under
certain conditions, but it does not tell us how to find them,

Our strategy for finding global extrema in the case where f is a continuous
function defined on a closed interval will be, first, to identify all local extrema of
the function and, then, to select the global extrema from the set of local extrema.
If f is a continuous function defined on an open interval or half-open interval, the |
existence of global extrema is no longer guaranteed, and we must compare the local

extrema with the behavior of the function near the open boundaries of the domain. !
(See Example 5 in Section 5.1.) In particular, if f(x) is defined on R, we need to

|
|
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We find that f (x) is concave up for x < —1andx > 1and s concave down for
—1 < x < 1. There are two inflection points, one at x = —1, namely, (-1, e~1/2),
and the other at x = 1, namely, (1, e™"/?). There are no other inflection points,
since f”(x) is defined for all x € R.

STEP 4. We have

lim f(x) =0

X=»—00

and lim f(x)=0

X400

This shows that y = 0 is a horizontal asymptote.

The graph of f(x) is shown in Figure 5.49. .

Inflection poiat
(_ l, e—l/2)

Sfix)

—_—
~
i
T

Max
o n

Intlection point
(Le1?)

/ "1
-l L i ]

-5 -4 -3 -2

~1

0 1

Figure 5.49 The graph of f(x) = e~*'/2,

k Section 5.3 Problems

%5341

Find the local maxima and minima of each of the functions in
Problems 1-16. Determine whether each function has absolute
maxima and minima and find their coordinates. For each function,
find the intervals on which it is increasing and the intervals on which
itis decreasing.

Ly=(Q2~-x)3?-2<x<3 2L.y=/x-11<x<2
Jy=In@2x-1),1<x<2 4.y=lnﬁl-,x>0
S.y=xe*,0<x<1 6. y=]16—-x% ~5<x<8
Ty=x—-1»+1LxeR 8 y=x"-3x+1,xeR

9 y=cos(rx?),-1<x <1

0. y=sinf2r(x -3)],2<x <3

IL y=e*l reR 12, y=e* xR
B.oy=1lc+x2—6x+2,xeR

M oy=x¥*(1-x),xeR

5. y=(x -1 xeR 16. y=/T+x3,xeR

17. [This problem illustrates the fact that f'(c) = 0Oisnota
sufficient condition for the existence of a local extremum of a
differentiable function.] Show that the function f(x) = x has
a horizontal tangent at x = 0; that is, show that f'(0) = 0, but

f'(x) docs not change sign at x = 0 and, hence, f(x) does not
have a local extremum at x = 0.

18. Suppose that f (x) is twice differentiable on R, with f(x) >0
for x € R. Show that if f(x) has a local maximum at x = ¢, then
8(x) = In f(x) also has a local maximum at x = c.

a 53.2

In Problems 19-24, determine all inflection points,

19. fo)=x’-2,xeR 20. f(x)=(x-3)°,0eR
2L f(x)=e*, x>0 2. f(x)=xe*,x>0

14 T
23, =1 ,— = _
f(x) =tanx 3 <x< 3

2. f(x) =lnx+%,x >0

25. [This problem illustrates the fact that f(c) = Oisnot a
sufficient condition for an inflection point of a twice-differentiable
function.] Show that the function f(x) = x* has f"(0) = 0 but
that f”(x) does not change sign at x = 0 and, hence, f(x) does
not have an inflection point at x = 0.

26. Logistic Equation Suppose that the size of a population at
time ¢ is denoted by N(t) and satisfies

100

N(t) = ——0
0] 15 3e2

fort > 0,
(a) Show that N(0) = 25.
(b) Show that N (1) is strictly increasing.
(¢} Show that
lim N(t) = 100
1 —+00
(d) Show that N(¢) has an inflection point when N (¢) = 50— that
is, when the size of the population is at half its limiting value,
(e} Use your results in (a)-(d) to sketch the graph of N ().
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2 5.3.3

Find the local maxima and minima of the functions in Problems
27-34. Determine whether the functions have absolute maxima and
minirma, and, if so, find their coordinates. Find inflection points.
Find the intervals on which the function is increasing, on which it
is decreasing, on which it is concave up, and on which it is concave
dowre. Sketch the graph of each function.

2. y=§g3_2xz-6x+2for—25x_<.5
28. y=x‘—2x2,xeR

29, y=|? -9, -4<x <5

30. y=./|xl,xeR

31, y=x+cosx,x€R

T
32.y=tanx—x,xe(—— )

2'2
xt-1
33. y = ;:T’xen
M. y=hx*+1),xeR
35, Let

fo)=——, x#1

and

lim f(x) =-00

x—1*
That is, show that x = —1 and x = 1 are vertical asymptotes of
fx).

(¢) Determine where f(x) is increasing and where it is
decreasing. Does f(x) have local extrema?

(d) Determine where f(x) is concave up and where it is concave
down. Does f (x) have inflection points?

(e) Sketch the graph of f(x) together with its asymptotes,

37, Let

22 -5

fx)= PR
(a) Show that x = —2 is a vertical asymptote.
(b) Determine where f(x) is increasing- and where it is
decreasing. Does f(x) have local extrema?
(¢) Determine where f(x) is concave up and where it is concave
down. Does f(x) have inflection points?
(d) Since the degree of the numerator is one higher than the

degree of the denominator, f(x) has an oblique asymptote. Find
it

x#E -2

(a) Show that

lim f(x)=1
X~ —00
and
lim f(x)=1
x—>+00

That is, show that y = 1 is a horizontal asymptote of the curve
y= I

(b) Show that

lim f(x) = —c0
x-»1"

and
lim f(x) =400
x>t

That is, show that x = 1 is a vertical asymptote of the curve
Y= .

(c) Determine where f(x) is increasing and where it is
decreasing, Does f(x) have local extrema? '
(d) Determine where f(x) is concave up and where it is concave
down. Does f(x) have inflection points?

(e) Sketch the graph of f(x) together with its asymptotes.

36. Let

2
fO)=—=—7 x#-L1
(a) Show that
lim f(x)=0
Xx—>+00
and
lim f(x)=0

That is, show that y = 0 is a harizontal asymptote of f(x).
(b) Show that

lim f(x) =—o0
x-—»-1"
and
lim f(x) =+o00
k==t
and that
lim f(x) =400

pEE S

(e) Sketch the graph of f(x) together with its asymptotes.
38, Let

fry=22 x40

(a) Show that y = 0 is a horizontal asymptote.

(b) Since f(x) is not defined at x = 0, does this mean that
f(x) has a vertical asymptote at x = 0? Find lim,_,¢+ f(x) and
lim,_ o f(x).

(c) Use a graphing calculator to sketch the graph of f(x).

39, Let

x2

f(x)=-1—;;,xell

(8) Determine where f(x) is increasing and where it is
decreasing.

(b) Where is the function concave up and where is it concave
down? Find all inflection points of f(x).

(¢) Findlim__ . f(x)and decide whether f(x) has a horizontal
asymptote.

(d) Sketch the graph of f(x) together with its asymptotes and:
inflection points (if they exist).
40. Let
xk
fx)= i 20
where k is a positive integer greater than 1.

(a) Determine where f(x) is increasing and where it is
decreasing.

(b) Where is the function concave up and where is it concave
down? Find all inflection points of f(x).

(¢) Find lim,_, ., f(x) and decide whether f(x) has a horizontal
asymptote.

(d) Sketch the graph of f(x) together with its asymptotes and
inflection points (if they exist).
41, Let

f(x)=a+x.x30

where a is a positive constant. :

(a) Determine where f(x) is increasing and where it is
decreasing.

‘

3

!
.

*




(b) Where is the function concave up and where is it concave
down? Find all inflection points of f(x).
(¢) Find lim__,  f(x) and decide whether S (x) has a horizontal
asymptote.
(d) Sketch the graph of f(x) together with its asymptotes and
inflection points (if they exist).
42, Let
-—i—. x€R

+e*
(a) Determine where f(x) is increasing and where it is
decreasing.
(b) Where is the function concave up and where is it concave
down? Find all inflection points of Sx).
(c) Find lim__,  f(x) and decide whether f(x) has a horizontal
asymptote,
(d) Find lim,___ f(x)and decide whether f(x) has a horizontal
asymptote.
(e) Sketch the graph of f(x) together with its asymptotes and
inflection points (if they exist).

f(x)=1
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43. Population Growth Suppose that the growth rate of a
population is given by

]
f(N)=N<1—-(%))N30

where N is the size of the population, X is a positive constant
denoting the carrying capacity, and 6 is a parameter greater than
1. Find the population size for which the growth rate is maximal.

44. Predation Rate Spruce budworms are a major pest that
defoliate balsam fir. They are preyed upon by birds, A model for
the per capita predation rate is given by

aN
T =

where N denotes the density of spruce budworm and a and & are
positive constants. For which density of spruce budworms is the
per capita predation rate maximal?

2-5.4- Cptuumd‘ﬁuu

There are many situations in which we wish to maximize or minimize certain
quantities. For instance, in a chemical reaction, you might wish to know under which
conditions the reaction rate is maximized. In an agricultural setting, you might be
interested in finding the amount of fertilizer that would maximize the yield of some
crops. In a medical setting, you might wish to optimize the dosage of a drug for

Chemical Reaction Consider the chemical reaction

A+B—> AB

In Example 5 of Subsection 1.2.2, we found that the reaction rate is given by the

function

R(x) =k(a — x)(b ~ x),

0 < x < min(a, b)

R0 & where x is the concentration of the product AB and min(a, b) denotes the minimum

25 I Absolute maximum

S} —

, .
0 05 1 15 2 a5, (SeeFigures.50)
Figure 5.50 The chemical reaction
rate R(x) in Example 1. The graph of
R(x) =202 - )5 - x),0<x <2,
has an absolute maximum at (0, 20).

of the two values of g and b, The constants a and b are the concentrations of the

reactants A and B at the beginning of the reaction, To be concrete, we choose k =
2,a =2 and b = 5. Then

R(x) =22 -x)(5-x) for0<x <2
We are interested in finding the concentration x that maximizes the reaction rate;

this is the absolute maximum of R(x). Since R(x) is differentiable on (0, 2), we can

find all local extrema on (0, 2) by investigating the first derivative. To compute the
first derivative of R(x), we multiply R(x) out:

R(x) =20 - 14x +2x% for0 < x <2

Differentiating with respect to x yields

R'(x) = —14 4 4x for0 <x <2




]
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we conclude that there is a local maximum at £ = k. To see whether it is a global
maximum, we compare w(k) with w(0) and lim,_, , w(x). We have

w(x) = Ef(Jr) =
X

SO

w(0) =0

R x? P
xk24x2 7 g2 4 x2

lim w(x) =0
X=>00

R
w(k) = ﬂ

Hence, £ = k is where the absolute maximum occurs; for our choice of f(x) = —2"%,
the optimal clutch size N,y satisfies Nopt = R/ k. [Other choices of f(x) would give

. adifferent result.)

There is a geometric way of finding £. Since

re =19

X

@

it follows that the tangent line at (%, f(£)) has slope 19 This line can be obtained

by drawing a straight line through the origin that just touches the graphof y = f(x).

. e 0 -
as-illustrated-inFigure5:55-

Sectiorr 5.4 Problems
1. Find the smallest perimeter possible for a rectangle whose area
is 25 in.2,

2. Show that, among all rectangles with a given perimeter, the
square has the largest area.

3. Arectangle hasiits base on the x-axis and its upper two vertices
on the parabola y = 3 — x2, as shown in Figure 5.56. What is the
largest area the rectangle can have?

3—x

W
I
T

—— I 1

-2/ N N

\

Figure 5,56 The graph of y = 3 — x2 together with the
inscribed rectangle in Problem 3,

4 A rectangular study area is to be enclosed by a fence and
divided into two equal parts, with the fence running along the
division parallel to one of the sides. If the total area is 384 12, find
the dimensions of the study area that will minimize the total length
of the fence. How much fencing will be required?

5 A rectangular field is bounded on one side by a river and on
the other three sides by a fence. Find the dimensions of the field

hat will maximize the enclosed area if the fence has a total length
>£ 320 fe,

6. Find the largest possible area of a right triangle whose
hypotenuse is 4 cm long,

7. Suppose that a and b are the side lengths in a right triangle
whose hypotenuse is 5 cm long. What is the largest perimeter
possible?

8. Suppose that a2 and b are the side lengths in a right triangle

whose hypotenuse is 10 cm long. Show that the area of the triangle
is largest when a = b,

9. A rectangle has its base on the x-axis, its lower left corner at
(0, 0), and its upper right corner on the curve Y = 1/x. What is
the smallest perimeter the rectangle can have?

10. A rectangle has its base on the X-axis and its upper left and
right corners on the curve Y = y/4 —x%, as shown in Figure 5.57.
The left and the right corners are equidistant from the vertical axis,
What is the largest area the rectangle can have?

Yy A}
3+ VA= —
25 +
l -
0.5 +
2 —05 4 2 3 x
-1 j_

Figure 5.57 The graph of y = (4 — x%)"2 together with the
inscribed rectangle in Problem 10,

e s
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11, Denote by (x, y) a point on the straight line y = 4 — 3x. (See
Figure 5.58.)

4 — 3x ——

(e
w
1
[
[
F N
i 1
—
-
/u-_
= Y

1

Figure 5.58 The graph of y = 4 — 3x in Problem 11.
(a) Show that the distance from (x, y) to the origin is given by

flx) =/x2+ (4 = 3x)?

<5) s

Figure 5.59 The circular sector
in Problems 19 and 20.

20. A circular sector with radius r and angle 6 has area A. Find r

and @ so that the perimeter is smallest for a given area A. (Note:
= %rze, and the length of the arc s = r8, when 6 is measured

in radians; see Figure 5.59.)

21, Repeat Example 4 under the assumption that the top of the

can is made out of aluminum that is three times as thick as the
aluminum used for the wall and the bottom.

22 Findt iti chthatg +b =20and

(b) Give the coordinates of the point on the line y = 4 — 3x
that is closest to the origin. (Hint: Find x so that the distance you
computed in (a) is minimized.)

(c) Show that the square of the distance between the point (x, y)
on the line and the origin is given by

() = LF (DI = x? + (4 — 3x)?

and find the minimum of g(x). Show that this minimum agrees
with your answer in (b).

12. How close does the line y = 1 + 2x come to the origin?

13. How close does the curve y = 1/x come to the origin?
(Hint; Find the point on the curve that minimizes the square of
the distance between the origin and the point on the curve. If you
use the square of the distance instead of the distance, you avoid
dealing with square roots.)

14. How close does the circle with radius /2 and center (2,2)
come to the origin.

15. Show that if f(x) is a positive twice-differentiable function
that has a local minimum at x = ¢, then g(x) = [f(x)]* hasa
local minimum at x = ¢ as well.

16. Show that if f(x) is a differentiable function with f(x) < 0
for all x € R and with a local maximum at x = c, then g(x) =
[f(x)]? has a local minimum at x = c.

17. Find the dimensions of a right circular cylindrical can (with
bottom and top closed) that has a volume of 1 liter and
that minimizes the amount of material used. (Note: One liter
carresponds to 1000 ¢cm’.)

18. Find the dimensions of a right circular cylinder that is open
on the top, is closed on the bottom, holds 1 liter, and uses the least
amount of material.

19. A circular sector with radius r and angle 8 has area A. Find
r and 8 so that the perimeter is smallest when (a) A = 2 and (b)
A =10.(Note: A = %rze, and the length of the arc s = r8, when
g is measured in radians; see Figure 5.59.)

" 23, Find two numbers a and b such thata — b = 4 andab is a

ab is a maximum.

minimum.

24. Classical Model of Viability Selection Consider a population
of diploid organisms (i.e., each individual carries two copies of
each chromosome). Genes reside on chromosomes, and we call
the location of a gene on a chromosome a locus. Different versions
of the same gene are called alleles. Let us examine the case of one
locus with two possible alleles, A, and A,. Since the individuals are
diploid, the following types, called genotypes, may occur: A;A;,
A14;, and AyA; (where A1A; and A;A; are considered to be
equivalent). If two parents mate and produce an offspring, the
offspring receives one gene from each parent. If mating israndom,
then we can imagine all genes being put into one big gene pool
from which we choose two genes at random. If we assume that
the frequency of A, in the population is p and the frequency of
Ay is ¢ = 1 — p, then the combination A1A; is picked with
probability p?, the combination A;A; with probability 2pg (the
factor 2 appears because A; can come from either the father or
the mother), and the combination A;A; with probability g2

We assume that the survival chances of offspring depend on
their genotypes. We define the quantities wy;, wy, and wz to
describe the differential survival chances of the types A; Ay, A1 A3,
and A, Ay, respectively. The ratio A;A;:41A:A2A; among adults
is given by

PPwni2pquiqun

The average fitness of this population is defined as
T = p*wn +2pquy + 9 wn

We will investigate the preceding function. Sinceq =1 — p,wis
a function of p only; specifically,

B(p) = plwy +2p(1 — p)wiy + (1 — pYwn

for 0 < p <1. We consider the following three cases:

(i) Directional selection: wy; > wy; > wn i
(ii) Overdominance: wy; > wyy, W

(iii) Underdominance: wy; < wyy, Wy




(a) Show that
T(p) = pH(wn — 2wy + wx) + 2p(wyy — wy) + wn

and graph W(p) for each of the three cases, where we choose the
parameters as follows:
() wy=1,w =07 wy =03
(ii) wy = 0.7, Wy = 1, Wy = 03
(iil) wy = 1, Wy = 0.3, Wy = 0.7
(b) Show that

do _ 2p(wn — 2wnz + wa) + 2(wiz — wyy)

dp
(c) Find the global maximum of W(p) in each of the three cases
considered in (a). (Note that the global maximum may occur at
the boundary of the domain of 7.)
(d) We can show that under a certain mating scheme the gene
frequencies change until & reaches its global maximum. Assume
that this is the case, and state what the equilibrium frequency will
be for each of the three cases considered in (a).
25. Continuation of Problem 94 from Section 4.3 We discussed
the properties of hatching offspring per unit time, w(¢), in _the
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thought of as a measure of reproductive fitness. The greater the
value of r, the more offspring an individual produces. The intrinsic
rate of increase is typically a function of age x. Models for age-
structured populations of semelparous organisms predict that the
intrinsic rate of increase as a function of x is given by

In [I(x)m(x)]
A

where I(x) is the probability of surviving to age x and m(x) is
the number of female offspring at age x. The optimal age of
reproduction is the age x that maximizes rix).

(a) Find the optimal age of reproduction for

I(x) = e~
and

m(x) = bx*¢
where a, b, and ¢ are positive constants,

{b) Use a graphing calculator to sketch the graph of r(x) when
a=01,b=4andc =00,

27. Optimal Age at First Reproduction (from Lloyd, 1987)

Species Eleutherodactylus coqui. The function w(z) was given by

f@)

wie) = C+t
where f(t) is the proportion of offspring that survive if ¢ is the
time spent brooding and where C is the cost associated with the
time spent searching for other mates.

We assume now that f(¢), t > 0, is twice differentiable and
concave down with f(0) = 0 and 0 < f = 1. The optimal
brooding time is defined as the time that maximizes w(t).

(a) Show that the optimal brooding time can be obtained by
finding the point on the curve f(r) where the line through (—C, 0)
is tangential to the curve f(z).

(b) Use the procedure in (a) to find the optimal brooding time
for f(t) = i+ and C = 2. Determine the equation of the line
through (-2, 0) that is tangential to the curve f(r) = 1'?, and
graph both f(¢) and the tangent together.

26. Optimal Age of Reproduction (from Roff; 1992)
Semelparous organisms breed only once during their lifetime.
Examples of this type of reproduction can be found in Pacific
salmon and bamboo. The per capita rate of increase, r, can be

A 5.5 L'Hospital’s Rule

Heroparousorgntsms Bresdiiore than once during their lifetime,
Consider a model in which the intrinsic rate of increase, r, depends
on the age of first reproduction, denoted by x, and satisfies the
equation

e—x(r(x)+L)(1 — e—kx)3c

1 — e~C+D) =1 (5.13)
where k, L, and ¢ are positive constants describing the life history
of the organism. The optimal age of first reproduction is the age x
for which r(x) is maximized. Since we cannot separate r(x) in the
preceding equation, we must use implicit differentiation to find a
candidate for the optimal age of reproduction.

(a) Find an equation for gf. [Hint: Take logarithms of both sides
of (5.13) before differentiating with respect to x.]

(b) Set 4 = 0 and show that this gives

3keks
T = -
[To find the candidate for the optimal age x, you would need to
substitute for r(x) in (5.13) and solve the equation numerically.
Then you would still need to check that this solution actually gives
you the absolute maximum. It can, in fact, be done.]

* Guillaume Frangois I’'Hospital was born in France in 1661. He became interested in
calculus around 1690, when articles on the new calculus by Leibniz and the Bernoulli
brothers began to appear. Johann Bernoulli was in Paris in 1691, and I'Hospital
asked Bernoulli to teach him some calculus. Bernoulli left Paris a year later, but
continued to provide 'Hospital with new material on calculus. Bernoulli received
a monthly salary for his service and agreed that he would not give anyone else access
to the material. Once I'Hospital thought he understood the material well enough, he
decided to write a book on the subject, which was published under his name and met
with great success. Bernoulli was not particularly happy about this development, as
his contributions were hardly acknowledged in the book; I'Hospital perhaps felt that
because he had paid for the course material, he had a right to publish it.
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The limit is now of the form oo - 0 (since Intan § = In1 = 0). We evaluate the limit
by writing it in the form % and then applying I'Hospital’s rule:

i (tan(2x) - Intan x) I Intanx | Intanx
im (tan -Intanx) = lim =
x—>(n/4)~ x—+(n/4)~ PrYery) x—+(r/4)~ COt(ZX)
Since
ec? x cosx 1
—Intanx = =—— ==
tanx  cos“xsinx  SIMXCOSX
and
d -2
— cot(2x) = —(esc?(2x)) 2 = ——ro
2 COU) = (@) 2= s
it follows that
. . 2
Intanx ) sinx cos x ] sin“(2x)
im - 2x= lim — = lim o yre———
- x—>(m/4)~ Lot( ) x> (n/j4)- m PN T SInXx COsx
14 i (tanx) @) = 1 - )
T COGYVDGYD
8‘2 ’ Therefore,
04 +
02+ lim (tanx)®® = exp lim (tan(2x)Intanx)
L L > x> (n/4)~ x—+(m/4)~
0 bl o x .
‘ 2 =exp[-1]=¢”
Figure 5.63 The graph of
y = (tan )@, The graph of f(x) = (tanx)"**® is shown in Figure 5.63. ]

Section 5.5 Problems '

Use I'Hospital's rule to find the limits in Problems 1-50. . x?

2_25 2 -1 ¢-l-x-7
x5 - X — . —1=Xx
1Ll 2. lim —— 19. lim ——— 20, lim
,l_.n: x—5 xl_.z x1 -4 X0 x? X0 x3
2 In x)? 7
3. fim X t5x=2 4 lim —>13 21, lim 2) 2. lim —
o2 x+2 3 x242x—3 x—»00 X x=00 €
o TS 23, lim 28X 24, lim &=
5. lim V2x+4-2 6. lim 3-vZx+9 cs(n/n- 5662 x " xo Sinx
=m0 ¥ =0 2x 25, lim xe™ 26. lim x%e~*
11 sinx . xsinx x—00 x>0
s m e 8 lim s 27. lim x’e™ 28. lim x"e”*,n € N
X—00 =00
1 — cosx sin(} - x) 29, lim Vxlnx 30. lim x*Inx
9. lim ———t—a;—;— 10. lim x—0* x-+0t
>0 X ¥z COSX 31 lim x°lnx 32. lim x"Inx,neN
. -0+ —~ 0
1 tim — 12. tim 2% ' . ) .
1ot I0(x +1) 100 VX 33. lim (—5 - x) secx 34, lim (1 —x)tan (E-x)
l 1 x—=(n/2)" x—1-
13, lim ) 14, fim 00 , 1 1
1ooo X 100 IMX 38, lim /xsin — 36. lim x*sin
2 — 1 55— 1 x=eo * w7
15. lim 1 16. lim P— 37. lim (cotx — cscx) 38, lim(x ~/x2—1)
=0 x—0 - -0t X—+00
3-f 1 —% _ 1
17. lim 18. lim 2 ! 39, lim (— - —1-) 40. lim ( ! - -!-
xs0 27 —1 1 ¥ =1 ceot \SINX X st \sin?x x
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4. lim ** 42, lim x'in® 63. For p > 0, determine the values of p for which the following
X+ x=0* limit is either 1 or oo or a constant that is neither 1 nor oo;
4, lim xV/* 4. lim (1 + %)/ C\x
1m0 500 tim (1+ x—p)
x 5 x X-+00
8. tim 1+ 3) 4. lim (1 + _)
oo X =00 x 64, Show that
2\* ) 3\* lim xPe™ =
47, lim (l - —) 48. lim (1 + F) 00
x>0 * N Fooe for any positive number p. Graph f(x) = xPe~* x 0, for
. x . s P =1/2,1, and 2. Since f(x) = xPe~r = xPfe*, the limiting
o ,lix?o (1 +x) 50 xl—l.x;l(cos( ) behavior (lim, , ’:7’ = 0) shows that the exponential function

Find the limits in Problems 51-60. Be sure to check whether you
can apply I'Hospital's rule before you evaluate the limit,

X

. e
51, lim xe* 52. lim —
=0 a0+ X

tanx
53 lim (tanx + secx) 54. lim

grows faster than any power of x as x — o0,

65. Show that
]
lim —= =g
xo0 XP
for any number p > 0. This shows that the logarithmic function
grows more slowly than any positive power of x as x — oo,

x->(x/2)" s@n- 1+ secx 66. When I'Hospital introduced indeterminate limits in his
x2-1 1-~cosx textbook, his first example was
55. lim 56. lim
e T+ 1 a0 seCX 2% =2 — o
Ll lim- s
ST xe” ~ 38, Iim - ﬁ t—a a-—Jax
o oo . where a is a positive constant. (This example was communicated
59, lim x* 60. lim ( x+ 1) to him by Bernoulli.) Show that this limit is equal to (16/9a.
T a0t x=oo \ X + 2 67. The height y in feet of a tree as a function of the tree’s age x
61. Use I'Hospital’s rule to find in years is given by
a* -1 y=121e""* fory >0
r
xl—:r(l) b — 1

(a) Determine (1) the rate of growth when x —» 0* and (2) the
limit of the height as x — oo,

(b) Find the age at which the growth rate is maximal.

(¢) Show that the height of the tree is an increasing function of
age. At what age s the height increasing at an accelerating rate
and at what age at a decelerating rate?

(d) Sketch the graph of both the height and the rate of growth of
the tree as functions of age.

wherea, b > Q.
62. Use I'Hospital’s rule to find

lim (1 + f)

where c is a constant,

3 5.6 Difference Equations: Stability (Optional)

In Chapter 2, we introduced difference equations and saw that first-order difference
equations can be described by recursions of the form

X =f(x), 1=0,1,2,... (5.14)

x* = f(x*) (5.15)

and has the property that if Xo = x*, then x, = x* for ¢ = 1,2,3,.... We also saw
in a number of applications that, under certain conditions, x, converged to the fixed
point as t — oo even if Xo # x*. However, back then, we were not able to predict
when this behavior would occur,

In this section, we will return to fixed points and use calculus to come up with
a condition that allows us to check whether convergence to a fixed point occurs, We
start with the simplest example: exponential growth.
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Using the product rule and the chain rule, we find that

FIN) = exp [R (1 - %)] + Nexp [R (1 - %)] (_g)
-]

Now,

for R > 0,s0 N* = 0 is unstable. Since

and |f(K) =]1-R| <1lif-1 <1-R <1or0 < R < 2, we conclude that
N* = K islocally stable if 0 < R < 2. We can say a bit more now:If0 < R < 1,then
N* = K is approached without oscillations, since f'(K) > 0;ifl < R <2, N*=K
is approached with oscillations, since f'(K) < 0. a

a 5.6.1

1. Assume a discrete-time population whose size at generation
t + 1is related to the size of the population at generation ¢ by

Ny =@1O0)N, 1=0,1,2,...

(a) If o = 10, how large will the population be at generation
t =572

(b) How many generations will it take for the population size to
reach double the size at generation 07

2. Suppose a discrete-time population evolves according to

Ny =0I9N, t=012...

(a) If No = 50, how large will the population be at generation
t =67 .

(b) After how many generations will the size of the population
be one-quarter of its original size?

(c) What will happen to the population in the long run—that is,
ast — oo?

3. Assume the discrete-time population model

Nu=bN,, 1=0,12...

Assume also that the population increases by 2% each generation.
(a) Determine b.

{(b) Find the size of the population at generation 10 when Ny =
20.

(c) After how many generations will the population size have
doubled?

4. Assume the discrete-time population model

Ni=bN,, 1t=0,1,2,...

Assume also that the population decreases by 3% each
generation.
(a) Determine b.

(b) Find the size of the population at generation 10 when Ny =
50.

flo=e*>1 |

f(Ky=1-R

(¢) How long will it take until the population is one-half its
original size?

§. Assume the discrete-time population model

N,+]=bNg, f=0,1,2,...

Assume that the population increases by x% each generation,
(a) Determine b.

(b) After how many generations will the population size have
doubled? Compute the doubling time for x = 0.1,0.5,1,2,5, |
and 10.

6. (a) Find all equilibria of

NH,] =1.3N;, ’=O,1,2,...

(b) Use cobwebbing to determine the stability of the equilibria

you found in (a).
7. (a) Find all equilibria of

Ny =09N, 1=0,12,...

(b) Use cobwebbing to determine the stability of the equilibria
you found in (a).

8. (a) Find all equilibria of

Nt+l=N‘, ‘=0,1,2,...

(b) How will the population size N, change over time, starting at *
time 0 with N,?

A 5.6.2

9. Use the stability criterion to characterize the stability of the
equilibria of

2 2,
Lept = 7 = 2%,

3 3

10. Use the stability criterion to characterize the stability of the
equilibria of

t=0,1,2,...

2 2
Xyt = X — 2

t=0,12,...
3 0,12

W




11. Use th e stability criterion to characterize the stability of the
equilibria of

, t=0,1,2,...

X1 =

t
0.5+ x,
12, Use the stability criterion to characterize the stability of the
equilibria of

Xy
03+4x,'

Kep1 = ’=0,1,2....
13. (a) Use the stability criterion to characterize the stability of
the equilibria of
2 y
Xihy = ﬁ; t=01,2,...
Xt

{(b) Use cobwebbing to decide to which value X; converges as
1 = o0if (i) xo = 0.5 and (ii) xp = 2.

14. (a) Use the stability criterion to characterize the stability of
the equilibria of .

10x>
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17. Suppose that the size of a fish population at generation ¢ is
given by

Iva1 - ION,E—O'OIN'
fort=0,1,2,....
(8) Assume that Ny = 100. Find the size of the fish population at
generation s fort = 1, 2,. .., 20.
(b) Show that if Ny = 100In 10, then ¥, = 100In10 for ¢ —
1,2,3,...; thatis, show that N* = 1001n 10 is a nontrivial fixed
point, or equilibrium. How would you find N*? Are there any
other equilibria?
(¢) On the basis of your computations in (a), make a prediction
about the long-term behavior of the fish population when Ny =
100. How does your answer compare with that in (b)?

(d) Use the cobwebbing method to illustrate your answer in (c),

In Problems 18-20, consider the Jollowing discrete-time dynamical
system, which is called the discrete logistic model and which models
the size of a population over time:

N,
Ny = N, [1+R(1~T6—6)]

x,+|5 y =0,1,2,...
9+,\:,2

(b) Use cobwebbing to decide to which value X; converges as
t = o0if (i) xp = 0.5 and (ii) x; = 3.

21563
18. Ricker’s curve is given by

R(P) = aPe*?

for P > 0, where P denotes the size of the parental stock and
R(P) the number of recruits. The parameters @ and 8 are positive
constants.

(a) Show that R(0) = 0 and R(P) > Ofor P > 0.
(b) Find
lim R(P)

P—oo

(¢} For what size of the parental stock is the number of recruits
maximal?
(d) Does R(P) have inflection points? If so, find them.
(e} Sketch the graph of f(x) when & = 2 and B=1/2
16. Suppose that the size of a fish population at generation ¢ is
given by

Nis1 = L5N,e~000
forr=0,1,2,....
(a) Assume that N, = 100, Find the size of the fish population at
generationt forr =1, 2,... , 20,

(b) Assume that N, = 800. Find the size of the fish population at
generation ¢ fort = 1, 2, vee, 20,

'(c) Determine all fixed points. On the basis of your computations
in (a) and (b), make a Buess as to what will happen to the
population in the long run, starting from (i) Ny = 100 and
{ii) ¥y = 800.

(d) Use the cobwebbing method to illustrate your answer in (a).

(¢) Explain why the dynamical system converges to the nontrivial
fixed point.

Jort=0,1,2,....
18. (2) Find all equilibria when R = 0.5.

(b) Investigate the system when No = 10 and describe what you
see,

19. (a) Find all equilibria when R = 1.5,

(b) Investigate the system when Ny = 10 and describe what you
see.

20. (a) Find all equilibria when R = 2.5,

(b) Investigate the system when Np = 10 and describe what you
see.

In Problems 21-22, we investigate the canonical discrete-time
logistic growth model

T = rx(l —xy)

fort =0,1,2,....

21. Show that for r > 1, there are two fixed points. For which
values of r is the nonzero fixed point locally stable?

22, Use a calculator or a spreadsheet to simulate the canon-
ical discrete-time logistic growth model with xo=0.1 for
t=0,1,2,...,100, and describe the behavior when

(@ r =320 () r =352 (¢) r=3.80

() r =383 (e) r=3.828

In Problems 23-25, we consider density-dependent population
growth models of the form

Nl+l = R(NI)NI

The function R(N) describes the per capita growth. Various forms
have been considered. For each function R(N), find all nontrivial
fixed points N* (ie, N* - 0) and determine the stability as
a function of the parameter values. We assume that the Sfunction
parametersarer > 0, K > 0, and y > 1,

= rNI-y =T
23, R(N)..rN 24, R(N)——-m
25. R(N) = ¢1-¥/K)
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compute xy, we find that

Figure 5.78 The graph of f(x) in
Example S together with the first two
approximations.

in Figure 5.78.

| | Section 5.7 Problems

We conclude that the method converges to the root r = 1. The situation is illustrated

(=0.7)% — (-0.7)

Successive values are collected in the following list:

= (-0.7) — = 8.225
=00 - =2
x; = 6.184 x7 = 1.613
x3 = 4.659 xg = 1.306
xs = 3.521 x9 =1.115
X5 = 2.678 Xig = 1.024
x¢ = 2.059 x11 = 1.001

1. Use the Néwton—Raphson method to find a numerical

approximation to the solution of
x2~7=0

that is correct to six decimal places.
2. Use the Newton-Raphson method to find a numerical
approximation to the solution of

et =x

that is correct to six decimal places.

3. Use the Newton-Raphson method to find a numerical
approximation to the solution of

¥ +Inx=0

that is correct to six decimal places.
4. The equation
xt~-5=0
has two solutions. Use the Newton-Raphson method to approxi-
mate the two solutions.
5. Use the Newton-Raphson method to solve the equation

sinx = lx
)

in the interval (0, 7).
6. Let

vx—1 forx>1
-/l-x forx<1

(a) Show that if you use the Newton-Raphson method to solve
f(x) = 0, then the following statement holds: If xo = 1 + A, then
xy=1—h,andifxg=1—h,thenx; =1+ h.

(b) Does the Newton-Raphson method converge? Use a graph
to explain what happens.

f(x)=

7. In Example 4, we discussed the case of finding the root of
xR =0
(a) Given xy, find a formula for |x,|.
(b) Find
lim |x,}

>

(¢) Graph f(x) = x' and illustrate what happens when you
apply the Newton~Raphson method.

8. In Example 5, we considered the equation

xt=x2=0

(a) What happens if you choose
1
Xo = — -2- \/2—

in the Newton-Raphson method? Give a graphical illustration.
(b) Repeat the procedure in (a) for xo = —0.71, and compare
your result with the result we obtained in Example 5 when xp =
—0.70. Give a graphical illustration and explain it in words, What
happens when x; = —0.6? (This is an example in which small
changes in the initial value can drastically change the outcome.)
9. Use the Newton-Raphson method to find a numerical
approximation to the solution of

x*-16=0

when your initial guess is (a) xp = 3 and (b) xo = 4.
10. Suppose that you wish to use the Newton-Raphson method
to solve

fx)=0
numerically. It just so happens that your initial guess xq satisfies
f(x) = 0. What happens to subsequent iterations? Give a
graphical illustration of your results. [Assume that f(xp) # 0.]
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Section 5.8 Problems : |

In Problems 1-40, find the general antiderivative of the given
function.

1 f(x)=4x2=x

3 f(x)y=x*+3x-4

5 fx)y=x*-=3x+1
1. f(x)=4x" = 2x+3

1~}-1+1
9'f(x)"‘ x xz

2. flx) =2~ 5x2

4, f(x) =32 -x*

6. f(x)=2x*+x%—=5x

8. f(x)=x—2x2—3x3-—4x“
, 2.3

10. f(x) =x —;5+';3'

1
11. f(x)=l—;1—2- 12 fWy=x~-—

dy dy 2 2
- , = =1 —19),t > 0
51 o =t(1-1),t2>20 52 T ( )
dy ~1/2 ’ dy -3
— 4- —_—=1l- at Z 0
53. T ettt >0 , 5 T e

58, d_y = sin(n's).O"s s<1
ds

56. Q =cos(2ns5),0<s <1
ds

) 57, %:sec2 (%).-—1<x<1
13, f(x) = 14 f(x)=
s 1+x 1+x1 58, gl=l+sec2(;—),—-l<x<l
5 x
=5x'+ = 16. =x"+=
15 f() =5x"+ x f® 1 x7 In Problems 59-72, solve the initial-value problem.
1 fG) =157 18. f(x)=1+3x 59. Zi =3x% forx > Owithy = 1 whenx =0
19, f(x) =e ™ 20, f(x) =€t e dy x,
==Y 60. — = —, forx >0withy =2whenx =0
* 1 3 ax 3
2. =— 2, f(x)= —
3 f6) ex d e~ 61. dy =2/x,forx > Owithy =2whenx =1
25, f(x) =sin(2x) 26. f(x) = cos(3x) dx
7. f(x) =sin (%) + cos (%) 62. % = Zl/_—x,forx > 1 withy =3 whenx =4
= N _sin(Z dN 1 X
8. f(x) =cos{g)-sin|z 63. — = - fort > Lwith N(1) =10
.4 n
29, f(x)=25in(—x)—3cos(—x> 6. N = ' fort > Owith N(O) =2
2 2 4. TRk ort > Qwi ()
P 4 T
. = - i - 4 -
3. £ 3sm(3x> + cos( 4x> 65. %‘:’— = ¢, for t > 0with W(0) = 1
31, f(x) =sec’(2x) 32. f(x) =sec’(—4x) W
A7 ; =
33, f(x) =sec’ (%) M. f(x) =sec’ (— %) 66. dr e, fort 2 0 with W(0) =2
aw R .
3B, flx)= ______sec,\;:;:osx 36. f(x) = sin’x + cos’ x 67. T ¥, for t > 0 with W(0) =2/3
3 f(x)= T+ + sin(2x) 68. id_“i =e % fort >0 with W) =1
t

38, f(x) =2e>* + sec? (—%)

2

39, f(x) = sec*Gx — 1) +
40, f(x) = 5e¥* —sect(x —3)

In Problems 41-46, assume that a is a positive constant. Find the
general antiderivative of the given function.

e(a+1)x
M fx) = 2. f(x) =sin*(a’x +1)
43 f(x) = o 4. f(x)=a+x
45, f(x) = xo+? — g+ 46, f(x) = 5:—:"’-

In Problems 47-58, find the general solution of the differential
equation.

dy 2 dy

47. ‘E—;—xx>0 48.;;-—;5—,!,,:>0
d

P A R S N - AR Sy
dx dx

dT
69. i = sin(t), fort > 0 with T(0) =3

dar
70, — =cos(xt), fort > 0withT(0) =

dt
7 d_y__e“+e" forx > Owithy =0whenx =0
Cdx 2 = y= enx =
dN
72. - = t='3 fort > 0 with N(0) =

73. Suppose that the length of a certain organism at age x is given
by L(x), which satisfies the differential equation
dL

—0.1x
=e
dx

, x=0

Find L(x) if the limiting length L, is given by

Lo = lim L(x) =

X 00

How big is the organism at age x = 0?




74, Fish are indeterminate growers; that is, their length L(x)
increases with age x throughout their lifetime. If we plot the
growth rate dL/dx versus age x on semilog paper, a straight
line with negative slope results. Set up a differential equation
that relates growth rate and age. Solve this equation under the
assumption that L(0) = §, L(1) = 10, and

lim L(x) =20
=00
Graph the solution L(x) as a function of x.

75. An object is dropped from a height of 100 ft. Its acceleration
is 32 ft/s?. When will the object hit the ground, and what will its
speed be at impact?

76. Suppose that the growth rate of 4 population at time ¢
undergoes seasonal fluctuations according to

d
—% = 3sin(2mrt)
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where t is measured in years and N(¢) denotes the size of the
population at time ¢. If N(0) = 10 (measured in thousands), find
an expression for N(¢). How are the seasonal fluctuations in the
growth rate reflected in the population size?

77. Suppose that the amount of water contained in a plant at time
t is denoted by V(). Due to evaporation, V(t) changes over time.
Suppose that the change in volume at time ¢, measured over a
24-hour period, is proportional to (24 — ), measured in grams
per hour. To offset the water loss, you water the plant at a constant
rate of 4 grams of water per hour.

(a) Explain why

% =-—at(24—-1t)+4

0 < t < 24, for some positive constant a, describes this situation.

(b) Determine the constant a for which the net water loss over a
24-hour period is equal to 0,

| Chapter 5 Key Terms ‘

Discuss the following definitions and

9. Concavity: concave up and concave

17. Asymptotes: horizontal, vertfcal, and

concepts: down
1. Global or absolute extrema

2. Local or relative extrema: local
minimum and local maximum

3. The extreme-value theorem

4, Fermat’s theorem

5. Mean-value theorem

6. Rolle’s theorem

7. Increasing and decreasing function
8. Monotonicity and the first derivative

extrema

derivative

10. Concavity and the second derivative
11. Diminishing return

12. Candidates for local extrema

13. Monotonicity and local extrema

14. The second-derivative test for local

15. Inflection points
16. Inflection points and the second

obtique

18. Using calculus to graph functions
19. L’Hospital’s rule

20. Dynamical systems: cobwebbing
21. Stability of equilibria

22. Newton-Raphson method for finding
TOO!S

23. Antiderivative

f Chapter S Review Problems | |

1. Suppose that

fF)=xe™, x>0
(a) Show that f(0) =0, f(x) > 0 forx > 0, and
lim f(x) =0

(b) Find local and absolute extrema.
(¢) Find inflection points.
(d) Use the foregoing information to graph f(x).
2, Suppose that

fx)=xlnx, x>0
(a) Define f(x) atx = 0so that f(x) is continuous for all x > 0.
{b) Find extrema and inflection points.
(¢) Graph f(x).
3. In Review Problem 17 of Chapter 2 we introduced the hyper-
bolic functions

X

sinhx = , xR
e +e*
coshx = , YeR
2
ef —e™*
tanhyx = ——, xeR
ex+e—x

(a) Show that f(x) = tanhx, x € R, is a strictly increasing
function on R. Evaluate

lim tanhx
X~ —00
and
lim tanhx

X =00
(b) Use your results in (a) to explain why f(x) = tanhx, x € R,
is invertible, and show that its inverse function f~!(x) = tanh™! x
is given by
1+x
1-

1
-1 i ]
[ () 51
What is the domain of f~'(x)?
(¢) Show that

d 1
e

(d) Use your result in (¢) and the facts that

and
cosh®x — sinh®x = |
to show that

d
— tanhx =
dx cosh?® x
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4, Let
X

14+e*’
(a) Show that y = 0is a horizontal asymptote as x — —o0.

f(x): xeR

(b) Show that y = x is an oblique asymptote as x — +o0.

(c) Show that o)
oo lte*(4x
f0 = —q5 ey

(d) Use your result in (c) to show that f(x) has exactly one local
extremurn at x = ¢, where ¢ satisfies the equation

l+c+e =0

[Hint: Use your result in (c) to show that f'(x) = 0 if and only if
14+e*(1+x) =0 Letg(x) =1+ e*(1 +x). Show that g(x) is
strictly increasing for x < 0, that g(0) > 0, and g(—2) < 0. This
implies that g(x) = 0 has exactly one solution on (-2, 0). Since
g(=2) < 0and g(x) is strictly increasing for x < 0, there are no
solutions of g(x) = 0for x < —2. Furthermore, g(x) > 0 for
x > 0; hence, there are no solutions of g(x) = 0 forx > 0.]

numerically . With the help of a calculator, find a numerical
approximation to ¢. [Hint: From (d), you know that ¢ € (-2, 0).]

(D Show that f(x) < Oforx < O.[This implies that, for x < 0,
the graph of f(x) is below the horizontal asymptote y = 0.]

(g) Show that x — f(x) > 0 for x > 0. [This implies that, for
x > 0, the graph of f(x) is below the oblique asymptote y == x.]

(h) Use Yyour results in (a)~(g) and the fact that f(0) = 0 and
f(0) = 5 to sketch the graph of f(x).

5. Recruitment Model Ricker’s curve describes the relationship
between the size of the parental stock of some fish and the number

of recruits. If we denote the size of the parental stock by P and the
number of recruits by R, then Ricker’s curve is given by

R(P)=aPe?” forP>0

where o and § are positive constants. [Note that R(0) = 0; that
is, without parents there are no offspring, Furthermore, R(P) > 0
when P > 0] '

We are interested in the size P of the parental stock
that maximizes the number R(P) of recruits. Since R(P) is
differentiable, we can use its first derivative to solve this problem.
(a) Use the product rule to show that, for P > 0,

R(P)=aePP(1-8P)
R'(P) = —aBe PP (2 - BP)

(b) Show that R'(P) = 0if P = 1/8 and that R"(1/8) < 0.
This shows that R(P) has a local maximum at P = %. Show that

R(1/B) = %e“l > 0.

(c) To find the global maximum, you need to check R(0) and
limp_,  R(P). Show that

R(0)=0 and lim R(P)=0

P—ro
and that this implies that there is a global maximum at P = 1/8.
(d) Show that R(P) has an inflection point at P = 2/B.
(e) Sketch the graph of R(P) fora =2and 8 = I.

" concavity.

6. Gompertz Growth Model The Gompertz growth curve is
sometimes used to study the growth of populations. Its properties
are quite similar to the properties of the logistic growth curve. The :
Gompertz growth curve is given by 1

N(t) = K exp[—ae™] ’

for t > 0, where K and b are positive constants. ‘
(a) Show that N(0) = Ke™ and, hence,

a=In—
N

if No = N(0).

(b) Show that y = K is a horizontal asymptote and that N (¢) <
KifNg<K,NO)=KifNg=K,and N(t) > Kif Ny > K,
(¢) Show that

%Atl =bN(InK ~ InN)

and
d*N dN
—==b—[InK~-InN-1
dr dt in " ]
(d) Use your results in (b) and (c) to show that N(¢) is strictly

ing if No. = K

(e) When does N(t),t > 0, have an inflection point? Discuss its

(0 Graph N(t) when K = 100 and b = 1if (i) Np = 20,
(i) No = 70, and (iii) Ny = 150, and compare your graphs with
your answers in (b)—(e).

7. Monod Growth Model The Monod growth curve is given by

cx
fo) = k+x

for x > 0, where ¢ and k are positive constants. The equation

can be used to describe the specific growth rate of a species as a

function of a resource leve! x,

(a) Show that y = c is a horizontal asymptote for x — oo, The

constant c is called the saturation value.

(b) Show that f(x),x > 0,is strictly increasing and concave
down. Explain why this implies that the saturation value is equal
to the maximal specific growth rate,

(c) Show thatif x = k, then f(x) is equal to half the saturation
value. (For this reason, the constant & is called the half-saturation
constant.)

(d) Sketcha graph of f(x) fork =2and¢ = 5, clearly marking
the saturation value and the half-saturation constant. Compare
this graph with one where k =3 and ¢ = 5.

(e) Without graphing the three curves, explain how you can use

the saturation value and the half-saturation constant to decide
quickly that

10x S 10x S 8x
3+x 54x  S5+4«x

forx > 0. .’

8. Logistic Growth The logistic growth curve is given by h
K

1+ (& ~ e

N@) =

fort > 0, where K, Ny, and r are positive constants and N ()
denotes the population size at time ¢.

(a) Show that N(0) = N, and that y =
asymptote as ¢ — oo.

(b) Show that N(t) < K it Ny < K, N(t) = K if Ny = K,and
Nty > KifNy > K.

K is a horizontal




{c) Show that

and
da*N dN 2N
@ =" (1 - 7?)
(d) Use your results in (b) and (c) to show that N(1) is strictly
increasing if Ny < K and strictly decreasing if Np > K.
(e) Show that if N, < K/2,then N(t),t > 0, has exactly one
inflection point (£*, N(#*)), with * > 0 and

9=k
N(t)_z»

(i.e., half the carrying capacity). What happens if X /2 <Ny < K?
What if Ny > K? Where is the function N(z), t > 0, concave up,
and where is it concave down?

(D) Sketch the graphs of N(¢) for ¢ > O when
() K=100,Ng=10,r =1

(i) K =100, Ny =70,r =1

(it) K =100, Ny =150,r =1
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(b) Solve the initial-value problem given in (a), and determine
the volume of the cell after 10 seconds, '

11, Drug Concentration Suppose the concentration c(t) of a
drug in the bloodstream at time ¢ satisfies

dc
— = —O. -0.3t
ar le
forr > 0.

(a) Solve the differential equation under the assumption that
there will eventually be no trace of the drug in the blood,

(b) How long does it take until the concentration reaches half its
initial value?

12. Resource-Limited Growth Sterner (1997) investigated the
effect of food quality on zooplankton dynamics. In his model,
zooplankton may be limited by either carbon (C) or phosphorus
(P). He argued that when food quantity is low, demand for
carbon increases relative to demand for phosphorus in order to
to satisfy basic metabolic requirements and that there should be a
curve separating C- and P-limited growth when food quantity Cp
(measured in amount of carbon per liter) is graphed as a function
of the C: P ratio of the food, f = Cy:Pr. Hederi i

SKeTCH the Tespective horizontal asymptotes. Mark the inflection
point clearly if it exists.

9. Genetics A population is said to be in Hardy-Weinberg
equilibrium, with respect to a single gene with two alleles A and a,
ifthe three genotypes AA, Aa, and aa have respective frequencies
Paa = 6%, pag = 20(1-8), and Paa = (1—6)* forsome 6 € [0, 1].
Suppose that we take a random sample of size # from a population,
We can show that the probability of observing n, individuals of
type AA, n, individuals of type Aa, and n; individuals of type aa
is given by '
n!

where n! = n(n — Dn-2...3.2.1 (read “n factorial”).
Here, ny + ny + ny = n. This probability depends on 6. There
is a method, called the maximum likelihood method, that can be
used to estimate 6. The principle is simple: We find the value of
6 that maximizes the probability of the observed data, Since the
coefficient

ny ny n3
Pau Pag Paa

n!
nylng!ng!
does not depend on 8, we need only maximize

L®) = pjy Py, paa
(8) Suppose n; =8, n, = 6, and n3 = 3. Compute L(4).

(b) Show that if L(6) is maximal for § = ¢ (read “theta hat”),
then In L(8) is also maximal for§ = 4,

(©) Use your result in (b) to find the value 6 that maximizes L)
for the data given in (a). The number 6 is the maximum likelihood
estimate,

10. Cell Volume Suppose the volume of a cell is increasing at a
‘onstant rate of 10~'2 cm?/s.

{a) If V(1) denotes the cell volume at time 1, set up an initial-value

>roblem that describes this situation if the initial volume is 10~'¢
. }
'm?,

€quation for the curve separating the two regions:

Cr = n

C

aeg ~ St
Here, m denotes the respiration rate, g the ingestion rate, and
ac (ap) the assimilation rate of carbon (phosphorus). C; and Pz

are, respectively, the carbon and the phosphorus content of the
zooplankton.

(a) Show that the graphof y = Cr(f) approaches the horizontal

liney=‘-l%'§asf—->oo.

(b) The graph of Cr(f) has a vertjcal asymptote. Let f = Cr:Pp
(the C:P ratio of the food). Show that the vertical asymptote is at

CF _ C; ap
Pr Pz ac

(¢) Sketch a graph of Cr(f) as a function of I

(d) The graph of Cp( f) separates C-limited (below the curve)
from P-limited (above the curve) growth. Explain why this graph
indicates that when food quantity is low, the demand for carbon
relative to phosphorus increases,

13, Velocity and Distance Neglecting air resistance, the height

(in meters) of an object thrown vertically from the ground with
initial velocity v is given by

1
h(f) = Upt — Eglz

where g = 9.81m/s? is the earth’s gravitational constant and ¢ is
the time (in seconds) elapsed since the object was released

(@) Find the time at which the object reaches its maximum height.
(b) Find the maximum height.

(¢) Find the velocity of the object at the time it reaches its
maximum height.

(d) At what time r > 0 will the object reach the initial height
again?

—-—lﬁ




