
29.2) Let f(x) = cosx which is continuous and differentiable on R from known facts. Consider x, y ∈ R.
By the Mean Value Theorem, there exists a c between x and y such that

f(x)− f(y)

x− y
= f ′(c)⇔ cosx− cos y

x− y
= − sin c

Taking the absolute values of both sides, we obtain

| cosx− cos y|
|x− y|

= | sin c| ≤ 1.

Rearranging, gives us the final result of

| cosx− cos y| ≤ |x− y|.

Since x, y ∈ R were arbitrary, this inequality holds for all x, y ∈ R, proving the claim.

28.8) Let f be differentiable on (a, b).
(ii) Suppose f ′(x) < 0 ∀x ∈ (a, b). Consider x1 and x2 with a < x1 < x2 < b. Since f is differentiable

on (a, b), it is continuous and differentiable on [x1, x2] by Theorem 28.2. By the Mean Value Theorem,
there exists a c ∈ (x1, x2) such that

f(x2)− f(x1)

x2 − x1
= f ′(c) < 0,

where the inequality comes from the assumption. Since x2 − x1 > 0, we have

f(x2)− f(x1) < 0⇒ f(x2) < f(x1).

Thus, f is strictly decreasing.
(iii) Suppose f ′(x) ≥ 0 ∀x ∈ (a, b). Consider x1 and x2 with a < x1 < x2 < b. Since f is differentiable

on (a, b), it is continuous and differentiable on [x1, x2] by Theorem 28.2. By the Mean Value Theorem,
there exists a c ∈ (x1, x2) such that

f(x2)− f(x1)

x2 − x1
= f ′(c) ≥ 0,

where the inequality comes from the assumption. Since x2 − x1 > 0, we have

f(x2)− f(x1) ≥ 0⇒ f(x1) ≤ f(x2).

Thus, f is increasing.
(iv) Suppose f ′(x) ≤ 0 ∀x ∈ (a, b). Consider x1 and x2 with a < x1 < x2 < b. Since f is differentiable

on (a, b), it is continuous and differentiable on [x1, x2] by Theorem 28.2. By the Mean Value Theorem,
there exists a c ∈ (x1, x2) such that

f(x2)− f(x1)

x2 − x1
= f ′(c) ≤ 0,

where the inequality comes from the assumption. Since x2 − x1 > 0, we have

f(x2)− f(x1) ≤ 0⇒ f(x2) ≤ f(x1).
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Thus, f is decreasing.

28.14) Suppose f is differentiable on R, 1 ≤ f ′(x) ≤ 2 ∀x ∈ R, and f(0) = 0. For x = 0, the inequality
x ≤ f(x) ≤ 2x hold trivially.

Let x > 0. Since f is differentiable on R, it is continuous on R by Theorem 28.2. By the Mean Value
Theorem, there exists a c ∈ (0, x) such that

f(x)− f(0)

x− 0
= f ′(c)⇔ f ′(c) =

f(x)

x

Since 1 ≤ f ′(x) ≤ 2 ∀x ∈ R, we have

1 ≤ f(x)

x
≤ 2⇔ x ≤ f(x) ≤ 2x

Since x > 0 was arbitrary, the inequality holds for all x > 0. Combining this with the x = 0 case, we
obtain

x ≤ f(x) ≤ 2x ∀x ≥ 0,

proving the claim.

28.18) Let f be differentiable on R with a := sup{|f ′(x)| : x ∈ R} < 1. Choose s0 ∈ R and define
sequence {sn} by sn = f(sx−1) for n ≥ 1. Since f is differentiable on R, it is continuous on R by Theorem
28.2. Consider n ∈ N. By the Mean Value Theorem, there exists a c between sn and sn−1 such that

f(sn)− f(sn−1)

sn − sn−1
= f ′(c)⇔ sn+1 − sn

sn − sn−1
= f ′(c)⇔ |sn+1 − sn|

|sn − sn−1|
= |f ′(c)| ≤ a,

by the assumption. Rearranging this inequality and the fact that n ∈ N was arbitrary, gives us

|sn+1 − sn| ≤ a|sn − sn−1| for n ≥ 1.

Notice by repeated use of the above inequality, we obtain

|sn − sn−1| ≤ a|sn−1 − sn−2| ≤ a|sn−2 − sn−3| ≤ ... ≤ an−1|s1 − s0| ∀n ∈ N

Consider m,n ∈ N where without loss of generality n > m, with the above inequality, we have

|sn − sm| = |sn − sn−1 + sn+1 − sn−2 + ...+ sm+1 − sm|

≤ |sn − sn−1|+ |sn+1 − sn−2|+ ...+ |sm+1 − sm|

≤ an−1|s1 − s0|+ an−2|s1 − s0|+ ...+ am|s1 − s0|

≤ am
(

n−m−1∑
k=0

ak

)
|s1 − s0| ≤ am

( ∞∑
k=0

ak

)
|s1 − s0| =

am

1− a
|s1 − s0|,

since its a geometric series with a < 1. Then, we have the following

|sn − sm| ≤
am

1− a
|s1 − s0|. (1)
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Now we are going to prove that {sn} is a Cauchy sequence. Let ε > 0 be given. From (1), we have the
following

|sn − sm| < ε if |sn − sm| ≤
am

1− a
|s1 − s0|. < ε

for m,n ∈ N where n > m. But

am

1− a
|s1 − s0| < ε if and only if m > loga

(
(1− a)ε

|s1 − s0|

)
.

Choose

N = loga

(
(1− a)ε

|s1 − s0|

)
.

If m,n > N with n > m, then
|sn − sm| < ε

Thus, the sequence {sn} is Cauchy. Since R is complete, the sequence {sn} converges.
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