21.6) Suppose $f: S_1 \to S_2$ and $g: S_2 \to S_3$ are both continuous. Consider the function $g \circ f: S_1 \to S_3$. Let $U \subseteq S_3$ be open. Since g is continuous, $g^{-1}(U) \subseteq S_2$ is open by Theorem 21.3. Since f is continuous, $f^{-1}(g^{-1}(U)) \subseteq S_1$ is open by another application of Theorem 21.3. Then $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ by the definition of composition and inverse. Thus, $(g \circ f)^{-1}(U) \subseteq S_1$ is open. Since U was arbitrary, this holds for all $U \subseteq S_3$. Therefore, $g \circ f$ is continuous by Theorem 21.3.

21.8) Suppose $f: S \to S^*$ is uniformly continuous and $\{s_n\} \subseteq S$ is a Cauchy sequence. Let $\epsilon > 0$ be given. Since f is uniformly continuous,

$$\exists \delta > 0 \text{ such that } \forall x, y \in S \text{ with } d(x, y) < \delta \Rightarrow d^*(f(x), f(y)) < \epsilon. \tag{1}$$

Since $\{s_n\}$ is Cauchy, for this δ

$$\exists N \text{ such that } \forall m, n > N \Rightarrow d(s_m, s_n) < \delta.$$

Then, for this N, we have

$$\forall m, n > N \Rightarrow d(s_m, s_n) < \delta \Rightarrow d^*(f(s_m), f(s_n)) < \epsilon$$

by (1). Therefore, $\{f(s_n)\}\$ is a Cauchy sequence as well.

21.10) (a) Let $f:(0,1)\to [0,1]$ be defined as

$$f(x) = \begin{cases} 0 & \text{if } 0 < x < \frac{1}{2} \\ 2x - \frac{1}{2} & \text{if } \frac{1}{2} \le x \le \frac{3}{4} \\ 1 & \text{if } \frac{3}{4} < x < 1 \end{cases}$$

- (b) Let $g:(0,1)\to\mathbb{R}$ be defined as $g(x)=\tan(\pi x-\frac{\pi}{2})$.
- (c) Let $h:[01]\cup[2,3]\to[0,1]$ be defined as $h(x)=-\frac{1}{2}x^2+\frac{3}{2}x$