
23.6) (a) Suppose that
∑
anx

n has a finite radius of convergence R <∞ and an ≥ 0 ∀n. Also, assume
the series converges at x = R, which by definition of convergence means

∑
anR

n <∞. We want to show∑
an(−R)n <∞. Notice that ∑

an(−R)n =
∑

(−1)nanR
n

is an alternating series. Since
∑
anx

n converges and an ≥ 0 ∀n, the sequence {anRn} must be positive,
decreasing, and lim

n→∞
anR

n = 0. By the Alternating Series Test, the series
∑
an(−R)n converges. Thus,

the power series
∑
anx

n converges at x = −R.

23.8) Let the sequence of functions {fn} be defined by fn(x) = 1
n sinnx ∀n.

(a) Let x ∈ R. Then

lim
n→∞

fn(x) = lim
n→∞

sinnx

n

Notice we have the following bound

− 1

n
≤ sinnx

n
≤ 1

n
∀n

Clearly, the following limits are true

lim
n→∞

1

n
= lim

n→∞
− 1

n
= 0.

By the Squeeze Theorem (Exercise 8.5), we have

lim
n→∞

sinnx

n
= 0.

Since x ∈ R was arbitrary,
lim
n→∞

fn(x) = 0 ∀x ∈ R

(b) Consider the sequence of derivative functions {f ′n} which are f ′n(x) = cosnx ∀n.
For x = π, we have f ′n(π) = cosnπ ∀n. There’s a difference in outputs when n is odd verses even. In

particular,

f ′n(π) =

{
−1 if n is odd

1 if n is even

The sequence {f ′n(π)} alternates between 1 and -1, so the limit of this sequence does not exist. Conse-
quently, lim

n→∞
f ′n(x) cannot exist.
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