
24.2) For x ∈ [0,∞), let the sequence of functions {fn} be defined by fn(x) =
x

n
∀n.

(a) For x = 0, we have
fn(0) = 0 ∀n⇒ {fn(0)} → 0.

For x ∈ (0,∞), we have

lim
n→∞

fn(x) = lim
n→∞

x

n
= 0.

Thus, we choose to define f(x) = 0 ∀x ∈ [0,∞) so that {fn} → f on [0,∞).

(b) For a given n ∈ N, we have

sup{|f(x)− fn(x)| : x ∈ [0, 1]} = sup{x
n

: x ∈ [0, 1]} =
1

n

Then

lim
n→∞

sup{|f(x)− fn(x)| : x ∈ [0, 1]} = lim
n→∞

1

n
= 0

Thus, {fn}⇒ f on [0, 1] by Proposition in Remark 24.4.

(c) For a given n ∈ N, we have

sup{|f(x)− fn(x)| : x ∈ [0,∞)} = sup{x
n

: x ∈ [0,∞)} =∞.

Then
lim
n→∞

sup{|f(x)− fn(x)| : x ∈ [0,∞)} =∞.

Thus, {fn} does not uniformly converge to f on [0,∞) by Proposition in Remark 24.4.

24.6) Let the sequence of functions {fn} be fn(x) =

(
x− 1

n

)2

be defined on x ∈ [0, 1].

(a) Let x ∈ [0, 1]. Then

lim
n→∞

fn(x) = lim
n→∞

(
x− 1

n

)2

= x2

Thus, we choose to define f(x) = x2 ∀x ∈ [0, 1] so that {fn} → f on x ∈ [0, 1].

(b) Yes. Let ε > 0 be given and x ∈ [0, 1]. Then we have

|fn(x)− f(x)| =
∣∣∣∣(x− 1

n
)2 − x2

∣∣∣∣ =

∣∣∣∣ 1

n2
− 2x

n

∣∣∣∣ ≤ 1

n2
− 2

n

from the Triangle Inequality and x ∈ [0, 1]. Since n2 > n ∀n ∈ N, we have the following bound

|fn(x)− f(x)| ≤ 1

n2
− 2

n
<

3

n
.

So

|fn(x)− f(x)| < ε⇔ 3

n
< ε⇔ n >

3

ε

Choose N =
3

ε
. Thus,

∀n > N ⇒ |fn(x)− f(x)| < ε

1



Since x ∈ [0, 1] was arbitrary, it holds for all x ∈ [0, 1]. Therefore, {fn}⇒ f on [0, 1] by definition.

24.8) Let the sequence of functions {fn} be fn(x) =
n∑

k=0

xk be defined on x ∈ [0, 1].

(a) For x = 1, fn(1) = n ∀n. Clearly,

lim
n→∞

fn(1) =∞,

so the limit does not exist. Therefore, the sequence {fn} does not converge pointwise on [0, 1].

(b) No. Since {fn} does not converge pointwise on [0, 1] (see part a), {fn} cannot converge uniformly
[0, 1].

24.10) Suppose {fn} ⇒ f and {gn} ⇒ g on a set S. Consider the sequence of functions {fn + gn} on
S. Let ε > 0 be given and x ∈ S. Notice

|(fn + gn)(x)− (f + g)(x)| = |fn(x)− f(x) + gn(x)− g(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)|

by the Triangle Inequality.

Consider the number
ε

2
> 0. Since {fn}⇒ f , there exists N1 such that

∀n > N1 ⇒ |fn(x)− f(x)| < ε

2
. (1)

Also, since {gn}⇒ g, there exists N2 such that

∀n > N2 ⇒ |gn(x)− g(x)| < ε

2
. (2)

Choose N = max{N1, N2}. Then

∀n > N ⇒ |(fn + gn)(x)− (f + g)(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| < ε

2
+
ε

2
= ε

by (1) and (2). Since x ∈ S was arbitrary, it holds for all x ∈ S. Therefore, {fn + gn}⇒ f + g

2


