
25.2) Let the sequence of functions {fn} be defined by fn(x) =
xn

n
on [−1, 1]. First we find the pointwise

limit f . Let x ∈ [−1, 1]. Then we have

lim
n→∞

fn(x) = lim
n→∞

xn

n
.

Since |x| ≤ 1, the following inequality holds

− 1

n
≤ xn

n
≤ 1

n
∀n.

Clearly, the following limits are true

lim
x→∞

1

n
= lim

x→∞
− 1

n
= 0.

Then,

lim
n→∞

xn

n
= 0

by the Squeeze Theorem (Exercise 8.5). Thus, we choose to define f(x) = 0 ∀x ∈ [−1, 1] so that {fn} → f
on x ∈ [−1, 1].

Now we show the uniform convergence. Let ε > 0 be given and x ∈ [−1, 1]. We have

|fn(x)− f(x)| =
∣∣∣∣xnn − 0

∣∣∣∣ =

∣∣∣∣xnn
∣∣∣∣ ≤ 1

n

So

|fn(x)− f(x)| < ε⇔ 1

n
< ε⇔ n >

1

ε

Choose N =
1

ε
. Thus,

∀n > N ⇒ |fn(x)− f(x)| < ε

Since x ∈ [−1, 1] was arbitrary, it holds for all x ∈ [−1, 1]. Therefore, {fn}⇒ f on [−1, 1] by definition.

25.4) Let the sequence of functions {fn} on S ⊆ R. Suppose {fn}⇒ f on S. Let ε > 0 be given. Note

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)| ∀x ∈ S

by the Triangle Inequality.

Consider the number
ε

2
> 0. Since {fn}⇒ f , there exists N such that

∀n > N ∀x ∈ S ⇒ |fn(x)− f(x)| < ε

2
. (1)

Moreover, we have

∀m > N ∀x ∈ S ⇒ |fm(x)− f(x)| < ε

2
. (2)

Thus,

∀m,n > N ∀x ∈ S ⇒ |fn(x)− fm(x)| ≤ |fn(x)− f(x)|+ |fm(x)− f(x)| < ε

2
+
ε

2
= ε

1



by (1) and (2). Therefore, {fn} is uniformly Cauchy on S by definition.

25.6) (a) Suppose
∑
|ak| < ∞ (i.e. a convergent series of numbers). Here we have a sequence {|ak|}

of nonnegative numbers with
∑
|ak| <∞. Consider the power series

∑
akx

k on [−1, 1]. Since |x| ≤ 1, we
have

|akxk| = |ak||xk| ≤ |ak| ∀k and ∀x ∈ [−1, 1].

Thus, the power series
∑
akx

k converges uniformly on [−1, 1] by the Weierstrass M-Test. Clearly, a power
series is a series of continuous functions (since they are just polynomials). Therefore,

∑
akx

k converges
uniformly to a continuous functions by Theorem 25.5.

(b) Yes. Since ak =
1

k2
> 0 ∀k, and

∑ 1

k2
is a convergent p-series, the power series

∑ 1

k2
xk converges

uniformly to a continuous function on [−1, 1] by the assertion proved in part (a).

25.12) Suppose
∑
gk is a series of continuous functions gk on [a, b] that converges uniformly to g on

[a, b]. Define the corresponding sequence of partial sums {fn} defined by fn(x) =
∑n

k=1 gk(x) for all n
and x ∈ [a, b]. Notice for all n that fn is continuous (since addition preserves continuity), and we have
{fn} ⇒ g on [a, b] by definition of uniform convergence on a series of functions. From Theorem 25.2, we
have∫ b

a
g(x) dx = lim

n→∞

∫ b

a
fn(x) dx = lim

n→∞

∫ b

a

n∑
k=1

gk(x) dx = lim
n→∞

n∑
k=1

∫ b

a
gk(x) dx =

∞∑
k=1

∫ b

a
gk(x) dx

since the integral ’distributes’ over addition (Theorem 35.8), proving the claim.

25.14) Suppose
∑
gk is a series of functions that converges uniformly to g on S, and h is a bounded

function on S. h is bounded on S means there exists an M ∈ R such that |h(x)| ≤M ∀x ∈ S. Notice

|
n∑

k=1

h(x)gk(x)− h(x)g(x)| = |h(x)||
n∑

k=1

gk(x)− g(x)| ≤M |
n∑

k=1

gk(x)− g(x)|

Let ε > 0 be given, and consider the value
ε

M
> 0. Since the series of functions converges uniformly to

g on S, there exists an N such that

∀n > N ∀x ∈ S ⇒ |
n∑

k=1

gk(x)− g(x)| < ε

M
.

For this N , we have

∀n > N ∀x ∈ S ⇒ |
n∑

k=1

h(x)gk(x)− h(x)g(x)| ≤M |
n∑

k=1

gk(x)− g(x)| < M
ε

M
= ε.

Therefore, the series of functions
∑
hgk converges uniformly to hg on S by definition.
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