- 1.) Consider the flat region R lying inside the circle $x^2 + (y-2)^2 = 4$ and above the line y = 2. Sketch the region and describe R using
 - a.) vertical cross sections.

b.) horizontal cross sections.

c.) polar coordinates.

2.) Consider the solid region R inside the cylinder $x^2 + y^2 = 9$ which is bounded above by the plane z = 4 and below by the plane z = 0. Sketch the region and describe R using cylindrical coordinates.

Evaluate each of the following double integrals.

a.)
$$\int_0^3 \int_0^2 xy^2 \, dx \, dy$$

b.)
$$\int_0^6 \int_{(1/3)x}^2 \sin(y^2) \, dy \, dx$$

4.) Consider the flat region R bounded by the graphs of $y^2 = 2x$ and x + y = 4. Assume the density at the point P = (x, y) is given by $\delta(x, y) = x^2 + y^2$. SET UP BUT DO NOT EVALUATE the double integral which represent the mass of R.

6.) Set up and EVALUATE a triple integral using spherical coordinates representing the volume of a right circular cone of radius a and height h.

7.) Consider the solid region R enclosed by the hemisphere $z = \sqrt{9 - x^2 - y^2}$. SET UP BUT DO NOT EVALUATE triple integrals in spherical coordinates which represent the average value of function f(x, y, z) = x + z over region R.

The following EXTRA CREDIT PROBLEM is worth TIONAL.

. This problem is OP-

1.) Consider the solid region R bounded below by the plane z=0, on the sides by the cylinder $(x-1)^2+y^2=1$, and on the top by the cone $z=\sqrt{x^2+y^2}$. SET UP BUT DO NOT EVALUATE a triple in spherical coordinates, which represents the volume of R.