
The formulas in Table 16.1 then give

With to the nearest hundredth, the center of mass is (0, 0, 0.57).

Line Integrals in the Plane

There is an interesting geometric interpretation for line integrals in the plane. If C is a
smooth curve in the xy-plane parametrized by we gener-
ate a cylindrical surface by moving a straight line along C orthogonal to the plane, holding
the line parallel to the z-axis, as in Section 12.6. If is a nonnegative continuous
function over a region in the plane containing the curve C, then the graph of ƒ is a surface
that lies above the plane. The cylinder cuts through this surface, forming a curve on it that
lies above the curve C and follows its winding nature. The part of the cylindrical surface
that lies beneath the surface curve and above the xy-plane is like a “winding wall” or
“fence” standing on the curve C and orthogonal to the plane. At any point (x, y) along the
curve, the height of the wall is We show the wall in Figure 16.5, where the “top” of
the wall is the curve lying on the surface (We do not display the surface
formed by the graph of ƒ in the figure, only the curve on it that is cut out by the cylinder.)
From the definition

where as we see that the line integral is the area of the wall
shown in the figure.

1C ƒ dsn : q ,¢sk : 0

LC
 ƒ ds =  lim

n: q
 an
k = 1

 ƒsxk, ykd ¢sk,

z = ƒsx, yd.
ƒsx, yd.

z = ƒsx, yd

rstd = xstdi + ystdj, a … t … b,

z

 z =
Mxy

M = 8 - p
2

# 1
2p - 2 = 8 - p

4p - 4 L 0.57.

 = L
p

0
s2 sin t - sin2 td dt = 8 - p

2

 Mxy = LC
 zd ds = LC

 zs2 - zd ds = L
p

0
ssin tds2 - sin td dt

 M = LC
 d ds = LC

 s2 - zd ds = L
p

0
s2 - sin td dt = 2p - 2

16.1 Line Integrals 923

FIGURE 16.5 The line integral 
gives the area of the portion of the
cylindrical surface or “wall” beneath
z = ƒsx, yd Ú 0.

1C ƒ ds

Exercises 16.1

Graphs of Vector Equations
Match the vector equations in Exercises 1–8 with the graphs (a)–(h)
given here.

a. b.

y

z

x

2

1

y

z

x

1

–1

c. d.

y

z

x

2

2

(2, 2, 2)

y

z

x

1 1

z

y

x

t ! a

t ! b

(x, y)

height f (x, y)

Plane curve C∆sk
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924 Chapter 16: Integration in Vector Fields

e. f.

g. h.

1.

2.

3.

4.

5.

6.

7.

8.

Evaluating Line Integrals over Space Curves
9. Evaluate where C is the straight-line segment

from (0, 1, 0) to (1, 0, 0).

10. Evaluate where C is the straight-line seg-
ment from (0, 1, 1) to (1, 0, 1).

11. Evaluate along the curve 

12. Evaluate along the curve 

13. Find the line integral of over the straight-
line segment from (1, 2, 3) to 

14. Find the line integral of over
the curve 

15. Integrate over the path from (0, 0, 0)
to (1, 1, 1) (see accompanying figure) given by

 C2: rstd = i + j + tk,  0 … t … 1

 C1: rstd = ti + t 2j,  0 … t … 1

ƒsx, y, zd = x + 1y - z2

rstd = ti + tj + tk, 1 … t … q.
ƒsx, y, zd = 23>sx2 + y2 + z2d

s0, -1, 1d.
ƒsx, y, zd = x + y + z

s4 sin tdj + 3tk, -2p … t … 2p.
rstd = s4 cos tdi +1C 2x2 + y2 ds

t j + s2 - 2tdk, 0 … t … 1.
rstd = 2ti +1C sxy + y + zd ds

x = t, y = s1 - td, z = 1,
1C sx - y + z - 2d ds

x = t, y = s1 - td, z = 0,
1C sx + yd ds

rstd = s2 cos tdi + s2 sin tdk,  0 … t … p

rstd = st2 - 1dj + 2tk,  -1 … t … 1

rstd = t j + s2 - 2tdk,  0 … t … 1

rstd = ti + tj + tk,  0 … t … 2

rstd = ti,  -1 … t … 1

rstd = s2 cos tdi + s2 sin tdj,  0 … t … 2p

rstd = i + j + tk,  -1 … t … 1

rstd = ti + s1 - tdj,  0 … t … 1

y

z

x

2

2

–2

y

z

x

2

2

y

z

x

2

–2

–1

y

z

x

1
1

(1, 1, 1)

(1, 1, –1)

16. Integrate over the path from (0, 0, 0)
to (1, 1, 1) (see accompanying figure) given by

17. Integrate over the path

18. Integrate over the circle

Line Integrals over Plane Curves
19. Evaluate where C is

a. the straight-line segment from (0, 0) to (4, 2).

b. the parabolic curve from (0, 0) to (2, 4).

20. Evaluate where C is

a. the straight-line segment from (0, 0) to (1, 4).

b. is the line segment from (0, 0) to (1, 0) and is
the line segment from (1, 0) to (1, 2).

21. Find the line integral of along the curve

22. Find the line integral of along the curve

23. Evaluate , where C is the curve for 

24. Find the line integral of along the curve

25. Evaluate where C is given in the accompanying
figure.

x

y

y 5 x2

y 5 x

(0, 0)

(1, 1)
C

1C Ax + 2y B  ds

1>2 … t … 1.rstd = t3i + t4j,
ƒsx, yd = 2y>x1 … t … 2.

x = t2, y = t3,LC
 

x2

y4>3 ds

rstd = (cos t)i + (sin t)j, 0 … t … 2p.
ƒsx, yd = x - y + 3

-1 … t … 2.rstd = 4ti - 3tj,
ƒsx, yd = yex2

C2C1 ´ C2; C1

x = t, y = 4t,
1C 2x + 2y ds,

x = t, y = t2,

x = t, y = t>2,
1C x ds,

rstd = sa cos tdj + sa sin tdk,  0 … t … 2p.

ƒsx, y, zd = -2x2 + z2

rstd = ti + tj + tk, 0 6 a … t … b.
ƒsx, y, zd = sx + y + zd>sx2 + y2 + z2d

 C3: rstd = ti + j + k,  0 … t … 1

 C2: rstd = tj + k,  0 … t … 1

 C1: rstd = tk,  0 … t … 1

ƒsx, y, zd = x + 1y - z2

z

y

x

(a)
(1, 1, 0)

(1, 1, 1)
(0, 0, 0)

z

y
x

(b)

(0, 0, 0)
(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

C1

C1

C2

C2

C3

The paths of integration for Exercises 15 and 16.
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26. Evaluate where C is given in the accompanying

figure.

In Exercises 27–30, integrate ƒ over the given curve.

27.

28. from (1, 1 2) to
(0, 0)

29. in the first quadrant from
(2, 0) to (0, 2)

30. in the first quadrant from
(0, 2) to 

31. Find the area of one side of the “winding wall” standing orthogo-
nally on the curve and beneath the curve on 
the surface 

32. Find the area of one side of the “wall” standing orthogonally on
the curve and beneath the curve on the
surface 

Masses and Moments
33. Mass of a wire Find the mass of a wire that lies along the curve

if the density is 

34. Center of mass of a curved wire A wire of density
lies along the curve 

Find its center of mass. Then sketch the curve
and center of mass together.

35. Mass of wire with variable density Find the mass of a thin
wire lying along the curve 

if the density is (a) and (b)

36. Center of mass of wire with variable density Find the center
of mass of a thin wire lying along the curve 

if the density is 

37. Moment of inertia of wire hoop A circular wire hoop of con-
stant density lies along the circle in the xy-plane.
Find the hoop’s moment of inertia about the z-axis.

38. Inertia of a slender rod A slender rod of constant density lies
along the line segment in the s2 - 2tdk, 0 … t … 1,rstd = tj +

x 2 + y 2 = a 2d

d = 315 + t.s2>3dt3>2k, 0 … t … 2,
rstd = ti + 2tj +

d = 1.d = 3t0 … t … 1,
rstd = 22ti + 22tj + s4 - t2dk,

2tk, -1 … t … 1.
rstd = st2 - 1dj +dsx, y, zd = 152y + 2

d = s3>2dt.rstd = st2 - 1dj + 2tk, 0 … t … 1,

ƒsx, yd = 4 + 3x + 2y.
2x + 3y = 6, 0 … x … 6,

ƒsx, yd = x + 2y .
y = x2, 0 … x … 2,

s12, 12d
ƒsx, yd = x2 - y, C: x2 + y2 = 4

ƒsx, yd = x + y, C: x2 + y2 = 4

>ƒsx, yd = sx + y2d>21 + x2, C: y = x2>2ƒsx, yd = x3>y, C: y = x2>2, 0 … x … 2

x

y

(0, 0)

(0, 1)

(1, 0)

(1, 1)

LC
 

1
x2 + y2 + 1

 ds

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 925

yz-plane. Find the moments of inertia of the rod about the three
coordinate axes.

39. Two springs of constant density A spring of constant density 
lies along the helix

a. Find .

b. Suppose that you have another spring of constant density 
that is twice as long as the spring in part (a) and lies along the
helix for Do you expect for the longer spring
to be the same as that for the shorter one, or should it be 
different? Check your prediction by calculating for the 
longer spring.

40. Wire of constant density A wire of constant density lies
along the curve

Find 

41. The arch in Example 3 Find for the arch in Example 3.

42. Center of mass and moments of inertia for wire with variable
density Find the center of mass and the moments of inertia
about the coordinate axes of a thin wire lying along the curve

if the density is .

COMPUTER EXPLORATIONS
In Exercises 43–46, use a CAS to perform the following steps to eval-
uate the line integrals.

a. Find for the path 

b. Express the integrand as a function of
the parameter t.

c. Evaluate using Equation (2) in the text.

43.

44.

45.

46.

0 … t … 2pt5>2k, 

ƒsx, y, zd = a1 + 9
4

 z1>3b1>4
; rstd = scos 2tdi + ssin 2tdj +

0 … t … 2p
ƒsx, y, zd = x1y - 3z2 ; rstd = scos 2tdi + ssin 2tdj + 5tk,

0 … t … 2

ƒsx, y, zd = 21 + x3 + 5y3 ; rstd = ti + 1
3

 t 2j + 1tk, 

0 … t … 2
ƒsx, y, zd = 21 + 30x2 + 10y ; rstd = ti + t 2j + 3t 2k, 

1C  ƒ ds

ƒsgstd, hstd, kstdd ƒ vstd ƒ
kstdk.

rstd = gstdi + hstdj +ds = ƒ vstd ƒ  dt

d = 1>st + 1d

rstd = ti + 222
3

 t3>2j + t2

2
 k, 0 … t … 2,

Ix

z and Iz.

rstd = st cos tdi + st sin tdj + A222>3 B t3>2k, 0 … t … 1.

d = 1

Iz

Iz0 … t … 4p.

d

Iz

rstd = scos tdi + ssin tdj + tk, 0 … t … 2p.

d

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux

Gravitational and electric forces have both a direction and a magnitude. They are repre-
sented by a vector at each point in their domain, producing a vector field. In this section
we show how to compute the work done in moving an object through such a field by using
a line integral involving the vector field. We also discuss velocity fields, such as the vector
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EXAMPLE 8 Find the flux of across the circle in the
xy-plane. (The vector field and curve were shown previously in Figure 16.19.)

Solution The parametrization traces the circle
counterclockwise exactly once. We can therefore use this parametrization in Equation (7).
With

we find

Eq. (7)

The flux of F across the circle is Since the answer is positive, the net flow across the
curve is outward. A net inward flow would have given a negative flux.

p.

 = L
2p

0
 cos2 t dt = L

2p

0
 
1 + cos 2t

2  dt = c t2 + sin 2t
4 d

0

2p

= p.

 Flux = LC
 M dy - N dx = L

2p

0
 scos2 t - sin t cos t + cos t sin td dt

 N = x = cos t,   dx = dscos td = -sin t dt, 

 M = x - y = cos t - sin t,   dy = dssin td = cos t dt

rstd = scos tdi + ssin tdj, 0 … t … 2p,

x2 + y2 = 1F = sx - ydi + xj

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 935

Calculating Flux Across a Smooth Closed Plane Curve

(7)

The integral can be evaluated from any smooth parametrization 
that traces C counterclockwise exactly once.a … t … b,

x = gstd, y = hstd, 

sFlux of F = Mi + Nj across Cd = F
C

 M dy - N dx

Exercises 16.2

Vector Fields
Find the gradient fields of the functions in Exercises 1–4.

1.

2.

3.

4.

5. Give a formula for the vector field in
the plane that has the property that F points toward the origin with
magnitude inversely proportional to the square of the distance
from (x, y) to the origin. (The field is not defined at (0, 0).)

6. Give a formula for the vector field in
the plane that has the properties that at (0, 0) and that at
any other point (a, b), F is tangent to the circle 

and points in the clockwise direction with magnitude

Line Integrals of Vector Fields
In Exercises 7–12, find the line integrals of F from (0, 0, 0) to
(1, 1, 1) over each of the following paths in the accompanying figure.

ƒ F ƒ = 2a2 + b2.
a2 + b2

x 2 + y 2 =
F = 0

F = Msx, ydi + Nsx, ydj

F = Msx, ydi + Nsx, ydj
gsx, y, zd = xy + yz + xz

gsx, y, zd = ez - ln sx2 + y2d
ƒsx, y, zd = ln2x2 + y2 + z2

ƒsx, y, zd = sx2 + y2 + z2d-1>2
a. The straight-line path 

b. The curved path 

c. The path consisting of the line segment from (0, 0, 0)
to (1, 1, 0) followed by the segment from (1, 1, 0) to (1, 1, 1)

7. 8.

9. 10.

11.

12.

z

y

x

(0, 0, 0)

(1, 1, 0)

(1, 1, 1)C1

C2

C3

C4

F = s y + zdi + sz + xdj + sx + ydk
F = s3x2 - 3xdi + 3zj + k

F = xyi + yzj + xzkF = 1zi - 2xj + 1yk

F = [1>sx2 + 1d]jF = 3yi + 2xj + 4zk

C3 ´ C4

rstd = ti + t2j + t4k,  0 … t … 1C2:

rstd = ti + tj + tk,  0 … t … 1C1:
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Line Integrals with Respect to x, y, and z
In Exercises 13–16, find the line integrals along the given path C.

13. , where C: for 

14. , where C: for 

15. , where C is given in the accompanying figure.

16. , where C is given in the accompanying figure.

17. Along the curve evaluate each
of the following integrals.

a.

b.

c.

18. Along the curve 
evaluate each of the following integrals.

a. b. c.

Work
In Exercises 19–22, find the work done by F over the curve in the
direction of increasing t.

19.

20.

21.

22.
rstd = ssin tdi + scos tdj + st>6dk,  0 … t … 2p
F = 6zi + y2j + 12xk 

rstd = ssin tdi + scos tdj + tk,  0 … t … 2p
F = zi + xj + yk 

rstd = scos tdi + ssin tdj + st>6dk,  0 … t … 2p
F = 2yi + 3xj + sx + ydk 
rstd = ti + t2j + tk,  0 … t … 1
F = xyi + yj - yzk

LC
 xyz dzLC

 xz dyLC
 xz dx

r(t) = (cos t)i + (sin t)j - (cos t)k, 0 … t … p,
LC

 (x + y - z) dz

LC
 (x + y - z) dy

LC
 (x + y - z) dx

r(t) = ti - j + t2k, 0 … t … 1,

x

y

(0, 0)

(0, 3) (1, 3)
C

y 5 3x

LC
 2x + y dx

x

y

(0, 0) (3, 0)

(3, 3)

C

LC
 (x2 + y2) dy

1 … t … 2x = t, y = t2,LC
 
x
y dy

0 … t … 3x = t, y = 2t + 1,LC
 (x - y) dx

936 Chapter 16: Integration in Vector Fields

Line Integrals in the Plane
23. Evaluate along the curve from

to (2, 4).

24. Evaluate counterclockwise around
the triangle with vertices (0, 0), (1, 0), and (0, 1).

25. Evaluate for the vector field along the
curve from (4, 2) to 

26. Evaluate for the vector field counter-
clockwise along the unit circle from (1, 0) to (0, 1).

Work, Circulation, and Flux in the Plane
27. Work Find the work done by the force 

over the straight line from (1, 1) to (2, 3).

28. Work Find the work done by the gradient of 
counterclockwise around the circle from (2, 0) to
itself.

29. Circulation and flux Find the circulation and flux of the fields

around and across each of the following curves.

a. The circle 

b. The ellipse 

30. Flux across a circle Find the flux of the fields

across the circle

In Exercises 31–34, find the circulation and flux of the field F around
and across the closed semicircular path that consists of the semicircu-
lar arch followed by the
line segment 

31. 32.

33. 34.

35. Flow integrals Find the flow of the velocity field 
along each of the following paths from (1, 0)

to in the xy-plane.

a. The upper half of the circle 

b. The line segment from (1, 0) to 

c. The line segment from (1, 0) to followed by the line
segment from to 

36. Flux across a triangle Find the flux of the field F in Exercise
35 outward across the triangle with vertices (1, 0), (0, 1), 

37. Find the flow of the velocity field along each of
the following paths from (0, 0) to (2, 4).

a. b.

c. Use any path from (0, 0) to (2, 4) different from parts (a) 
and (b).

x

y

(0, 0)

(2, 4)

2

y 5 x2

x

y

(0, 0)

(2, 4)

2

y 5 2x

F = y2i + 2xyj

s -1, 0d.

s -1, 0ds0, -1d
s0, -1d
s -1, 0d

x2 + y2 = 1

s -1, 0d
sx2 + y2djsx + ydi -

F =
F = -y2i + x2jF = -yi + xj

F = x2i + y2jF = xi + yj

r2std = ti, -a … t … a.
r1std = sa cos tdi + sa sin tdj, 0 … t … p,

rstd = sa cos tdi + sa sin tdj,  0 … t … 2p.

F1 = 2xi - 3yj and F2 = 2xi + sx - ydj

rstd = scos tdi + s4 sin tdj,  0 … t … 2p

rstd = scos tdi + ssin tdj,  0 … t … 2p

F1 = xi + yj and F2 = -yi + xj

x2 + y2 = 4
ƒsx, yd = sx + yd2

F = xyi + sy - xdj

x2 + y2 = 1
F = yi - xj1C F # dr

s1, -1d .x = y2
F = x2i - yj1C F # T ds

1C sx - yd dx + sx + yd dy

s -1, 1d
y = x21C  xy dx + sx + yd dy
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38. Find the circulation of the field around each
of the following closed paths.

a.

b.

c. Use any closed path  different from parts (a) and (b).

Vector Fields in the Plane
39. Spin field Draw the spin field

(see Figure 16.12) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle

40. Radial field Draw the radial field

(see Figure 16.11) along with its horizontal and vertical compo-
nents at a representative assortment of points on the circle

41. A field of tangent vectors

a. Find a field in the xy-plane with the
property that at any point G is a vector of

magnitude tangent to the circle 
and pointing in the counterclockwise direction.

(The field is undefined at (0, 0).)

b. How is G related to the spin field F in Figure 16.12?

42. A field of tangent vectors

a. Find a field in the xy-plane with the
property that at any point G is a unit vector
tangent to the circle and pointing in the
clockwise direction.

b. How is G related to the spin field F in Figure 16.12?

x2 + y2 = a2 + b2
sa, bd Z s0, 0d,

G = Psx, ydi + Qsx, ydj

a2 + b2
x2 + y2 =2a2 + b2

sa, bd Z s0, 0d,
G = Psx, ydi + Qsx, ydj

x2 + y2 = 1.

F = xi + yj

x2 + y2 = 4.

F = -
y2x2 + y2

 i + x2x2 + y2
 j

x

y

x2 1 y2 5 4

x

y

(1, 1)

(1, –1)

(–1, 1)

(–1, –1)

F = yi + (x + 2y)j

16.2 Vector Fields and Line Integrals: Work, Circulation, and Flux 937

43. Unit vectors pointing toward the origin Find a field 
in the xy-plane with the property that at each

point F is a unit vector pointing toward the origin.
(The field is undefined at (0, 0).)

44. Two “central” fields Find a field in
the xy-plane with the property that at each point 
F points toward the origin and is (a) the distance from (x, y)
to the origin, (b) inversely proportional to the distance from (x, y)
to the origin. (The field is undefined at (0, 0).)

45. Work and area Suppose that ƒ(t) is differentiable and positive
for Let C be the path 
and Is there any relation between the value of the work
integral

and the area of the region bounded by the t-axis, the graph of ƒ,
and the lines and Give reasons for your answer.

46. Work done by a radial force with constant magnitude A par-
ticle moves along the smooth curve from (a, ƒ(a)) to
(b, ƒ(b)). The force moving the particle has constant magnitude k
and always points away from the origin. Show that the work done
by the force is

Flow Integrals in Space
In Exercises 47–50, F is the velocity field of a fluid flowing through a
region in space. Find the flow along the given curve in the direction of
increasing t.

47.

48.

49.

50.

51. Circulation Find the circulation of 
around the closed path consisting of the following three curves
traversed in the direction of increasing t.

y

z

x

(1, 0, 0) (0, 1, 0)

0, 1,

C1 C2

C3

⎛
⎝

⎛
⎝

!
2

 C3: rstd = ti + s1 - tdj,  0 … t … 1

 C2: rstd = j + sp>2ds1 - tdk,  0 … t … 1

 C1: rstd = scos tdi + ssin tdj + tk, 0 … t … p>2
F = 2xi + 2zj + 2yk

0 … t … 2prstd = s -2 cos tdi + s2 sin tdj + 2tk,  
F = -yi + xj + 2k

rstd = scos tdi + ssin tdk,  0 … t … p
F = sx - zdi + xk 
rstd = 3tj + 4tk,  0 … t … 1
F = x2i + yzj + y2k 
rstd = ti + t2j + k,  0 … t … 2
F = -4xyi + 8yj + 2k 

LC
 F # T ds = k C sb2 + sƒsbdd2d1>2 - sa2 + sƒsadd2d1>2 D .

y = ƒsxd

t = b?t = a

LC
 F # dr

F = yi.
a … t … b,rstd = ti + ƒstdj,a … t … b.

ƒ F ƒ
sx, yd Z s0, 0d,

F = Msx, ydi + Nsx, ydj

sx, yd Z s0, 0d,
Msx, ydi + Nsx, ydj

F =
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52. Zero circulation Let C be the ellipse in which the plane
meets the cylinder Show, with-

out evaluating either line integral directly, that the circulation of
the field around C in either direction is zero.

53. Flow along a curve The field is the
velocity field of a flow in space. Find the flow from (0, 0, 0) to
(1, 1, 1) along the curve of intersection of the cylinder and
the plane (Hint: Use as the parameter.)

54. Flow of a gradient field Find the flow of the field 

a. Once around the curve C in Exercise 52, clockwise as viewed
from above

b. Along the line segment from (1, 1, 1) to s2, 1, -1d.

F = §sxy2z3d:

y

z

x

(1, 1, 1)

y ! x2

z ! x

t = xz = x .
y = x2

F = xyi + yj - yzk

F = xi + yj + zk

x2 + y2 = 12.2x + 3y - z = 0
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COMPUTER EXPLORATIONS
In Exercises 55–60, use a CAS to perform the following steps for
finding the work done by force F over the given path:

a. Find dr for the path 

b. Evaluate the force F along the path.

c. Evaluate 

55.

56.

57.

58.

59.

60.

0 … t … 2ps2 sin2 t - 1dk, 
F = sx2ydi + 1

3
 x3j + xyk; rstd = scos tdi + ssin tdj +

rstd = ssin tdi + scos tdj + ssin 2tdk, -p>2 … t … p>2F = s2y + sin xdi + sz2 + s1>3dcos ydj + x4 k; 
1 … t … 4
F = 2xyi - y2j + zex k; rstd = - ti + 1tj + 3tk, 
0 … t … 2p

rstd = (2 cos t)i + (3 sin t)j + k, sz + xy cos xyzdk; 
F = s y + yz cos xyzdi + sx2 + xz cos xyzdj +
0 … t … p

F = 3
1 + x2 i + 2

1 + y2 j; rstd = scos tdi + ssin tdj, 

0 … t … 2p
F = xy6 i + 3xsxy5 + 2dj; rstd = s2 cos tdi + ssin tdj, 

LC
 F # dr.

rstd = gstdi + hstdj + kstdk.

16.3 Path Independence, Conservative Fields, and Potential Functions

A gravitational field G is a vector field that represents the effect of gravity at a point in
space due to the presence of a massive object. The gravitational force on a body of mass m
placed in the field is given by F mG. Similarly, an electric field E is a vector field in
space that represents the effect of electric forces on a charged particle placed within it. The
force on a body of charge q placed in the field is given by F qE. In gravitational and elec-
tric fields, the amount of work it takes to move a mass or charge from one point to another
depends on the initial and final positions of the object—not on which path is taken between
these positions. In this section we study vector fields with this property and the calculation
of work integrals associated with them.

Path Independence

If A and B are two points in an open region D in space, the line integral of F along C from
A to B for a field F defined on D usually depends on the path C taken, as we saw in Sec-
tion 16.1. For some special fields, however, the integral’s value is the same for all paths
from A to B.

=

=

DEFINITIONS Let F be a vector field defined on an open region D in space,
and suppose that for any two points A and B in D the line integral along
a path C from A to B in D is the same over all paths from A to B. Then the integral

is path independent in D and the field F is conservative on D.1C F # dr

1C F # dr

The word conservative comes from physics, where it refers to fields in which the principle
of conservation of energy holds. When a line integral is independent of the path C from 
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16.3 Path Independence, Conservative Fields, and Potential Functions 947

Exercises 16.3

Testing for Conservative Fields
Which fields in Exercises 1–6 are conservative, and which are not?

1.

2.

3.

4.

5.

6.

Finding Potential Functions
In Exercises 7–12, find a potential function ƒ for the field F.

7. F = 2xi + 3yj + 4zk

F = sex cos ydi - sex sin ydj + zk

F = sz + ydi + zj + sy + xdk
F = -yi + xj

F = yi + sx + zdj - yk

F = s y sin zdi + sx sin zdj + sxy cos zdk
F = yzi + xzj + xyk

8.

9.

10.

11.

12.

a y21 - y2 z2
+ 1

z bk

F =
y

1 + x2 y2 i + a x
1 + x2 y2 + z21 - y2 z2

b j +

asec2sx + yd +
y

y2 + z2 b j + z
y2 + z2 k

F = sln x + sec2sx + yddi +
F = s y sin zdi + sx sin zdj + sxy cos zdk

F = ey + 2zsi + xj + 2xkd

F = s y + zdi + sx + zdj + sx + ydk

EXAMPLE 6 Show that is exact and evaluate the integral

over any path from (1, 1, 1) to 

Solution We let and apply the Test for Exactness:

These equalities tell us that is exact, so

for some function ƒ, and the integral’s value is 
We find ƒ up to a constant by integrating the equations

(4)

From the first equation we get

The second equation tells us that

Hence, g is a function of z alone, and

The third of Equations (4) tells us that

Therefore,

The value of the line integral is independent of the path taken from (1, 1, 1) to (2, 3, ,
and equals

ƒs2, 3, -1d - ƒs1, 1, 1d = 2 + C - s5 + Cd = -3.

-1)

ƒsx, y, zd = xy + 4z + C.

0ƒ
0z = 0 + dh

dz
= 4,  or hszd = 4z + C.

ƒsx, y, zd = xy + hszd.

0ƒ
0y = x +

0g
0y = x,    or    

0g
0y = 0.

ƒsx, y, zd = xy + gsy, zd.

0ƒ
0x = y,  0ƒ

0y = x,  0ƒ
0z = 4.

ƒs2, 3, -1d - ƒs1, 1, 1d.

y dx + x dy + 4 dz = dƒ

y dx + x dy + 4 dz

0P
0y = 0 = 0N

0z ,  0M
0z = 0 = 0P

0x ,  0N
0x = 1 = 0M

0y .

M = y, N = x, P = 4

s2, 3, -1d.
L

s2,3, -1d

s1,1,1d
y dx + x dy + 4 dz

y dx + x dy + 4 dz
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Exact Differential Forms
In Exercises 13–17, show that the differential forms in the integrals
are exact. Then evaluate the integrals.

13.

14.

15.

16.

17.

Finding Potential Functions to Evaluate Line Integrals
Although they are not defined on all of space the fields associated
with Exercises 18–22 are simply connected and the Component Test
can be used to show they are conservative. Find a potential function
for each field and evaluate the integrals as in Example 6.

18.

19.

20.

21.

22.

Applications and Examples
23. Revisiting Example 6 Evaluate the integral

from Example 6 by finding parametric equations for the line seg-
ment from (1, 1, 1) to and evaluating the line integral
of along the segment. Since F is conservative,
the integral is independent of the path.

24. Evaluate

along the line segment C joining (0, 0, 0) to (0, 3, 4).

Independence of path Show that the values of the integrals in
Exercises 25 and 26 do not depend on the path taken from A to B.

25.

26.

In Exercises 27 and 28, find a potential function for F.

27.

28. F = se x ln ydi + ae x

y + sin zb j + s y cos zdk

F = 2x
y  i + a1 - x2

y2 b j,  {(x, y): y 7 0}

L
B

A
 
x dx + y dy + z dz2x2 + y2 + z2

L
B

A
 z2 dx + 2y dy + 2xz dz

LC
 x2 dx + yz dy + s y2>2d dz

F = yi + xj + 4k
s2, 3, -1d

L
s2,3, -1d

s1,1,1d
 y dx + x dy + 4 dz

L
s2,2,2d

s-1, -1, -1d
 
2x dx + 2y dy + 2z dz

x2 + y2 + z2

L
s2,2,2d

s1,1,1d
 
1
y  dx + a1z - x

y2 b  dy -
y

z2 dz

L
s2,1,1d

s1,2,1d
 s2x ln y - yzd dx + ax2

y - xzb  dy - xy dz

L
s1,2,3d

s1,1,1d
 3x2 dx + z2

y  dy + 2z ln y dz

L
s1,p>2,2d

s0,2,1d
 2 cos y dx + a1y - 2x sin yb  dy + 1

z  dz

R3,

L
s0,1,1d

s1,0,0d
 sin y cos x dx + cos y sin x dy + dz

L
s3,3,1d

s0,0,0d
 2x dx - y2 dy - 4

1 + z2 dz

L
s1,2,3d

s0,0,0d
 2xy dx + sx2 - z2d dy - 2yz dz

L
s3,5,0d

s1,1,2d
 yz dx + xz dy + xy dz

L
s2,3, -6d

s0,0,0d
 2x dx + 2y dy + 2z dz
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29. Work along different paths Find the work done by 
over the following paths from

(1, 0, 0) to (1, 0, 1).

a. The line segment 

b. The helix 

c. The x-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola
from (0, 0, 0) to (1, 0, 1)

30. Work along different paths Find the work done by 
over the following

paths from (1, 0, 1) to 

a. The line segment 

b. The line segment from (1, 0, 1) to the origin followed by the
line segment from the origin to 

c. The line segment from (1, 0, 1) to (1, 0, 0), followed by the
x-axis from (1, 0, 0) to the origin, followed by the parabola

from there to 

z

y

x

(1, 0, 1)

(1, 0, 0)

(0, 0, 0)

1

⎛
⎝

⎛
⎝

p
21,    , 0

y 5    x2p
2

s1, p>2, 0dy = px2>2, z = 0

z

y

x

(1, 0, 1)

(0, 0, 0)

1

1 ⎛
⎝

⎛
⎝

p
2

p
21,    , 0

s1, p>2, 0d

z

y

x

(1, 0, 1)

1

⎛
⎝

⎛
⎝

p
2

p
21,    , 01

x = 1, y = pt>2, z = 1 - t, 0 … t … 1

s1, p>2, 0d.
e yzi + sxze yz + z cos ydj + sxye yz + sin ydk

F =

z

y

x

(1, 0, 1)

(0, 0, 0)

1

(1, 0, 0)

z 5 x2

z = x2, y = 0

rstd = scos tdi + ssin tdj + st>2pdk, 0 … t … 2p

x = 1, y = 0, 0 … z … 1

sx2 + ydi + s y2 + xdj + zezk
F =
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31. Evaluating a work integral two ways Let and let
C be the path in the xy-plane from to (1, 1) that consists
of the line segment from to (0, 0) followed by the line
segment from (0, 0) to (1, 1). Evaluate in two ways.

a. Find parametrizations for the segments that make up C and
evaluate the integral.

b. Use as a potential function for F.

32. Integral along different paths Evaluate the line integral
along the following paths C in the

xy-plane.

a. The parabola from (1, 0) to (0, 1)

b. The line segment from to (1, 0)

c. The x-axis from to (1, 0)

d. The astroid 
counterclockwise from (1, 0) back to (1, 0)

33. a. Exact differential form How are the constants a, b, and c
related if the following differential form is exact?

b. Gradient field For what values of b and c will

be a gradient field?

F = s y2 + 2czxdi + ysbx + czdj + s y2 + cx2dk

say2 + 2czxd dx + ysbx + czd dy + say2 + cx2d dz

x

y

(0, 1)

(0, –1)

(1, 0)(–1, 0)

rstd = scos3 tdi + ssin3 tdj, 0 … t … 2p,

s -1, 0d
s -1, pd

y = sx - 1d2

 sin y dy1C 2x cos y dx - x2

ƒsx, yd = x3y2

1C F # dr
s -1, 1d

s -1, 1d
F = §sx3y2d

16.4 Green’s Theorem in the Plane 949

16.4 Green’s Theorem in the Plane

If F is a conservative field, then we know F for a differentiable function ƒ, and we
can calculate the line integral of F over any path C joining point A to B as

In this section we derive a method for computing a work or flux
integral over a closed curve C in the plane when the field F is not conservative. This
method, known as Green’s Theorem, allows us to convert the line integral into a double in-
tegral over the region enclosed by C.

The discussion is given in terms of velocity fields of fluid flows (a fluid is a liquid or
a gas) because they are easy to visualize. However, Green’s Theorem applies to any vector
field, independent of any particular interpretation of the field, provided the assumptions of
the theorem are satisfied. We introduce two new ideas for Green’s Theorem: divergence
and circulation density around an axis perpendicular to the plane.

Divergence

Suppose that is the velocity field of a fluid flowing in the
plane and that the first partial derivatives of M and N are continuous at each point of a
region R. Let (x, y) be a point in R and let A be a small rectangle with one corner at (x, y)
that, along with its interior, lies entirely in R. The sides of the rectangle, parallel to the 
coordinate axes, have lengths of and Assume that the components M and N do not¢y.¢x

Fsx, yd = Msx, ydi + Nsx, ydj

1C F # dr = ƒ(B) - ƒ(A).

= ¥ƒ

34. Gradient of a line integral Suppose that is a conser-
vative vector field and

Show that 

35. Path of least work You have been asked to find the path along
which a force field F will perform the least work in moving a par-
ticle between two locations. A quick calculation on your part
shows F to be conservative. How should you respond? Give rea-
sons for your answer.

36. A revealing experiment By experiment, you find that a force
field F performs only half as much work in moving an object
along path from A to B as it does in moving the object along
path from A to B. What can you conclude about F? Give rea-
sons for your answer.

37. Work by a constant force Show that the work done by a con-
stant force field in moving a particle along
any path from A to B is 

38. Gravitational field

a. Find a potential function for the gravitational field

b. Let and be points at distance and from the origin.
Show that the work done by the gravitational field in part (a)
in moving a particle from to is

GmM a 1
s2

- 1
s1
b .

P2P1

s2s1P2P1

(G, m, and M are constantsd.

F = -GmM 
xi + yj + zk

sx2 + y2 + z2d3>2

W = F # AB
1

.
F = ai + bj + ck

C2

C1

§g = F.

gsx, y, zd = L
sx,y,zd

s0,0,0d
 F # dr.

F = §ƒ
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958 Chapter 16: Integration in Vector Fields

This shows the curve C of Figure 16.33 decomposed into the two directed parts
and The result of this double inte-

gration is

(7)

Summing Equations (6) and (7) gives Equation (5). This concludes the proof.

Green’s Theorem also holds for more general regions, such as those shown in
Figures 16.35 and 16.36, but we will not prove this result here. Notice that the region in Figure
16.36 is not simply connected. The curves and on its boundary are oriented so that the
region R is always on the left-hand side as the curves are traversed in the directions shown.
With this convention, Green’s Theorem is valid for regions that are not simply connected.

While we stated the theorem in the xy-plane, Green’s Theorem applies to any region R
contained in a plane bounded by a curve C in space. We will see how to express the double
integral over R for this more general form of Green’s Theorem in Section 16.7.

ChC1

F
C 

 N dy = 6
R

 
0N
0x  dx dy.

C œ
2: x = g2s yd, c … y … d.d Ú y Ú cC œ

1: x = g1s yd, 
y

x
0

R

(a)

C

y

x
0

R

(b)

C

a b

a

b

FIGURE 16.35 Other regions to which
Green’s Theorem applies. x

y

h 1

R

Ch

C1

0

FIGURE 16.36 Green’s Theorem may be
applied to the annular region R by summing
the line integrals along the boundaries 
and in the directions shown.Ch

C1

Exercises 16.4

Verifying Green’s Theorem
In Exercises 1–4, verify the conclusion of Green’s Theorem by evaluating
both sides of Equations (3) and (4) for the field Take the
domains of integration in each case to be the disk 
and its bounding circle 

1. 2.

3. 4.

Circulation and Flux
In Exercises 5–14, use Green’s Theorem to find the counterclockwise
circulation and outward flux for the field F and curve C.

5.
C: The square bounded by 

6.
C: The square bounded by 

7.
C: The triangle bounded by and 

8.
C: The triangle bounded by and y = xy = 0, x = 1 ,
F = sx + ydi - sx2 + y2dj

y = xy = 0, x = 3 ,
F = s y2 - x2di + sx2 + y2dj

x = 0, x = 1, y = 0, y = 1
F = sx2 + 4ydi + sx + y2dj

x = 0, x = 1, y = 0, y = 1
F = sx - ydi + sy - xdj

F = -x2yi + xy2jF = 2xi - 3yj

F = yiF = -yi + xj

C: r = sa cos tdi + sa sin tdj, 0 … t … 2p.
R: x2 + y2 …  a2

F = Mi + Nj.

9. 10.

11. 12.

C

1–1

–1

x

1

y

x2 1 y2 5 1

x

y

y 5 x2 2 x 

y 5 x

(0, 0)

(2, 2)C

F = x
1 + y2 i + A tan-1 y B jF = x3y2 i + 1

2
 x4y j

x

y

x2 1 2y2 5 2C

2–2

–1

1

x

y

y 5 x2

x 5 y2

(0, 0)

(1, 1)

C

F = (x + 3y)i + (2x - y)jF = (xy + y2)i + (x - y)j
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16.4 Green’s Theorem in the Plane 959

The reason is that by Equation (3), run backward,

Use the Green’s Theorem area formula given above to find the areas of
the regions enclosed by the curves in Exercises 25–28.

25. The circle 

26. The ellipse 

27. The astroid 

28. One arch of the cycloid 

29. Let C be the boundary of a region on which Green’s Theorem
holds. Use Green’s Theorem to calculate

a.

b.

30. Integral dependent only on area Show that the value of

around any square depends only on the area of the square and not
on its location in the plane.

31. What is special about the integral

Give reasons for your answer.

32. What is special about the integral

Give reasons for your answer.

33. Area as a line integral Show that if R is a region in the plane
bounded by a piecewise smooth, simple closed curve C, then

34. Definite integral as a line integral Suppose that a nonnegative
function has a continuous first derivative on [a, b]. Let C
be the boundary of the region in the xy-plane that is bounded
below by the x-axis, above by the graph of ƒ, and on the sides by
the lines and Show that

L
b

a
 ƒsxd dx = -F

C 

 y dx.

x = b.x = a

y = ƒsxd

Area of R = F
C 

 x dy = -F
C 

 y dx.

F
C 

- y3 dy + x3 dx?

F
C 

 4x3y dx + x4 dy?

F
C 

 xy2 dx + sx2y + 2xd dy

F
C 

 ky dx + hx dy sk and h constantsd.

F
C 

 ƒsxd dx + gsyd dy

x = t - sin t,  y = 1 - cos t

rstd = scos3 tdi + ssin3 tdj,  0 … t … 2p

rstd = sa cos tdi + sb sin tdj,  0 … t … 2p

rstd = sa cos tdi + sa sin tdj,  0 … t … 2p

 = F
C 

 
1
2

 x dy - 1
2

 y dx.

 Area of R = 6
R

 dy dx = 6
R

 a1
2

+ 1
2
b  dy dx

Green’s Theorem Area Formula

Area of R = 1
2F

C 

 x dy - y dx

13.

C: The right-hand loop of the lemniscate 

14.

C: The boundary of the region defined by the polar coordinate
inequalities 

15. Find the counterclockwise circulation and outward flux of the
field around and over the boundary of the region
enclosed by the curves and in the first quadrant.

16. Find the counterclockwise circulation and the outward flux of the
field around and over the square cut
from the first quadrant by the lines and 

17. Find the outward flux of the field

across the cardioid 

18. Find the counterclockwise circulation of 
around the boundary of the region that is bounded above

by the curve and below by the curve 

Work
In Exercises 19 and 20, find the work done by F in moving a particle
once counterclockwise around the given curve.

19.

C: The boundary of the “triangular” region in the first quadrant
enclosed by the x-axis, the line and the curve 

20.

C: The circle 

Using Green’s Theorem
Apply Green’s Theorem to evaluate the integrals in Exercises 21–24.

21.

C: The triangle bounded by 

22.

C: The boundary of 

23.

C: The circle 

24.

C: Any simple closed curve in the plane for which Green’s
Theorem holds

Calculating Area with Green’s Theorem If a simple closed curve
C in the plane and the region R it encloses satisfy the hypotheses of
Green’s Theorem, the area of R is given by

F
C 

 s2x + y2d dx + s2xy + 3yd dy

sx - 2d2 + sy - 3d2 = 4

F
C 

 s6y + xd dx + s y + 2xd dy

0 … x … p, 0 … y … sin x

F
C 

 s3y dx + 2x dyd

x = 0, x + y = 1, y = 0

F
C 

 sy2 dx + x2 dyd

sx - 2d2 + s y - 2d2 = 4

F = s4x - 2ydi + s2x - 4ydj
y = x3x = 1,

F = 2xy3i + 4x2y2j

y = x4 + 1.y = 3 - x2
sex>ydj

F = s y + ex ln ydi +
r = as1 + cos ud, a 7 0.

F = a3xy - x
1 + y2 b i + sex + tan-1 ydj

y = p>2.x = p>2F = s -sin ydi + sx cos ydj

y = xy = x2
F = xyi + y2j

1 … r … 2, 0 … u … p

F = atan-1 
y
x b i + ln sx2 + y2dj

r2 = cos 2u

F = sx + ex sin ydi + sx + ex cos ydj
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35. Area and the centroid Let A be the area and the x-coordinate
of the centroid of a region R that is bounded by a piecewise
smooth, simple closed curve C in the xy-plane. Show that

36. Moment of inertia Let be the moment of inertia about the
y-axis of the region in Exercise 35. Show that

37. Green’s Theorem and Laplace’s equation Assuming that all
the necessary derivatives exist and are continuous, show that if
ƒ(x, y) satisfies the Laplace equation

then

for all closed curves C to which Green’s Theorem applies. (The
converse is also true: If the line integral is always zero, then ƒ satis-
fies the Laplace equation.)

38. Maximizing work Among all smooth, simple closed curves in
the plane, oriented counterclockwise, find the one along which
the work done by

is greatest. (Hint: Where is positive?)

39. Regions with many holes Green’s Theorem holds for a region
R with any finite number of holes as long as the bounding curves
are smooth, simple, and closed and we integrate over each com-
ponent of the boundary in the direction that keeps R on our imme-
diate left as we go along (see accompanying figure).

scurl Fd # k

F = a1
4

 x2y + 1
3

 y3b i + xj

F
C 

 
0ƒ
0y  dx -

0ƒ
0x  dy = 0

02ƒ

0x2 +
02ƒ

0y2 = 0,

1
3

 F
C 

 x3 dy = -F
C 

 x2y dx = 1
4

 F
C 

 x3 dy - x2y dx = Iy .

Iy

1
2

 F
C 

 x2 dy = -F
C 

 xy dx = 1
3

 F
C 

 x2 dy - xy dx = Ax.

x a. Let and let C be the circle
Evaluate the flux integral

b. Let K be an arbitrary smooth, simple closed curve in the
plane that does not pass through (0, 0). Use Green’s Theorem
to show that

has two possible values, depending on whether (0, 0) lies 
inside K or outside K.

40. Bendixson’s criterion The streamlines of a planar fluid flow
are the smooth curves traced by the fluid’s individual particles.
The vectors of the flow’s velocity field
are the tangent vectors of the streamlines. Show that if the flow
takes place over a simply connected region R (no holes or miss-
ing points) and that if throughout R, then none of
the streamlines in R is closed. In other words, no particle of
fluid ever has a closed trajectory in R. The criterion 
is called Bendixson’s criterion for the nonexistence of closed
trajectories.

41. Establish Equation (7) to finish the proof of the special case of
Green’s Theorem.

42. Curl component of conservative fields Can anything be said
about the curl component of a conservative two-dimensional vec-
tor field? Give reasons for your answer.

COMPUTER EXPLORATIONS
In Exercises 43–46, use a CAS and Green’s Theorem to find the coun-
terclockwise circulation of the field F around the simple closed curve
C. Perform the following CAS steps.

a. Plot C in the xy-plane.

b. Determine the integrand for the curl
form of Green’s Theorem.

c. Determine the (double integral) limits of integration from your
plot in part (a) and evaluate the curl integral for the circulation.

43. The ellipse 

44. The ellipse 

45.

C: The boundary of the region defined by (below)
and (above)

46.

C: The triangle with vertices (0, 0), (2, 0), and (0, 4)

F = xe y i + (4x2 ln y)j, 
y = 2

y = 1 + x4

F = x-1ey i + sey ln x + 2xdj, 

x2

4
+

y2

9
= 1F = s2x3 - y3di + sx3 + y3dj, C:

x2 + 4y2 = 4F = s2x - ydi + sx + 3ydj, C:

s0N>0xd - s0M>0yd

Mx + Ny Z 0

Mx + Ny Z 0

F = Msx, ydi + Nsx, ydj

F
K 

§ƒ # n ds

F
C 

 §ƒ # n ds.

x2 + y2 = a2.
ƒsx, yd = ln sx2 + y2d
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16.5 Surfaces and Area 969

Exercises 16.5

Finding Parametrizations
In Exercises 1–16, find a parametrization of the surface. (There are
many correct ways to do these, so your answers may not be the same
as those in the back of the book.)

1. The paraboloid 

2. The paraboloid 

3. Cone frustum The first-octant portion of the cone 
between the planes and 

4. Cone frustum The portion of the cone 
between the planes and 

5. Spherical cap The cap cut from the sphere 
by the cone 

6. Spherical cap The portion of the sphere in
the first octant between the xy-plane and the cone 

7. Spherical band The portion of the sphere 
between the planes and 

8. Spherical cap The upper portion cut from the sphere
by the plane 

9. Parabolic cylinder between planes The surface cut from the
parabolic cylinder by the planes and

10. Parabolic cylinder between planes The surface cut from the
parabolic cylinder by the planes , and 

11. Circular cylinder band The portion of the cylinder 
between the planes and 

12. Circular cylinder band The portion of the cylinder 
above the xy-plane between the planes and 

13. Tilted plane inside cylinder The portion of the plane 

a. Inside the cylinder 

b. Inside the cylinder 

14. Tilted plane inside cylinder The portion of the plane

a. Inside the cylinder 

b. Inside the cylinder 

15. Circular cylinder band The portion of the cylinder 
between the planes and 

16. Circular cylinder band The portion of the cylinder 
between the planes and 

Surface Area of Parametrized Surfaces
In Exercises 17–26, use a parametrization to express the area of the
surface as a double integral. Then evaluate the integral. (There are
many correct ways to set up the integrals, so your integrals may not be
the same as those in the back of the book. They should have the same
values, however.)

17. Tilted plane inside cylinder The portion of the plane
inside the cylinder x2 + y2 = 1y + 2z = 2

x = 10x = 0sz - 5d2 = 25
y2 +

y = 3y = 0z2 = 4
sx - 2d2 +

y2 + z2 = 2

x2 + z2 = 3

x - y + 2z = 2

y2 + z2 = 9

x2 + y2 = 9

z = 1
x + y +

y = 2y = -2
x2 + z2 = 4

x = 3x = 0
y2 + z2 = 9

y = 2z = 0, z = 3y = x2

z = 0
x = 2,x = 0,z = 4 - y2

z = -2x2 + y2 + z2 = 8

z = -23>2z = 23>2 x2 + y2 + z2 = 3

z = 2x2 + y2
x2 + y2 + z2 = 4

z = 2x2 + y2
x2 + y2 + z2 = 9

z = 4z = 2
z = 22x2 + y2

z = 3z = 02x2 + y2>2 z =
z = 9 - x2 - y2, z Ú 0

z = x2 + y2, z … 4

18. Plane inside cylinder The portion of the plane inside
the cylinder 

19. Cone frustum The portion of the cone 
between the planes and 

20. Cone frustum The portion of the cone 
between the planes and 

21. Circular cylinder band The portion of the cylinder 
between the planes and 

22. Circular cylinder band The portion of the cylinder 
between the planes and 

23. Parabolic cap The cap cut from the paraboloid 
by the cone 

24. Parabolic band The portion of the paraboloid 
between the planes and 

25. Sawed-off sphere The lower portion cut from the sphere
by the cone 

26. Spherical band The portion of the sphere 
between the planes and 

Planes Tangent to Parametrized Surfaces
The tangent plane at a point on a
parametrized surface is the
plane through normal to the vector the cross
product of the tangent vectors and In Exer-
cises 27–30, find an equation for the plane tangent to the surface at 
Then find a Cartesian equation for the surface and sketch the surface and
tangent plane together.

27. Cone The cone 
at the point corresponding to

28. Hemisphere The hemisphere surface 
at

the point corresponding to 

29. Circular cylinder The circular cylinder 
at the point 

corresponding to (See Example 3.)

30. Parabolic cylinder The parabolic cylinder surface 
at the point

corresponding to 

More Parametrizations of Surfaces
31. a. A torus of revolution (doughnut) is obtained by rotating a circle

C in the xz-plane about the z-axis in space. (See the accompa-
nying figure.) If C has radius and center (R, 0, 0), show
that a parametrization of the torus is

where and are the angles in the
figure.

0 … y … 2p0 … u … 2p

+ ssR + r cos udsin ydj + sr sin udk,

 rsu, yd = ssR + r cos udcos ydi

r 7 0

sx, yd = s1, 2dP0s1, 2, -1d
xi + yj - x2k, - q 6 x 6 q , - q 6 y 6 q ,

rsx, yd =
su, zd = sp>3, 0d

P0 A323>2, 9>2, 0 Bs6 sin2 udj + zk, 0 … u … p,
rsu, zd = s3 sin 2udi +

sp>6, p>4d
sf, ud =P0 A22, 22, 223 B+ s4 sin f sin udj + s4 cos fdk, 0 … f … p>2, 0 … u … 2p,

rsf, ud = s4 sin f cos udi
sr, ud = s2, p>4d

P0 A22, 22, 2 B0 … u … 2p
rsr, ud = sr cos udi + sr sin udj + rk, r Ú 0,

P0.
rysu0, y0d at P0.rusu0, y0d

rusu0, y0d * rysu0, y0d,P0

rsu, yd = ƒsu, ydi + gsu, ydj + hsu, ydk
P0sƒsu0, y0d, gsu0, y0d, hsu0, y0dd

z = 23z = -1
x2 + y2 + z2 = 4

z = 2x2 + y2x2 + y2 + z2 = 2

z = 4z = 1
z = x2 + y2

z = 2x2 + y2

z = 2 - x2 - y2

y = 1y = -110
x2 + z2 =

z = 4z = 1
x2 + y2 = 1

z = 4>3z = 1
z = 2x2 + y2>3z = 6z = 2
z = 22x2 + y2

x2 + y2 = 4
z = -x
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b. Show that the surface area of the torus is 

32. Parametrization of a surface of revolution Suppose that the
parametrized curve C: (ƒ(u), g(u)) is revolved about the x-axis,
where for 

a. Show that

is a parametrization of the resulting surface of revolution,
where is the angle from the xy-plane to the point
r(u, y) on the surface. (See the accompanying figure.) Notice
that ƒ(u) measures distance along the axis of revolution and
g(u) measures distance from the axis of revolution.

b. Find a parametrization for the surface obtained by revolving
the curve about the x-axis.

33. a. Parametrization of an ellipsoid The parametrization
gives the ellipse

. Using the angles and in spherical
coordinates, show that

is a parametrization of the ellipsoid 

b. Write an integral for the surface area of the ellipsoid, but do
not evaluate the integral.

sz2>c2d = 1.
sx2>a2d + s y2>b2d +

rsu, fd = sa cos u cos fdi + sb sin u cos fdj + sc sin fdk

fusy2>b2d = 1sx2>a2d +
0 … u … 2py = b sin u,x = a cos u,

x = y2, y Ú 0,

y

x

z

C

( f (u), g(u), 0)

g(u)

r(u, y)

f (u)

y

0 … y … 2p

rsu, yd = ƒsudi + sgsudcos ydj + sgsudsin ydk

a … u … b.gsud 7 0

x

z

0

C

ur

R

z

u
y

x

y

r(u, y)

A = 4p2Rr.

970 Chapter 16: Integration in Vector Fields

34. Hyperboloid of one sheet

a. Find a parametrization for the hyperboloid of one sheet
in terms of the angle associated with the

circle and the hyperbolic parameter u associ-
ated with the hyperbolic function (Hint:

.)

b. Generalize the result in part (a) to the hyperboloid

35. (Continuation of Exercise 34.) Find a Cartesian equation for the
plane tangent to the hyperboloid at the point

where 

36. Hyperboloid of two sheets Find a parametrization of the hy-
perboloid of two sheets 

Surface Area for Implicit and Explicit Forms
37. Find the area of the surface cut from the paraboloid 

by the plane 

38. Find the area of the band cut from the paraboloid 
by the planes and 

39. Find the area of the region cut from the plane 
by the cylinder whose walls are and 

40. Find the area of the portion of the surface that lies
above the triangle bounded by the lines and

in the xy-plane.

41. Find the area of the surface that lies above the
triangle bounded by the lines and in the xy-
plane.

42. Find the area of the cap cut from the sphere by
the cone 

43. Find the area of the ellipse cut from the plane (c a con-
stant) by the cylinder 

44. Find the area of the upper portion of the cylinder 
that lies between the planes and 

45. Find the area of the portion of the paraboloid 
that lies above the ring in the yz-plane.

46. Find the area of the surface cut from the paraboloid 
by the plane 

47. Find the area of the surface above
the square in the xy-plane.

48. Find the area of the surface above the
square in the xy-plane.

Find the area of the surfaces in Exercises 49–54.

49. The surface cut from the bottom of the paraboloid 
by the plane 

50. The surface cut from the “nose” of the paraboloid 
by the yz-plane

51. The portion of the cone that lies over the region
between the circle and the ellipse 
in the xy-plane. (Hint: Use formulas from geometry to find the
area of the region.)

52. The triangle cut from the plane by the bound-
ing planes of the first octant. Calculate the area three ways, using
different explicit forms.

53. The surface in the first octant cut from the cylinder 
by the planes and y = 16>3x = 1

y = s2>3dz3>2
2x + 6y + 3z = 6

9x2 + 4y2 = 36x2 + y2 = 1
z = 2x2 + y2

y2 - z2
x = 1 -

z = 3
z = x2 + y2

R: 0 … x … 1, 0 … y … 1,
2x3>2 + 2y3>2 - 3z = 0

R: 1 … x … 2, 0 … y … 1,
x2 - 2 ln x + 215y - z = 0

y = 0.
2x2 + y + z2 =

1 … y2 + z2 … 4
x = 4 - y2 - z2

y = ;1>2.x = ;1>2 x2 + z2 = 1

x2 + y2 = 1.
z = cx

z = 2x2 + y2.
x2 + y2 + z2 = 2

y = 3xx = 2, y = 0,
x2 - 2y - 2z = 0

y = x
x = 23, y = 0,
x2 - 2z = 0

x = 2 - y2.x = y2
x + 2y + 2z = 5

z = 6.z = 20
x2 + y2 - z =

z = 2.0
x2 + y2 - z =

sz2>c2d - sx2>a2d - sy2>b2d = 1.

x0
2 + y0

2 = 25.sx0, y0, 0d,
x2 + y2 - z2 = 25

sx2>a2d + sy2>b2d - sz2>c2d = 1.

cos h2u - sin h2u = 1
r2 - z2 = 1.

x2 + y2 = r2
ux2 + y2 - z2 = 1
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54. The portion of the plane that lies above the region cut
from the first quadrant of the xz-plane by the parabola

55. Use the parametrization

and Equation (5) to derive a formula for d associated with the
explicit form 

56. Let S be the surface obtained by rotating the smooth curve
, about the x-axis, where 

a. Show that the vector function

is a parametrization of S, where is the angle of rotation
around the x-axis (see the accompanying figure).

u

r(x, u) = x i + ƒ(x) cos u j + ƒ(x) sin uk

ƒ(x) Ú 0.y = ƒ(x), a … x … b

y = ƒ(x, z).
s

r(x, z) = xi + ƒ(x, z)j + zk

x = 4 - z2

y + z = 4

16.6 Surface Integrals 971

b. Use Equation (4) to show that the surface area of this surface
of revolution is given by

A = L
b

a
 2pƒ(x)21 + [ƒ¿(x)]2 dx.

y

x

z

0

(x, y, z)

z u

f (x)

16.6 Surface Integrals

To compute quantities such as the flow of liquid across a curved membrane or the upward
force on a falling parachute, we need to integrate a function over a curved surface in space.
This concept of a surface integral is an extension of the idea of a line integral for integrat-
ing over a curve.

Surface Integrals

Suppose that we have an electrical charge distributed over a surface S, and that the func-
tion G(x, y, z) gives the charge density (charge per unit area) at each point on S. Then we
can calculate the total charge on S as an integral in the following way.

Assume, as in Section 16.5, that the surface S is defined parametrically on a region R
in the uy-plane,

In Figure 16.47, we see how a subdivision of R (considered as a rectangle for simplicity)
divides the surface S into corresponding curved surface elements, or patches, of area

As we did for the subdivisions when defining double integrals in Section 15.2, we
number the surface element patches in some order with their areas given by

To form a Riemann sum over S, we choose a point in the
kth patch, multiply the value of the function G at that point by the area , and add to-
gether the products:

Depending on how we pick in the kth patch, we may get different values for
this Riemann sum. Then we take the limit as the number of surface patches increases,
their areas shrink to zero, and both and This limit, whenever it exists
independent of all choices made, defines the surface integral of G over the surface 
S as

(1)6
S

 G(x, y, z) ds = lim
n: qa

n

k = 1
G(xk, yk, zk) ¢sk.

¢y: 0.¢u : 0

(xk, yk, zk)

an
k = 1

 G(xk, yk, zk) ¢sk.

¢sk

(xk, yk, zk)¢s1, ¢s2, Á , ¢sn.

¢suy L ƒ ru * ry ƒ  du dy.

r(u, y) = ƒ(u, y)i + g(u, y)j + h(u, y)k,  (u, y) H R.

yx

z
∆uru

∆yryPk

∆sk 5 ∆suy

(xk, yk, zk)

FIGURE 16.47 The area of the patch
is the area of the tangent

parallelogram determined by the vectors
and . The point lies

on the surface patch, beneath the
parallelogram shown here.

(xk, yk, zk)¢y ry¢u ru

¢sk
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The shell’s center of mass is the point (0, 0, 1 ln 2).>
 z =

Mxy

M = 2p22

2p22 ln 2
= 1

ln 2
.

= 22L
2p

0
 du = 2p22,

= 22L
2p

0
 L

2

1
 dr du

 Mxy = 6
S

 dz ds = L
2p

0
 L

2

1
 
1
r2 r22r dr du

978 Chapter 16: Integration in Vector Fields

Exercises 16.6

Surface Integrals
In Exercises 1–8, integrate the given function over the given surface.

1. Parabolic cylinder over the parabolic cylinder

2. Circular cylinder over the cylindrical surface

3. Sphere over the unit sphere 

4. Hemisphere over the hemisphere 

5. Portion of plane over the portion of the plane
that lies above the square 

in the xy-plane

6. Cone over the cone 

7. Parabolic dome over the parabolic
dome 

8. Spherical cap over the part of the sphere
that lies above the cone 

9. Integrate over the surface of the cube cut
from the first octant by the planes 

10. Integrate over the surface of the wedge in the
first octant bounded by the coordinate planes and the planes

and 

11. Integrate over the surface of the rectangular
solid cut from the first octant by the planes and

12. Integrate over the surface of the rectangular
solid bounded by the planes and 

13. Integrate over the portion of the plane
that lies in the first octant.

14. Integrate over the surface cut from the
parabolic cylinder by the planes 
and 

15. Integrate over the portion of the graph of
above the triangle in the xy-plane having vertices 

(0, 0, 0), (1, 1, 0), and (0, 1, 0). (See accompanying figure.)
z = x + y2

G(x, y, z) = z - x

z = 0.
x = 1,x = 0,y2 + 4z = 16

Gsx, y, zd = x2y2 + 4

2x + 2y + z = 2
Gsx, y, zd = x + y + z

z = ;c.x = ;a, y = ;b,
Gsx, y, zd = xyz

z = c.
x = a, y = b,

Gsx, y, zd = xyz

y + z = 1.x = 2

Gsx, y, zd = y + z

x = a, y = a, z = a.
Gsx, y, zd = x + y + z

z = 2x2 + y2x2 + y2 + z2 = 4
Hsx, y, zd = yz,

z = 1 - x2 - y2, z Ú 0
Hsx, y, zd = x225 - 4z,

0 … z … 1
z = 2x2 + y2,Fsx, y, zd = z - x,

0 … y … 1,
0 … x … 1, x + y + z = 4

Fsx, y, zd = z,

z2 = a2, z Ú 0
x2 + y2 +Gsx, y, zd = z2,

x2 + y2 + z2 = 1Gsx, y, zd = x2,

y2 + z2 = 4, z Ú 0, 1 … x … 4
Gsx, y, zd = z,

y = x2, 0 … x … 2, 0 … z … 3
Gsx, y, zd = x,

16. Integrate over the surface given by

17. Integrate over the triangular surface with vertices
(1, 0, 0), (0, 2, 0), and (0, 1, 1).

18. Integrate over the portion of the plane
in the first octant between and (see the

accompanying figure).
z = 1z = 0x + y = 1

G(x, y, z) = x - y - z

z

y

x (1, 0, 0)

(0, 1, 1)

(0, 2, 0)

1

G(x, y, z) = xyz

z = x2 + y  for  0 … x … 1,  -1 … y … 1.

G(x, y, z) = x

z

x

y

z ! x " y2

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(0, 1, 1)

(1, 1, 2)

1

1

1
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Finding Flux Across a Surface
In Exercises 19–28, use a parametrization to find the flux 
across the surface in the given direction.

19. Parabolic cylinder outward (normal away
from the x-axis) through the surface cut from the parabolic cylin-
der by the planes and 

20. Parabolic cylinder outward (normal away from
the yz-plane) through the surface cut from the parabolic cylinder

by the planes and 

21. Sphere across the portion of the sphere 
in the first octant in the direction away from the origin

22. Sphere across the sphere 
in the direction away from the origin

23. Plane upward across the portion of
the plane that lies above the square

in the xy-plane

24. Cylinder outward through the portion of the
cylinder cut by the planes and 

25. Cone outward (normal away from the z-axis)
through the cone 

26. Cone outward (normal away from the
z-axis) through the cone 

27. Cone frustum outward (normal away
from the z-axis) through the portion of the cone 
between the planes and 

28. Paraboloid outward (normal away from
the z-axis) through the surface cut from the bottom of the parabo-
loid by the plane 

In Exercises 29 and 30, find the flux of the field F across the portion
of the given surface in the specified direction.

29.

S: rectangular surface
direction k

30.

S: rectangular surface
direction 

In Exercises 31–36, find the flux of the field F across the portion of
the sphere in the first octant in the direction away
from the origin.

31.

32. Fsx, y, zd = -yi + xj

Fsx, y, zd = zk

x2 + y2 + z2 = a2

- j
y = 0,  -1 … x … 2,  2 … z … 7,

Fsx, y, zd = yx2i - 2j + xzk

z = 0,  0 … x … 2,  0 … y … 3,

Fsx, y, zd = - i + 2j + 3k

z = 1z = x2 + y2

F = 4xi + 4yj + 2k

z = 2z = 1
z = 2x2 + y2

F = -xi - yj + z2k

z = 22x2 + y2, 0 … z … 2
F = y2i + xzj - k

z = 2x2 + y2, 0 … z … 1
F = xyi - zk

z = az = 0x2 + y2 = 1
F = xi + yj + zk

0 … x … a, 0 … y … a ,
x + y + z = 2a

F = 2xyi + 2yzj + 2xzk

z2 = a2x2 + y2 +F = xi + yj + zk

z2 = a2
x2 + y2 +F = zk

z = 2z = 0y = x2, -1 … x … 1 ,

F = x2j - xzk

z = 0x = 0, x = 1 ,z = 4 - y2

F = z2i + xj - 3zk

4S F # n ds

z

y

x

(1, 0, 1)

(0, 1, 1)

1

1

1
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33.

34.

35.

36.

37. Find the flux of the field outward
through the surface cut from the parabolic cylinder 
by the planes and 

38. Find the flux of the field outward
(away from the z-axis) through the surface cut from the bottom of
the paraboloid by the plane 

39. Let S be the portion of the cylinder in the first octant that
projects parallel to the x-axis onto the rectangle 

in the yz-plane (see the accompanying figure). Let n
be the unit vector normal to S that points away from the yz-plane.
Find the flux of the field across S
in the direction of n.

40. Let S be the portion of the cylinder in the first octant
whose projection parallel to the y-axis onto the xz-plane is the rec-
tangle Let n be the unit vector nor-
mal to S that points away from the xz-plane. Find the flux of

through S in the direction of n.

41. Find the outward flux of the field 
across the surface of the cube cut from the first octant by the
planes 

42. Find the outward flux of the field across the
surface of the upper cap cut from the solid sphere

by the plane 

Moments and Masses
43. Centroid Find the centroid of the portion of the sphere

that lies in the first octant.

44. Centroid Find the centroid of the surface cut from the cylinder
by the planes and (resembles

the surface in Example 5).

45. Thin shell of constant density Find the center of mass and the
moment of inertia about the z-axis of a thin shell of constant den-
sity cut from the cone by the planes 
and 

46. Conical surface of constant density Find the moment of iner-
tia about the z-axis of a thin shell of constant density cut from
the cone by the circular cylinder

(see the accompanying figure).x2 + y2 = 2x
4x2 + 4y2 - z2 = 0, z Ú 0,

d

z = 2.
z = 1x2 + y2 - z2 = 0d

x = 3x = 0y2 + z2 = 9, z Ú 0,

x2 + y2 + z2 = a2

z = 3.x2 + y2 + z2 … 25

F = xzi + yzj + k

x = a, y = a, z = a.

F = 2xyi + 2yzj + 2xzk

F = 2yj + zk

Rxz: 1 … x … e, 0 … z … 1.

y = ln x

z

yx

1

1

2
Sy ! e x

Ryz

Fsx, y, zd = -2i + 2yj + zk

0 … z … 1
Ryz: 1 … y … 2,

y = ex

z = 1.z = x2 + y2

Fsx, y, zd = 4xi + 4yj + 2k

z = 0.x = 0, x = 1,
z = 4 - y2

Fsx, y, zd = z2i + xj - 3zk

Fsx, y, zd =
xi + yj + zk2x 2 + y 2 + z 2

Fsx, y, zd = xi + yj + zk

Fsx, y, zd = zxi + zyj + z2k

Fsx, y, zd = yi - xj + k
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16.7 Stokes’ Theorem

As we saw in Section 16.4, the circulation density or curl component of a two-dimensional
field at a point (x, y) is described by the scalar quantity 
In three dimensions, circulation is described with a vector.

Suppose that F is the velocity field of a fluid flowing in space. Particles near the point
(x, y, z) in the fluid tend to rotate around an axis through (x, y, z) that is parallel to a certain
vector we are about to define. This vector points in the direction for which the rotation is
counterclockwise when viewed looking down onto the plane of the circulation from the tip
of the arrow representing the vector. This is the direction your right-hand thumb points
when your fingers curl around the axis of rotation in the way consistent with the rotating
motion of the particles in the fluid (see Figure 16.55). The length of the vector measures
the rate of rotation. The vector is called the curl vector and for the vector field

it is defined to be

(1)

This information is a consequence of Stokes’ Theorem, the generalization to space of the
circulation-curl form of Green’s Theorem and the subject of this section.

Notice that is consistent with our definition in Sec-
tion 16.4 when The formula for curl F in Equation (1) is often
written using the symbolic operator

(2)

(The symbol is pronounced “del.”) The curl of F is 

 = curl F.

 = a0P
0y - 0N

0z b i + a0M
0z - 0P

0x b j + a0N
0x - 0M

0y bk

 § * F = 4 i j k

0
0x

0
0y

0
0z

M N P

4 § * F :§

§ = i 0
0x + j 

0
0y + k 

0
0z .

F = Msx, ydi + Nsx, ydj.
scurl Fd # k = s0N>0x - 0M>0yd

curl F = a0P
0y - 0N

0z b i + a0M
0z - 0P

0x b j + a0N
0x - 0M

0y bk.

F = Mi + Nj + Pk

s0N>0x - 0M>0yd.F = Mi + Nj

980 Chapter 16: Integration in Vector Fields

z

y

x 2

4x2 ! 4y2 " z2 # 0

z ! 0

x2 ! y2 # 2x
or

r # 2 cos !

47. Spherical shells

a. Find the moment of inertia about a diameter of a thin 
spherical shell of radius a and constant density (Work with
a hemispherical shell and double the result.)

b. Use the Parallel Axis Theorem (Exercises 15.6) and the result
in part (a) to find the moment of inertia about a line tangent
to the shell.

48. Conical Surface Find the centroid of the lateral surface of a
solid cone of base radius a and height h (cone surface minus the
base).

d.

Curl F

(x, y, z)

FIGURE 16.55 The circulation vector 
at a point (x, y, z) in a plane in a three-
dimensional fluid flow. Notice its right-hand
relation to the rotating particles in the fluid.
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988 Chapter 16: Integration in Vector Fields

Conservative Fields and Stokes’ Theorem

In Section 16.3, we found that a field F being conservative in an open region D in space is
equivalent to the integral of F around every closed loop in D being zero. This, in turn, is
equivalent in simply connected open regions to saying that (which gives a test
for determining if F is conservative for such regions).

§ * F = 0

THEOREM 7—Curl Related to the Closed-Loop Property If at
every point of a simply connected open region D in space, then on any piecewise-
smooth closed path C in D,

F
C 

 F # dr = 0.

§ * F = 0F = 0

Sketch of a Proof Theorem 7 can be proved in two steps. The first step is for simple
closed curves (loops that do not cross themselves), like the one in Figure 16.66a. A theorem
from topology, a branch of advanced mathematics, states that every smooth simple closed
curve C in a simply connected open region D is the boundary of a smooth two-sided sur-
face S that also lies in D. Hence, by Stokes’ Theorem,

The second step is for curves that cross themselves, like the one in Figure 16.66b. The
idea is to break these into simple loops spanned by orientable surfaces, apply Stokes’ The-
orem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on con-
nected, simply connected open regions.

F
C 

 F # dr = 6
S

 § * F # n ds = 0.

(b)

FIGURE 16.66 (a) In a simply connected
open region in space, a simple closed
curve C is the boundary of a smooth
surface S. (b) Smooth curves that cross
themselves can be divided into loops to
which Stokes’ Theorem applies.

Theorem 2,
Section 16.3

Theorem 7
Domain's simple
connectivity and
Stokes' Theorem

over any closed
path in D

F ! ∇f on DF conservative on D

∇ " F ! 0 throughout DEC 
F • dr ! 0

Vector identity (Eq. 8)
(continuous second
partial derivatives)

Theorem 3,
Section 16.3

(a)

S
C

Exercises 16.7

Using Stokes’ Theorem to Find Line Integrals
In Exercises 1–6, use the surface integral in Stokes’Theorem to calcu-
late the circulation of the field F around the curve C in the indicated
direction.

1.
C: The ellipse in the xy-plane, counterclockwise
when viewed from above

4x2 + y2 = 4
F = x2i + 2xj + z2k

2.
C: The circle in the xy-plane, counterclockwise
when viewed from above

3.
C: The boundary of the triangle cut from the plane 
by the first octant, counterclockwise when viewed from above

z = 1x + y +
F = yi + xzj + x2k

x2 + y2 = 9
F = 2yi + 3xj - z2k
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4.
C: The boundary of the triangle cut from the plane 
by the first octant, counterclockwise when viewed from above

5.
C: The square bounded by the lines and in the
xy-plane, counterclockwise when viewed from above

6.
C: The intersection of the cylinder and the hemi-
sphere , counterclockwise when viewed
from above

Flux of the Curl
7. Let n be the outer unit normal of the elliptical shell

and let

Find the value of

(Hint: One parametrization of the ellipse at the base of the shell is
)

8. Let n be the outer unit normal (normal away from the origin) of
the parabolic shell

and let

Find the value of

9. Let S be the cylinder together with
its top, Let Use
Stokes’ Theorem to find the flux of outward through S.

10. Evaluate

where S is the hemisphere 
11. Flux of curl F Show that

has the same value for all oriented surfaces S that span C and that
induce the same positive direction on C.

12. Let F be a differentiable vector field defined on a region contain-
ing a smooth closed oriented surface S and its interior. Let n be
the unit normal vector field on S. Suppose that S is the union of
two surfaces and joined along a smooth simple closed curve
C. Can anything be said about

Give reasons for your answer.

6
S

 § * F # n ds?

S2S1

6
S

 § * F # n ds

x2 + y2 + z2 = 1, z Ú 0.

6
S

 § * s yid # n ds,

§ * F
F = -yi + xj + x2k.x2 + y2 … a2,  z = h.

x2 + y2 = a2, 0 … z … h,

6
S

 § * F # n ds.

F = a-z + 1
2 + x

b i + stan-1 ydj + ax + 1
4 + z

bk.

S: 4x2 + y + z2 = 4,  y Ú 0,

x = 3 cos t, y = 2 sin t, 0 … t … 2p.

6
S

 § * F # n ds.

F = yi + x2j + sx2 + y4d3>2 sin e2xyz k.

S: 4x2 + 9y2 + 36z2 = 36,  z Ú 0,

x2 + y2 + z2 = 16, z Ú 0
x2 + y2 = 4

F = x2y3i + j + zk

y = ;1x = ;1
F = s y2 + z2di + sx2 + y2dj + sx2 + y2dk

x + y + z = 1
F = sy2 + z2di + sx2 + z2dj + sx2 + y2dk

16.7 Stokes’ Theorem 989

Stokes’ Theorem for Parametrized Surfaces
In Exercises 13–18, use the surface integral in Stokes’Theorem to cal-
culate the flux of the curl of the field F across the surface S in the di-
rection of the outward unit normal n.

13.

14.

15.

16.

17.

18.

Theory and Examples
19. Zero circulation Use the identity (Equation (8)

in the text) and Stokes’ Theorem to show that the circulations of
the following fields around the boundary of any smooth ori-
entable surface in space are zero.
a. b.
c. d.

20. Zero circulation Let Show
that the clockwise circulation of the field around the cir-
cle in the xy-plane is zero
a. by taking and 

integrating over the circle.
b. by applying Stokes’ Theorem.

21. Let C be a simple closed smooth curve in the plane
oriented as shown here. Show that

depends only on the area of the region enclosed by C and not on
the position or shape of C.

22. Show that if then § * F = 0.F = xi + yj + zk,

y

z

O a

x

C

1

1

2
2x 1 2y 1 z 5 2

F
C 

 2y dx + 3z dy - x dz

2x + 2y + z = 2 ,

F # dr
r = sa cos tdi + sa sin tdj, 0 … t … 2p,

x2 + y2 = a2
F = §ƒ

ƒsx, y, zd = sx2 + y2 + z2d-1>2.F = §ƒF = § * sxi + yj + zkd
F = §sxy2z3dF = 2xi + 2yj + 2zk

§ * §ƒ = 0

0 … f … p>2,  0 … u … 2p
S: rsf, ud = s2 sin f cos udi + s2 sin f sin udj + s2 cos fdk,
F = y2i + z2j + xk

0 … f … p>2,  0 … u … 2pA23 cos f Bk,  
S: rsf, ud = A23 sin f cos u B i + A23 sin f sin u B j +
F = 3yi + s5 - 2xdj + sz2 - 2dk
0 … r … 5, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s5 - rdk,  
F = sx - ydi + s y - zdj + sz - xdk
0 … r … 1, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + rk,  
F = x2yi + 2y3zj + 3zk

0 … r … 3, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s9 - r2dk,  
F = sy - zdi + sz - xdj + sx + zdk
0 … r … 2, 0 … u … 2p
S: rsr, ud = sr cos udi + sr sin udj + s4 - r2dk,  
F = 2zi + 3xj + 5yk
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16.8 The Divergence Theorem and a Unified Theory

The divergence form of Green’s Theorem in the plane states that the net outward flux of a
vector field across a simple closed curve can be calculated by integrating the divergence of
the field over the region enclosed by the curve. The corresponding theorem in three di-
mensions, called the Divergence Theorem, states that the net outward flux of a vector field
across a closed surface in space can be calculated by integrating the divergence of the field
over the region enclosed by the surface. In this section we prove the Divergence Theorem
and show how it simplifies the calculation of flux. We also derive Gauss’s law for flux in
an electric field and the continuity equation of hydrodynamics. Finally, we unify the chap-
ter’s vector integral theorems into a single fundamental theorem.

Divergence in Three Dimensions

The divergence of a vector field is the scalar
function

(1)

The symbol “div F” is read as “divergence of F” or “div F.” The notation is read “del
dot F.”

Div F has the same physical interpretation in three dimensions that it does in two. If F
is the velocity field of a flowing gas, the value of div F at a point (x, y, z) is the rate at
which the gas is compressing or expanding at (x, y, z). The divergence is the flux per unit
volume or flux density at the point.

EXAMPLE 1 The following vector fields represent the velocity of a gas flowing in space.
Find the divergence of each vector field and interpret its physical meaning. Figure 16.67
displays the vector fields.

(a) Expansion: 

(b) Compression: F(x, y, z) = -xi - yj - zk

F(x, y, z) = xi + yj + zk

§ # F

div F = § # F = 0M
0x + 0N

0y + 0P
0z .

F = Msx, y, zdi + Nsx, y, zdj + Psx, y, zdk

990 Chapter 16: Integration in Vector Fields

23. Find a vector field with twice-differentiable components whose
curl is or prove that no such field exists.

24. Does Stokes’ Theorem say anything special about circulation in a
field whose curl is zero? Give reasons for your answer.

25. Let R be a region in the xy-plane that is bounded by a piecewise
smooth simple closed curve C and suppose that the moments of
inertia of R about the x- and y-axes are known to be and 
Evaluate the integral

where in terms of and Iy.Ixr = 2x2 + y2,

F
C 

 §sr4d # n ds,

Iy.Ix

xi + yj + zk
26. Zero curl, yet field not conservative Show that the curl of

is zero but that

is not zero if C is the circle in the xy-plane. (Theo-
rem 7 does not apply here because the domain of F is not simply
connected. The field F is not defined along the z-axis so there is
no way to contract C to a point without leaving the domain of F.)

x2 + y2 = 1

F
C 

 F # dr

F =
-y

x2 + y2 i + x
x2 + y2 j + zk
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16.8 The Divergence Theorem and a Unified Theory 999

Exercises 16.8

Calculating Divergence
In Exercises 1–4, find the divergence of the field.

1. The spin field in Figure 16.12

2. The radial field in Figure 16.11

3. The gravitational field in Figure 16.8 and Exercise 38a in Section
16.3

4. The velocity field in Figure 16.13

Calculating Flux Using the Divergence Theorem
In Exercises 5–16, use the Divergence Theorem to find the outward
flux of F across the boundary of the region D.

5. Cube

D: The cube bounded by the planes and

6.

a. Cube D: The cube cut from the first octant by the planes
and 

b. Cube D: The cube bounded by the planes 
and 

c. Cylindrical can D: The region cut from the solid cylinder
by the planes and

7. Cylinder and paraboloid

D: The region inside the solid cylinder between the
plane and the paraboloid 

8. Sphere

D: The solid sphere x2 + y2 + z2 … 4

F = x2i + xzj + 3zk

z = x2 + y2z = 0
x2 + y2 … 4

F = yi + xyj - zk

z = 1
z = 0x2 + y2 … 4

z = ;1y = ;1,
x = ;1,

z = 1x = 1, y = 1 ,

F = x2i + y2j + z2k

z = ;1
x = ;1,  y = ;1,

F = s y - xdi + sz - ydj + s y - xdk

9. Portion of sphere

D: The region cut from the first octant by the sphere 

10. Cylindrical can

D: The region cut from the first octant by the cylinder 
and the plane 

11. Wedge

D: The wedge cut from the first octant by the plane 
and the elliptical cylinder 

12. Sphere

D: The solid sphere 

13. Thick sphere

D: The region 

14. Thick sphere

D: The region 

15. Thick sphere

D: The solid region between the spheres and

16. Thick cylinder

D: The thick-walled cylinder 1 … x2 + y2 … 2,  -1 … z … 2

z2x 2 + y 2 k

F = ln sx 2 + y 2di - a2z
x  tan-1 

y
x b j +

x2 + y2 + z2 = 2
x2 + y2 + z2 = 1

s5z3 + e y cos zdk
F = s5x3 + 12xy2di + s y3 + ey sin zdj +

1 … x2 + y2 + z2 … 4

F = sxi + yj + zkd>2x2 + y2 + z2

1 … x2 + y2 + z2 … 2

F = 2x2 + y2 + z2 sxi + yj + zkd

x2 + y2 + z2 … a2

F = x3i + y3j + z3k

4x2 + y2 = 16
y + z = 4

F = 2xzi - xyj - z2k

z = 34
x2 + y2 =

F = s6x2 + 2xydi + s2y + x2zdj + 4x2y3k

z2 = 4
x2 + y2 +

F = x2i - 2xyj + 3xzk

The Fundamental Theorem now says that

The Fundamental Theorem of Calculus, the normal form of Green’s Theorem, and the Di-
vergence Theorem all say that the integral of the differential operator operating on a
field F over a region equals the sum of the normal field components over the boundary of
the region. (Here we are interpreting the line integral in Green’s Theorem and the surface
integral in the Divergence Theorem as “sums” over the boundary.)

Stokes’ Theorem and the tangential form of Green’s Theorem say that, when things
are properly oriented, the integral of the normal component of the curl operating on a field
equals the sum of the tangential field components on the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle,
which we might state as follows.

§ #

Fsbd # n + Fsad # n = 3
[a,b] 

 § # F dx.

A Unifying Fundamental Theorem
The integral of a differential operator acting on a field over a region equals the
sum of the field components appropriate to the operator over the boundary of the
region.
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1000 Chapter 16: Integration in Vector Fields

Properties of Curl and Divergence
17. div (curl G ) is zero

a. Show that if the necessary partial derivatives of the compo-
nents of the field are continuous, then

b. What, if anything, can you conclude about the flux of the field
across a closed surface? Give reasons for your answer.

18. Let and be differentiable vector fields and let a and b be ar-
bitrary real constants. Verify the following identities.

a.

b.

c.

19. Let F be a differentiable vector field and let g(x, y, z) be a differ-
entiable scalar function. Verify the following identities.

a.

b.

20. If is a differentiable vector field, we define
the notation to mean

For differentiable vector fields and verify the following
identities.

a.

b.

Theory and Examples
21. Let F be a field whose components have continuous first partial

derivatives throughout a portion of space containing a region D
bounded by a smooth closed surface S. If can any
bound be placed on the size of

Give reasons for your answer.

22. The base of the closed cubelike surface shown here is the unit
square in the xy-plane. The four sides lie in the planes 

and The top is an arbitrary smooth
surface whose identity is unknown. Let 
and suppose the outward flux of F through Side A is 1 and through
Side B is Can you conclude anything about the outward flux
through the top? Give reasons for your answer.

z

x

y

(1, 1, 0)

1

1

Top

Side B
Side A

-3.

F = xi - 2yj + sz + 3dk
y = 1.y = 0,x = 1,x = 0,

9
D

 § # F dV ?

ƒ F ƒ … 1,

F2 * s§ * F1d
§sF1 # F2d = sF1 # §dF2 + sF2 # §dF1 + F1 * s§ * F2d +
s§ # F1dF2

s§ # F2dF1 -§ * sF1 * F2d = sF2 # §dF1 - sF1 # §dF2 +

F2,F1

M 
0
0x + N 

0
0y + P 

0
0z .

F # §
F = Mi + Nj + Pk

§ * sgFd = g§ * F + §g * F

§ # sgFd = g§ # F + §g # F

§ # sF1 * F2d = F2 # § * F1 - F1 # § * F2

§ * saF1 + bF2d = a§ * F1 + b§ * F2

§ # saF1 + bF2d = a§ # F1 + b§ # F2

F2F1

§ * G

§ # § * G = 0.
G = Mi + Nj + Pk

23. a. Show that the outward flux of the position vector field 
through a smooth closed surface S is three times

the volume of the region enclosed by the surface.

b. Let n be the outward unit normal vector field on S. Show that it
is not possible for F to be orthogonal to n at every point of S.

24. Maximum flux Among all rectangular solids defined by the in-
equalities find the one for
which the total flux of out-
ward through the six sides is greatest. What is the greatest flux?

25. Volume of a solid region Let and suppose
that the surface S and region D satisfy the hypotheses of the Diver-
gence Theorem. Show that the volume of D is given by the formula

26. Outward flux of a constant field Show that the outward flux
of a constant vector field across any closed surface to
which the Divergence Theorem applies is zero.

27. Harmonic functions A function ƒ(x, y, z) is said to be harmonic
in a region D in space if it satisfies the Laplace equation

throughout D.

a. Suppose that ƒ is harmonic throughout a bounded region D
enclosed by a smooth surface S and that n is the chosen unit
normal vector on S. Show that the integral over S of 
the derivative of ƒ in the direction of n, is zero.

b. Show that if ƒ is harmonic on D, then

28. Outward flux of a gradient field Let S be the surface of the
portion of the solid sphere that lies in the
first octant and let Calculate

( is the derivative of ƒ in the direction of outward normal n.)

29. Green’s first formula Suppose that ƒ and g are scalar functions
with continuous first- and second-order partial derivatives
throughout a region D that is bounded by a closed piecewise
smooth surface S. Show that

(9)

Equation (9) is Green’s first formula. (Hint: Apply the Diver-
gence Theorem to the field )

30. Green’s second formula (Continuation of Exercise 29. ) Inter-
change ƒ and g in Equation (9) to obtain a similar formula. Then
subtract this formula from Equation (9) to show that

(10)

This equation is Green’s second formula.

6
S

 sƒ §g - g§ƒd # n ds = 9
D

 sƒ §2g - g§2ƒd dV.

F = ƒ §g.

6
S

 ƒ §g # n ds = 9
D

 sƒ § 2g + §ƒ # §gd dV.

§ƒ # n

6
S

 §ƒ # n ds.

ƒsx, y, zd = ln2x2 + y2 + z2.
x2 + y2 + z2 … a2

6
S

 ƒ §ƒ # n ds = 9
D

 ƒ §ƒ ƒ 2 dV.

§ƒ # n,

§2ƒ = § # §ƒ =
02ƒ

0x2 +
02ƒ

0y2 +
02ƒ

0z2 = 0

F = C

Volume of D = 1
3

 6
S

 F # n ds.

F = xi + yj + zk

F = s -x2 - 4xydi - 6yzj + 12zk
0 … x … a, 0 … y … b, 0 … z … 1,

xi + yj + zk
F =
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31. Conservation of mass Let v(t, x, y, z) be a continuously differ-
entiable vector field over the region D in space and let p(t, x, y, z) be
a continuously differentiable scalar function. The variable t repre-
sents the time domain. The Law of Conservation of Mass asserts
that

where S is the surface enclosing D.

a. Give a physical interpretation of the conservation of mass law
if v is a velocity flow field and p represents the density of the
fluid at point (x, y, z) at time t.

b. Use the Divergence Theorem and Leibniz’s Rule,

to show that the Law of Conservation of Mass is equivalent to
the continuity equation,

§ # pv +
0p
0t = 0.

d
dt

 9
D

 pst, x, y, zd dV = 9
D

 
0p
0t  dV,

d
dt

 9
D

 pst, x, y, zd dV = -6
S

 pv # n ds,

Chapter 16 Practice Exercises 1001

(In the first term the variable t is held fixed, and in the
second term it is assumed that the point (x, y, z) in D is
held fixed.)

32. The heat diffusion equation Let T(t, x, y, z) be a function with
continuous second derivatives giving the temperature at time t at
the point (x, y, z) of a solid occupying a region D in space. If the
solid’s heat capacity and mass density are denoted by the con-
stants c and respectively, the quantity is called the solid’s
heat energy per unit volume.

a. Explain why points in the direction of heat flow.

b. Let denote the energy flux vector. (Here the constant
k is called the conductivity.) Assuming the Law of Conserva-
tion of Mass with and in Exercise 31,
derive the diffusion (heat) equation

where is the diffusivity constant. (Notice
that if T(t, x) represents the temperature at time t at position x
in a uniform conducting rod with perfectly insulated sides, then

and the diffusion equation reduces to the one-
dimensional heat equation in Chapter 14’s Additional Exercises.)
§2T = 02T>0x2

K = k>scrd 7 0

0T
0t = K §2T,

crT = p-k§T = v

-k§T

- §T

crTr,

0p>0t ,
§ # pv,

Chapter 16 Questions to Guide Your Review

1. What are line integrals? How are they evaluated? Give examples.

2. How can you use line integrals to find the centers of mass of
springs? Explain.

3. What is a vector field? A gradient field? Give examples.

4. How do you calculate the work done by a force in moving a parti-
cle along a curve? Give an example.

5. What are flow, circulation, and flux?

6. What is special about path independent fields?

7. How can you tell when a field is conservative?

8. What is a potential function? Show by example how to find a po-
tential function for a conservative field.

9. What is a differential form? What does it mean for such a form to
be exact? How do you test for exactness? Give examples.

10. What is the divergence of a vector field? How can you interpret it?

11. What is the curl of a vector field? How can you interpret it?

12. What is Green’s Theorem? How can you interpret it?

13. How do you calculate the area of a parametrized surface in space?
Of an implicitly defined surface ? Of the surface
which is the graph of ? Give examples.

14. How do you integrate a function over a parametrized surface in
space? Of surfaces that are defined implicitly or in explicit form?
What can you calculate with surface integrals? Give examples.

15. What is an oriented surface? How do you calculate the flux of a
three-dimensional vector field across an oriented surface? Give
an example.

16. What is Stokes’ Theorem? How can you interpret it?

17. Summarize the chapter’s results on conservative fields.

18. What is the Divergence Theorem? How can you interpret it?

19. How does the Divergence Theorem generalize Green’s Theorem?

20. How does Stokes’ Theorem generalize Green’s Theorem?

21. How can Green’s Theorem, Stokes’ Theorem, and the Divergence
Theorem be thought of as forms of a single fundamental theorem?

z = ƒ(x, y)
F(x, y, z) = 0

Chapter 16 Practice Exercises

Evaluating Line Integrals
1. The accompanying figure shows two polygonal paths in space join-

ing the origin to the point (1, 1, 1). Integrate 
over each path.3y2 - 2z + 3

ƒsx, y, zd = 2x -

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 1

z

y

x

(0, 0, 0) (1, 1, 1)

(1, 1, 0)

Path 2
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