The formulas in Table 16.1 then give

$$M = \int_C \delta \, ds = \int_C (2 - z) \, ds = \int_0^\pi (2 - \sin t) \, dt = 2\pi - 2$$
$$M_{xy} = \int_C z \delta \, ds = \int_C z (2 - z) \, ds = \int_0^\pi (\sin t) (2 - \sin t) \, dt$$
$$= \int_0^\pi (2 \sin t - \sin^2 t) \, dt = \frac{8 - \pi}{2}$$
$$\bar{z} = \frac{M_{xy}}{M} = \frac{8 - \pi}{2} \cdot \frac{1}{2\pi - 2} = \frac{8 - \pi}{4\pi - 4} \approx 0.57.$$

With \overline{z} to the nearest hundredth, the center of mass is (0, 0, 0.57).

Line Integrals in the Plane

There is an interesting geometric interpretation for line integrals in the plane. If *C* is a smooth curve in the *xy*-plane parametrized by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$, $a \le t \le b$, we generate a cylindrical surface by moving a straight line along *C* orthogonal to the plane, holding the line parallel to the *z*-axis, as in Section 12.6. If z = f(x, y) is a nonnegative continuous function over a region in the plane containing the curve *C*, then the graph of *f* is a surface that lies above the plane. The cylinder cuts through this surface, forming a curve on it that lies above the curve *C* and follows its winding nature. The part of the cylindrical surface that lies beneath the surface curve and above the *xy*-plane is like a "winding wall" or "fence" standing on the curve *C* and orthogonal to the plane. At any point (*x*, *y*) along the curve, the height of the wall is f(x, y). We show the wall in Figure 16.5, where the "top" of the wall is the curve lying on the surface z = f(x, y). (We do not display the surface formed by the graph of *f* in the figure, only the curve on it that is cut out by the cylinder.) From the definition

$$\int_C f \, ds = \lim_{n \to \infty} \sum_{k=1}^n f(x_k, y_k) \, \Delta s_k,$$

where $\Delta s_k \rightarrow 0$ as $n \rightarrow \infty$, we see that the line integral $\int_C f \, ds$ is the area of the wall shown in the figure.

Exercises 16.1

Graphs of Vector Equations

Match the vector equations in Exercises 1-8 with the graphs (a)–(h) given here.

- **1.** $\mathbf{r}(t) = t\mathbf{i} + (1 t)\mathbf{j}, \quad 0 \le t \le 1$
- **2.** $\mathbf{r}(t) = \mathbf{i} + \mathbf{j} + t\mathbf{k}, \quad -1 \le t \le 1$
- **3.** $\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$
- **4.** $\mathbf{r}(t) = t\mathbf{i}, -1 \le t \le 1$
- **5.** $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 2$
- **6.** $\mathbf{r}(t) = t\mathbf{j} + (2 2t)\mathbf{k}, \quad 0 \le t \le 1$
- 7. $\mathbf{r}(t) = (t^2 1)\mathbf{j} + 2t\mathbf{k}, \quad -1 \le t \le 1$
- 8. $\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{k}, \quad 0 \le t \le \pi$

Evaluating Line Integrals over Space Curves

- 9. Evaluate $\int_C (x + y) ds$ where C is the straight-line segment x = t, y = (1 t), z = 0, from (0, 1, 0) to (1, 0, 0).
- **10.** Evaluate $\int_C (x y + z 2) ds$ where *C* is the straight-line segment x = t, y = (1 t), z = 1, from (0, 1, 1) to (1, 0, 1).
- 11. Evaluate $\int_C (xy + y + z) ds$ along the curve $\mathbf{r}(t) = 2t\mathbf{i} + t\mathbf{j} + (2 2t)\mathbf{k}, 0 \le t \le 1$.
- 12. Evaluate $\int_C \sqrt{x^2 + y^2} \, ds$ along the curve $\mathbf{r}(t) = (4 \cos t)\mathbf{i} + (4 \sin t)\mathbf{j} + 3t\mathbf{k}, -2\pi \le t \le 2\pi$.
- 13. Find the line integral of f(x, y, z) = x + y + z over the straightline segment from (1, 2, 3) to (0, -1, 1).
- 14. Find the line integral of $f(x, y, z) = \sqrt{3}/(x^2 + y^2 + z^2)$ over the curve $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, 1 \le t \le \infty$.
- **15.** Integrate $f(x, y, z) = x + \sqrt{y} z^2$ over the path from (0, 0, 0) to (1, 1, 1) (see accompanying figure) given by

$$C_1: \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j}, \quad 0 \le t \le 1$$
$$C_2: \mathbf{r}(t) = \mathbf{i} + \mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 1$$

The paths of integration for Exercises 15 and 16.

16. Integrate $f(x, y, z) = x + \sqrt{y} - z^2$ over the path from (0, 0, 0) to (1, 1, 1) (see accompanying figure) given by

$$C_1: \mathbf{r}(t) = t\mathbf{k}, \quad 0 \le t \le 1$$

$$C_2: \mathbf{r}(t) = t\mathbf{j} + \mathbf{k}, \quad 0 \le t \le 1$$

$$C_3: \mathbf{r}(t) = t\mathbf{i} + \mathbf{j} + \mathbf{k}, \quad 0 \le t \le 1$$

- 17. Integrate $f(x, y, z) = (x + y + z)/(x^2 + y^2 + z^2)$ over the path $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}, 0 < a \le t \le b.$
- **18.** Integrate $f(x, y, z) = -\sqrt{x^2 + z^2}$ over the circle

 $\mathbf{r}(t) = (a\cos t)\mathbf{j} + (a\sin t)\mathbf{k}, \qquad 0 \le t \le 2\pi.$

Line Integrals over Plane Curves

- **19.** Evaluate $\int_C x \, ds$, where C is
 - **a.** the straight-line segment x = t, y = t/2, from (0, 0) to (4, 2).
 - **b.** the parabolic curve x = t, $y = t^2$, from (0, 0) to (2, 4).
- **20.** Evaluate $\int_C \sqrt{x+2y} \, ds$, where C is
 - **a.** the straight-line segment x = t, y = 4t, from (0, 0) to (1, 4).
 - **b.** $C_1 \cup C_2$; C_1 is the line segment from (0, 0) to (1, 0) and C_2 is the line segment from (1, 0) to (1, 2).
- **21.** Find the line integral of $f(x, y) = ye^{x^2}$ along the curve $\mathbf{r}(t) = 4t\mathbf{i} 3t\mathbf{j}, -1 \le t \le 2$.
- 22. Find the line integral of f(x, y) = x y + 3 along the curve $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j}, 0 \le t \le 2\pi$.
- 23. Evaluate $\int_C \frac{x^2}{y^{4/3}} ds$, where C is the curve $x = t^2, y = t^3$, for $1 \le t \le 2$.
- 24. Find the line integral of $f(x, y) = \sqrt{y}/x$ along the curve $\mathbf{r}(t) = t^3 \mathbf{i} + t^4 \mathbf{j}, 1/2 \le t \le 1.$
- **25.** Evaluate $\int_C (x + \sqrt{y}) ds$ where *C* is given in the accompanying figure.

26. Evaluate $\int_C \frac{1}{x^2 + y^2 + 1} ds$ where C is given in the accompanying figure.

- In Exercises 27–30, integrate f over the given curve.
- **27.** $f(x, y) = x^3/y$, C: $y = x^2/2$, $0 \le x \le 2$
- **28.** $f(x, y) = (x + y^2)/\sqrt{1 + x^2}$, C: $y = x^2/2$ from (1, 1/2) to (0, 0)
- **29.** f(x, y) = x + y, C: $x^2 + y^2 = 4$ in the first quadrant from (2, 0) to (0, 2)
- **30.** $f(x, y) = x^2 y$, C: $x^2 + y^2 = 4$ in the first quadrant from (0, 2) to $(\sqrt{2}, \sqrt{2})$
- 31. Find the area of one side of the "winding wall" standing orthogonally on the curve y = x², 0 ≤ x ≤ 2, and beneath the curve on the surface f(x, y) = x + √y.
- 32. Find the area of one side of the "wall" standing orthogonally on the curve 2x + 3y = 6, $0 \le x \le 6$, and beneath the curve on the surface f(x, y) = 4 + 3x + 2y.

Masses and Moments

- **33.** Mass of a wire Find the mass of a wire that lies along the curve $\mathbf{r}(t) = (t^2 1)\mathbf{j} + 2t\mathbf{k}, 0 \le t \le 1$, if the density is $\delta = (3/2)t$.
- 34. Center of mass of a curved wire A wire of density $\delta(x, y, z) = 15\sqrt{y+2}$ lies along the curve $\mathbf{r}(t) = (t^2 1)\mathbf{j} + 2t\mathbf{k}, -1 \le t \le 1$. Find its center of mass. Then sketch the curve and center of mass together.
- 35. Mass of wire with variable density Find the mass of a thin wire lying along the curve $\mathbf{r}(t) = \sqrt{2}t\mathbf{i} + \sqrt{2}t\mathbf{j} + (4 t^2)\mathbf{k}$, $0 \le t \le 1$, if the density is (a) $\delta = 3t$ and (b) $\delta = 1$.
- **36.** Center of mass of wire with variable density Find the center of mass of a thin wire lying along the curve $\mathbf{r}(t) = t\mathbf{i} + 2t\mathbf{j} + (2/3)t^{3/2}\mathbf{k}, 0 \le t \le 2$, if the density is $\delta = 3\sqrt{5+t}$.
- **37.** Moment of inertia of wire hoop A circular wire hoop of constant density δ lies along the circle $x^2 + y^2 = a^2$ in the *xy*-plane. Find the hoop's moment of inertia about the *z*-axis.
- **38.** Inertia of a slender rod A slender rod of constant density lies along the line segment $\mathbf{r}(t) = t\mathbf{j} + (2 2t)\mathbf{k}, 0 \le t \le 1$, in the

yz-plane. Find the moments of inertia of the rod about the three coordinate axes.

39. Two springs of constant density A spring of constant density δ lies along the helix

$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}, \qquad 0 \le t \le 2\pi.$$

a. Find I_z .

- **b.** Suppose that you have another spring of constant density δ that is twice as long as the spring in part (a) and lies along the helix for $0 \le t \le 4\pi$. Do you expect I_z for the longer spring to be the same as that for the shorter one, or should it be different? Check your prediction by calculating I_z for the longer spring.
- **40.** Wire of constant density A wire of constant density $\delta = 1$ lies along the curve

$$\mathbf{r}(t) = (t\cos t)\mathbf{i} + (t\sin t)\mathbf{j} + (2\sqrt{2}/3)t^{3/2}\mathbf{k}, \qquad 0 \le t \le 1.$$

Find \overline{z} and I_z .

- **41.** The arch in Example 3 Find I_x for the arch in Example 3.
- **42.** Center of mass and moments of inertia for wire with variable density Find the center of mass and the moments of inertia about the coordinate axes of a thin wire lying along the curve

$$\mathbf{r}(t) = t\mathbf{i} + \frac{2\sqrt{2}}{3}t^{3/2}\mathbf{j} + \frac{t^2}{2}\mathbf{k}, \quad 0 \le t \le 2,$$

if the density is $\delta = 1/(t + 1)$.

COMPUTER EXPLORATIONS

In Exercises 43–46, use a CAS to perform the following steps to evaluate the line integrals.

- **a.** Find $ds = |\mathbf{v}(t)| dt$ for the path $\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$.
- **b.** Express the integrand $f(g(t), h(t), k(t)) |\mathbf{v}(t)|$ as a function of the parameter *t*.
- **c.** Evaluate $\int_C f \, ds$ using Equation (2) in the text.
- **43.** $f(x, y, z) = \sqrt{1 + 30x^2 + 10y}; \quad \mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + 3t^2\mathbf{k}, \\ 0 \le t \le 2$

44.
$$f(x, y, z) = \sqrt{1 + x^3 + 5y^3}; \quad \mathbf{r}(t) = t\mathbf{i} + \frac{1}{3}t^2\mathbf{j} + \sqrt{t}\mathbf{k}, \ 0 \le t \le 2$$

45.
$$f(x, y, z) = x\sqrt{y} - 3z^2$$
; $\mathbf{r}(t) = (\cos 2t)\mathbf{i} + (\sin 2t)\mathbf{j} + 5t\mathbf{k}$,
 $0 \le t \le 2\pi$
46. $f(x, y, z) = \left(1 + \frac{9}{4}z^{1/3}\right)^{1/4}$; $\mathbf{r}(t) = (\cos 2t)\mathbf{i} + (\sin 2t)\mathbf{j} + \frac{t^{5/2}\mathbf{k}}{2\pi}, \quad 0 \le t \le 2\pi$

16.2

Vector Fields and Line Integrals: Work, Circulation, and Flux

Gravitational and electric forces have both a direction and a magnitude. They are represented by a vector at each point in their domain, producing a *vector field*. In this section we show how to compute the work done in moving an object through such a field by using a line integral involving the vector field. We also discuss velocity fields, such as the vector **Calculating Flux Across a Smooth Closed Plane Curve**

(Flux of
$$\mathbf{F} = M\mathbf{i} + N\mathbf{j}$$
 across C) = $\oint_C M dy - N dx$ (7)

The integral can be evaluated from any smooth parametrization $x = g(t), y = h(t), a \le t \le b$, that traces *C* counterclockwise exactly once.

EXAMPLE 8 Find the flux of $\mathbf{F} = (x - y)\mathbf{i} + x\mathbf{j}$ across the circle $x^2 + y^2 = 1$ in the *xy*-plane. (The vector field and curve were shown previously in Figure 16.19.)

Solution The parametrization $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j}, 0 \le t \le 2\pi$, traces the circle counterclockwise exactly once. We can therefore use this parametrization in Equation (7). With

$$M = x - y = \cos t - \sin t, \qquad dy = d(\sin t) = \cos t \, dt$$
$$N = x = \cos t, \qquad \qquad dx = d(\cos t) = -\sin t \, dt$$

we find

Flux =
$$\int_C M \, dy - N \, dx = \int_0^{2\pi} (\cos^2 t - \sin t \cos t + \cos t \sin t) \, dt$$
 Eq. (7)
= $\int_0^{2\pi} \cos^2 t \, dt = \int_0^{2\pi} \frac{1 + \cos 2t}{2} \, dt = \left[\frac{t}{2} + \frac{\sin 2t}{4}\right]_0^{2\pi} = \pi.$

The flux of **F** across the circle is π . Since the answer is positive, the net flow across the curve is outward. A net inward flow would have given a negative flux.

Exercises 16.2

Vector Fields

Find the gradient fields of the functions in Exercises 1-4.

- 1. $f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$
- 2. $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$
- 3. $g(x, y, z) = e^z \ln(x^2 + y^2)$
- 4. g(x, y, z) = xy + yz + xz
- 5. Give a formula $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ for the vector field in the plane that has the property that \mathbf{F} points toward the origin with magnitude inversely proportional to the square of the distance from (x, y) to the origin. (The field is not defined at (0, 0).)
- 6. Give a formula $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ for the vector field in the plane that has the properties that $\mathbf{F} = \mathbf{0}$ at (0, 0) and that at any other point (*a*, *b*), **F** is tangent to the circle $x^2 + y^2 = a^2 + b^2$ and points in the clockwise direction with magnitude $|\mathbf{F}| = \sqrt{a^2 + b^2}$.

Line Integrals of Vector Fields

In Exercises 7–12, find the line integrals of **F** from (0, 0, 0) to (1, 1, 1) over each of the following paths in the accompanying figure.

- **a.** The straight-line path C_1 : $\mathbf{r}(t) = t\mathbf{i} + t\mathbf{j} + t\mathbf{k}$, $0 \le t \le 1$
- **b.** The curved path C_2 : $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^4\mathbf{k}$, $0 \le t \le 1$
- **c.** The path $C_3 \cup C_4$ consisting of the line segment from (0, 0, 0) to (1, 1, 0) followed by the segment from (1, 1, 0) to (1, 1, 1)

7. $\mathbf{F} = 3y\mathbf{i} + 2x\mathbf{j} + 4z\mathbf{k}$ 8. $\mathbf{F} = [1/(x^2 + 1)]\mathbf{j}$ 9. $\mathbf{F} = \sqrt{z}\mathbf{i} - 2x\mathbf{j} + \sqrt{y}\mathbf{k}$ 10. $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$ 11. $\mathbf{F} = (3x^2 - 3x)\mathbf{i} + 3z\mathbf{j} + \mathbf{k}$

12.
$$\mathbf{F} = (y + z)\mathbf{i} + (z + x)\mathbf{j} + (x + y)\mathbf{k}$$

Line Integrals with Respect to x, y, and z

In Exercises 13–16, find the line integrals along the given path C.

13.
$$\int_{C} (x - y) dx$$
, where $C: x = t, y = 2t + 1$, for $0 \le t \le 3$
14.
$$\int_{C} \frac{x}{y} dy$$
, where $C: x = t, y = t^{2}$, for $1 \le t \le 2$
15.
$$\int_{C} (x^{2} + y^{2}) dy$$
, where C is given in the accompanying figure.

a.
$$\int_{C} (x + y - z) dx$$

b.
$$\int_{C} (x + y - z) dy$$

c.
$$\int_{C} (x + y - z) dz$$

18. Along the curve $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} - (\cos t)\mathbf{k}, 0 \le t \le \pi$, evaluate each of the following integrals.

a.
$$\int_C xz \, dx$$
 b. $\int_C xz \, dy$ **c.** $\int_C xyz \, dz$

Work

In Exercises 19–22, find the work done by F over the curve in the direction of increasing t.

19. $\mathbf{F} = xy\mathbf{i} + y\mathbf{j} - yz\mathbf{k}$ $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 1$ **20.** $\mathbf{F} = 2y\mathbf{i} + 3x\mathbf{j} + (x + y)\mathbf{k}$ $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (t/6)\mathbf{k}, \quad 0 \le t \le 2\pi$

21.
$$\mathbf{F} = z\mathbf{i} + x\mathbf{j} + y\mathbf{k}$$

 $\mathbf{r}(t) = (\sin t)\mathbf{i} + (\cos t)\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le 2\pi$

22.
$$\mathbf{F} = 6z\mathbf{i} + y^2\mathbf{j} + 12x\mathbf{k}$$

 $\mathbf{r}(t) = (\sin t)\mathbf{i} + (\cos t)\mathbf{j} + (t/6)\mathbf{k}, \quad 0 \le t \le 2\pi$

Line Integrals in the Plane

- **23.** Evaluate $\int_C xy \, dx + (x + y) \, dy$ along the curve $y = x^2$ from (-1, 1) to (2, 4).
- 24. Evaluate $\int_C (x y) dx + (x + y) dy$ counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1).
- **25.** Evaluate $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$ for the vector field $\mathbf{F} = x^2 \mathbf{i} y \mathbf{j}$ along the curve $x = y^2$ from (4, 2) to (1, -1).
- 26. Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the vector field $\mathbf{F} = y\mathbf{i} x\mathbf{j}$ counterclockwise along the unit circle $x^2 + y^2 = 1$ from (1, 0) to (0, 1).

Work, Circulation, and Flux in the Plane

- 27. Work Find the work done by the force $\mathbf{F} = xy\mathbf{i} + (y x)\mathbf{j}$ over the straight line from (1, 1) to (2, 3).
- **28.** Work Find the work done by the gradient of $f(x, y) = (x + y)^2$ counterclockwise around the circle $x^2 + y^2 = 4$ from (2, 0) to itself.
- 29. Circulation and flux Find the circulation and flux of the fields

$$\mathbf{F}_1 = x\mathbf{i} + y\mathbf{j}$$
 and $\mathbf{F}_2 = -y\mathbf{i} + x\mathbf{j}$

around and across each of the following curves.

a. The circle
$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$$

b. The ellipse
$$\mathbf{r}(t) = (\cos t)\mathbf{i} + (4\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$$

30. Flux across a circle Find the flux of the fields

$$\mathbf{F}_1 = 2x\mathbf{i} - 3y\mathbf{j}$$
 and $\mathbf{F}_2 = 2x\mathbf{i} + (x - y)\mathbf{j}$

across the circle

$$\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}, \qquad 0 \le t \le 2\pi$$

In Exercises 31–34, find the circulation and flux of the field F around and across the closed semicircular path that consists of the semicircular arch $\mathbf{r}_1(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j}, 0 \le t \le \pi$, followed by the line segment $\mathbf{r}_2(t) = t\mathbf{i}, -a \le t \le a$.

31.
$$\mathbf{F} = x\mathbf{i} + y\mathbf{j}$$

32. $\mathbf{F} = x^2\mathbf{i} + y^2\mathbf{j}$

- **33.** F = -yi + xj**34.** $\mathbf{F} = -y^2 \mathbf{i} + x^2 \mathbf{j}$
- 35. Flow integrals Find the flow of the velocity field $\mathbf{F} =$ $(x + y)\mathbf{i} - (x^2 + y^2)\mathbf{j}$ along each of the following paths from (1, 0) to (-1, 0) in the *xy*-plane.
 - **a.** The upper half of the circle $x^2 + y^2 = 1$
 - **b.** The line segment from (1, 0) to (-1, 0)
 - **c.** The line segment from (1, 0) to (0, -1) followed by the line segment from (0, -1) to (-1, 0)
- 36. Flux across a triangle Find the flux of the field F in Exercise 35 outward across the triangle with vertices (1, 0), (0, 1), (-1, 0).
- **37.** Find the flow of the velocity field $\mathbf{F} = y^2 \mathbf{i} + 2xy \mathbf{j}$ along each of the following paths from (0, 0) to (2, 4).

c. Use any path from (0, 0) to (2, 4) different from parts (a) and (b).

38. Find the circulation of the field $\mathbf{F} = y\mathbf{i} + (x + 2y)\mathbf{j}$ around each of the following closed paths.

c. Use any closed path different from parts (a) and (b).

Vector Fields in the Plane

39. Spin field Draw the spin field

$$\mathbf{F} = -\frac{y}{\sqrt{x^2 + y^2}}\mathbf{i} + \frac{x}{\sqrt{x^2 + y^2}}\mathbf{j}$$

(see Figure 16.12) along with its horizontal and vertical components at a representative assortment of points on the circle $x^2 + y^2 = 4$.

40. Radial field Draw the radial field

$$\mathbf{F} = x\mathbf{i} + y\mathbf{j}$$

(see Figure 16.11) along with its horizontal and vertical components at a representative assortment of points on the circle $x^2 + y^2 = 1$.

41. A field of tangent vectors

- a. Find a field G = P(x, y)i + Q(x, y)j in the xy-plane with the property that at any point (a, b) ≠ (0, 0), G is a vector of magnitude √a² + b² tangent to the circle x² + y² = a² + b² and pointing in the counterclockwise direction. (The field is undefined at (0, 0).)
- **b.** How is **G** related to the spin field **F** in Figure 16.12?

42. A field of tangent vectors

- **a.** Find a field $\mathbf{G} = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ in the *xy*-plane with the property that at any point $(a, b) \neq (0, 0)$, **G** is a unit vector tangent to the circle $x^2 + y^2 = a^2 + b^2$ and pointing in the clockwise direction.
- b. How is G related to the spin field F in Figure 16.12?

- **43.** Unit vectors pointing toward the origin Find a field $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ in the *xy*-plane with the property that at each point $(x, y) \neq (0, 0)$, \mathbf{F} is a unit vector pointing toward the origin. (The field is undefined at (0, 0).)
- **44.** Two "central" fields Find a field $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ in the *xy*-plane with the property that at each point $(x, y) \neq (0, 0)$, **F** points toward the origin and $|\mathbf{F}|$ is (a) the distance from (x, y) to the origin, (b) inversely proportional to the distance from (x, y) to the origin. (The field is undefined at (0, 0).)
- **45. Work and area** Suppose that f(t) is differentiable and positive for $a \le t \le b$. Let C be the path $\mathbf{r}(t) = t\mathbf{i} + f(t)\mathbf{j}$, $a \le t \le b$, and $\mathbf{F} = y\mathbf{i}$. Is there any relation between the value of the work integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

and the area of the region bounded by the *t*-axis, the graph of f, and the lines t = a and t = b? Give reasons for your answer.

46. Work done by a radial force with constant magnitude A particle moves along the smooth curve y = f(x) from (a, f(a)) to (b, f(b)). The force moving the particle has constant magnitude k and always points away from the origin. Show that the work done by the force is

$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds = k \Big[(b^2 + (f(b))^2)^{1/2} - (a^2 + (f(a))^2)^{1/2} \Big].$$

Flow Integrals in Space

In Exercises 47–50, \mathbf{F} is the velocity field of a fluid flowing through a region in space. Find the flow along the given curve in the direction of increasing *t*.

- 47. $\mathbf{F} = -4xy\mathbf{i} + 8y\mathbf{j} + 2\mathbf{k}$ $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + \mathbf{k}, \quad 0 \le t \le 2$
- **48.** $\mathbf{F} = x^2 \mathbf{i} + yz \mathbf{j} + y^2 \mathbf{k}$ $r(t) = 3t \mathbf{j} + 4t \mathbf{k}, \quad 0 \le t \le 1$
- **49.** $\mathbf{F} = (x z)\mathbf{i} + x\mathbf{k}$ $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{k}, \quad 0 \le t \le \pi$

50.
$$\mathbf{F} = -y\mathbf{i} + x\mathbf{j} + 2\mathbf{k}$$

 $\mathbf{r}(t) = (-2\cos t)\mathbf{i} + (2\sin t)\mathbf{j} + 2t\mathbf{k}, \quad 0 \le t \le 2\pi$

- **51. Circulation** Find the circulation of $\mathbf{F} = 2x\mathbf{i} + 2z\mathbf{j} + 2y\mathbf{k}$ around the closed path consisting of the following three curves traversed in the direction of increasing *t*.
 - C_1 : $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}, \quad 0 \le t \le \pi/2$
 - C_2 : $\mathbf{r}(t) = \mathbf{j} + (\pi/2)(1-t)\mathbf{k}, \quad 0 \le t \le 1$
 - C_3 : $\mathbf{r}(t) = t\mathbf{i} + (1-t)\mathbf{j}, \quad 0 \le t \le 1$

- **52.** Zero circulation Let *C* be the ellipse in which the plane 2x + 3y z = 0 meets the cylinder $x^2 + y^2 = 12$. Show, without evaluating either line integral directly, that the circulation of the field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ around *C* in either direction is zero.
- **53.** Flow along a curve The field $\mathbf{F} = xy\mathbf{i} + y\mathbf{j} yz\mathbf{k}$ is the velocity field of a flow in space. Find the flow from (0, 0, 0) to (1, 1, 1) along the curve of intersection of the cylinder $y = x^2$ and the plane z = x. (*Hint:* Use t = x as the parameter.)

- 54. Flow of a gradient field Find the flow of the field $\mathbf{F} = \nabla (xy^2 z^3)$:
 - **a.** Once around the curve *C* in Exercise 52, clockwise as viewed from above
 - **b.** Along the line segment from (1, 1, 1) to (2, 1, -1).

16.3

COMPUTER EXPLORATIONS

In Exercises 55–60, use a CAS to perform the following steps for finding the work done by force F over the given path:

- **a.** Find dr for the path $\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$.
- **b.** Evaluate the force **F** along the path.

c. Evaluate
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

- **55.** $\mathbf{F} = xy^6 \mathbf{i} + 3x(xy^5 + 2)\mathbf{j}; \quad \mathbf{r}(t) = (2\cos t)\mathbf{i} + (\sin t)\mathbf{j}, \\ 0 \le t \le 2\pi$
- 56. $\mathbf{F} = \frac{3}{1+x^2}\mathbf{i} + \frac{2}{1+y^2}\mathbf{j}; \quad \mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j},$ $0 \le t \le \pi$
- 57. $\mathbf{F} = (y + yz \cos xyz)\mathbf{i} + (x^2 + xz \cos xyz)\mathbf{j} + (z + xy \cos xyz)\mathbf{k}; \mathbf{r}(t) = (2 \cos t)\mathbf{i} + (3 \sin t)\mathbf{j} + \mathbf{k}, 0 \le t \le 2\pi$
- 58. $\mathbf{F} = 2xy\mathbf{i} y^2\mathbf{j} + ze^x\mathbf{k}; \quad \mathbf{r}(t) = -t\mathbf{i} + \sqrt{t}\mathbf{j} + 3t\mathbf{k},$ $1 \le t \le 4$
- **59.** $\mathbf{F} = (2y + \sin x)\mathbf{i} + (z^2 + (1/3)\cos y)\mathbf{j} + x^4\mathbf{k};$ $\mathbf{r}(t) = (\sin t)\mathbf{i} + (\cos t)\mathbf{j} + (\sin 2t)\mathbf{k}, \quad -\pi/2 \le t \le \pi/2$
- **60.** $\mathbf{F} = (x^2 y)\mathbf{i} + \frac{1}{3}x^3\mathbf{j} + xy\mathbf{k}; \quad \mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (2\sin^2 t 1)\mathbf{k}, \quad 0 \le t \le 2\pi$

Path Independence, Conservative Fields, and Potential Functions

A gravitational field G is a vector field that represents the effect of gravity at a point in space due to the presence of a massive object. The gravitational force on a body of mass m placed in the field is given by $\mathbf{F} = m\mathbf{G}$. Similarly, an electric field E is a vector field in space that represents the effect of electric forces on a charged particle placed within it. The force on a body of charge q placed in the field is given by $\mathbf{F} = q\mathbf{E}$. In gravitational and electric fields, the amount of work it takes to move a mass or charge from one point to another depends on the initial and final positions of the object—not on which path is taken between these positions. In this section we study vector fields with this property and the calculation of work integrals associated with them.

Path Independence

If A and B are two points in an open region D in space, the line integral of F along C from A to B for a field F defined on D usually depends on the path C taken, as we saw in Section 16.1. For some special fields, however, the integral's value is the same for all paths from A to B.

DEFINITIONS Let **F** be a vector field defined on an open region *D* in space, and suppose that for any two points *A* and *B* in *D* the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ along a path *C* from *A* to *B* in *D* is the same over all paths from *A* to *B*. Then the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is **path independent in** *D* and the field **F** is **conservative on** *D*.

The word *conservative* comes from physics, where it refers to fields in which the principle of conservation of energy holds. When a line integral is independent of the path C from

EXAMPLE 6 Show that $y \, dx + x \, dy + 4 \, dz$ is exact and evaluate the integral

$$\int_{(1,1,1)}^{(2,3,-1)} y \, dx + x \, dy + 4 \, dz$$

over any path from (1, 1, 1) to (2, 3, -1).

Solution We let M = y, N = x, P = 4 and apply the Test for Exactness:

$$\frac{\partial P}{\partial y} = 0 = \frac{\partial N}{\partial z}, \qquad \frac{\partial M}{\partial z} = 0 = \frac{\partial P}{\partial x}, \qquad \frac{\partial N}{\partial x} = 1 = \frac{\partial M}{\partial y}.$$

These equalities tell us that y dx + x dy + 4 dz is exact, so

$$y\,dx + x\,dy + 4\,dz = df$$

for some function f, and the integral's value is f(2, 3, -1) - f(1, 1, 1). We find f up to a constant by integrating the equations

$$\frac{\partial f}{\partial x} = y, \qquad \frac{\partial f}{\partial y} = x, \qquad \frac{\partial f}{\partial z} = 4.$$
 (4)

From the first equation we get

$$f(x, y, z) = xy + g(y, z).$$

The second equation tells us that

$$\frac{\partial f}{\partial y} = x + \frac{\partial g}{\partial y} = x, \quad \text{or} \quad \frac{\partial g}{\partial y} = 0.$$

Hence, g is a function of z alone, and

$$f(x, y, z) = xy + h(z).$$

The third of Equations (4) tells us that

$$\frac{\partial f}{\partial z} = 0 + \frac{dh}{dz} = 4$$
, or $h(z) = 4z + C$.

Therefore,

$$f(x, y, z) = xy + 4z + C.$$

The value of the line integral is independent of the path taken from (1, 1, 1) to (2, 3, -1), and equals

$$f(2, 3, -1) - f(1, 1, 1) = 2 + C - (5 + C) = -3.$$

Exercises 16.3

Testing for Conservative Fields

Which fields in Exercises 1-6 are conservative, and which are not?

1.
$$\mathbf{F} = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$$

2. $\mathbf{F} = (y \sin z)\mathbf{i} + (x \sin z)\mathbf{j} + (xy \cos z)\mathbf{k}$

3.
$$\mathbf{F} = y\mathbf{i} + (x + z)\mathbf{j} - y\mathbf{k}$$

$$4. \mathbf{F} = -y\mathbf{i} + x\mathbf{j}$$

- **5.** $\mathbf{F} = (z + y)\mathbf{i} + z\mathbf{j} + (y + x)\mathbf{k}$
- 6. $\mathbf{F} = (e^x \cos y)\mathbf{i} (e^x \sin y)\mathbf{j} + z\mathbf{k}$

Finding Potential Functions

In Exercises 7–12, find a potential function f for the field **F**. 7. $\mathbf{F} = 2x\mathbf{i} + 3y\mathbf{j} + 4z\mathbf{k}$

8.
$$\mathbf{F} = (y + z)\mathbf{i} + (x + z)\mathbf{j} + (x + y)\mathbf{k}$$

9. $\mathbf{F} = e^{y+2z}(\mathbf{i} + x\mathbf{j} + 2x\mathbf{k})$
10. $\mathbf{F} = (y\sin z)\mathbf{i} + (x\sin z)\mathbf{j} + (xy\cos z)\mathbf{k}$
11. $\mathbf{F} = (\ln x + \sec^2(x + y))\mathbf{i} + (\sec^2(x + y) + \frac{y}{y^2 + z^2})\mathbf{j} + \frac{z}{y^2 + z^2}\mathbf{k}$
12. $\mathbf{F} = \frac{y}{1 + x^2y^2}\mathbf{i} + (\frac{x}{1 + x^2y^2} + \frac{z}{\sqrt{1 - y^2z^2}})\mathbf{j} + (\frac{y}{\sqrt{1 - y^2z^2}} + \frac{1}{z})\mathbf{k}$

Exact Differential Forms

In Exercises 13–17, show that the differential forms in the integrals are exact. Then evaluate the integrals.

13.
$$\int_{(0,0,0)}^{(2,3,-6)} 2x \, dx + 2y \, dy + 2z \, dz$$

14.
$$\int_{(1,1,2)}^{(3,5,0)} yz \, dx + xz \, dy + xy \, dz$$

15.
$$\int_{(0,0,0)}^{(1,2,3)} 2xy \, dx + (x^2 - z^2) \, dy - 2yz \, dz$$

16.
$$\int_{(0,0,0)}^{(3,3,1)} 2x \, dx - y^2 \, dy - \frac{4}{1 + z^2} \, dz$$

17.
$$\int_{(1,0,0)}^{(0,1,1)} \sin y \cos x \, dx + \cos y \sin x \, dy + dz$$

Finding Potential Functions to Evaluate Line Integrals

Although they are not defined on all of space R^3 , the fields associated with Exercises 18–22 are simply connected and the Component Test can be used to show they are conservative. Find a potential function for each field and evaluate the integrals as in Example 6.

18.
$$\int_{(0,2,1)}^{(1,\pi/2,2)} 2\cos y \, dx + \left(\frac{1}{y} - 2x\sin y\right) dy + \frac{1}{z} \, dz$$

19.
$$\int_{(1,1,1)}^{(1,2,3)} 3x^2 \, dx + \frac{z^2}{y} \, dy + 2z \ln y \, dz$$

20.
$$\int_{(1,2,1)}^{(2,1,1)} (2x\ln y - yz) \, dx + \left(\frac{x^2}{y} - xz\right) dy - xy \, dz$$

21.
$$\int_{(1,1,1)}^{(2,2,2)} \frac{1}{y} \, dx + \left(\frac{1}{z} - \frac{x}{y^2}\right) dy - \frac{y}{z^2} \, dz$$

22.
$$\int_{(-1,-1,-1)}^{(2,2,2)} \frac{2x \, dx + 2y \, dy + 2z \, dz}{x^2 + y^2 + z^2}$$

Applications and Examples

23. Revisiting Example 6 Evaluate the integral

$$\int_{(1,1,1)}^{(2,3,-1)} y \, dx \, + \, x \, dy \, + \, 4 \, dz$$

from Example 6 by finding parametric equations for the line segment from (1, 1, 1) to (2, 3, -1) and evaluating the line integral of $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + 4\mathbf{k}$ along the segment. Since \mathbf{F} is conservative, the integral is independent of the path.

24. Evaluate

$$\int_C x^2 dx + yz dy + (y^2/2) dz$$

along the line segment C joining (0, 0, 0) to (0, 3, 4).

Independence of path Show that the values of the integrals in Exercises 25 and 26 do not depend on the path taken from *A* to *B*.

25.
$$\int_{A}^{B} z^{2} dx + 2y dy + 2xz dz$$

26.
$$\int_{A}^{B} \frac{x dx + y dy + z dz}{\sqrt{x^{2} + y^{2} + z^{2}}}$$

In Exercises 27 and 28, find a potential function for F.

27.
$$\mathbf{F} = \frac{2x}{y}\mathbf{i} + \left(\frac{1-x^2}{y^2}\right)\mathbf{j}, \quad \{(x,y): y > 0\}$$

28.
$$\mathbf{F} = (e^x \ln y)\mathbf{i} + \left(\frac{e^x}{y} + \sin z\right)\mathbf{j} + (y \cos z)\mathbf{k}$$

- **29. Work along different paths** Find the work done by $\mathbf{F} = (x^2 + y)\mathbf{i} + (y^2 + x)\mathbf{j} + ze^z\mathbf{k}$ over the following paths from (1, 0, 0) to (1, 0, 1).
 - **a.** The line segment $x = 1, y = 0, 0 \le z \le 1$
 - **b.** The helix $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (t/2\pi)\mathbf{k}, 0 \le t \le 2\pi$
 - **c.** The *x*-axis from (1, 0, 0) to (0, 0, 0) followed by the parabola $z = x^2, y = 0$ from (0, 0, 0) to (1, 0, 1)

- **30. Work along different paths** Find the work done by $\mathbf{F} = e^{yz}\mathbf{i} + (xze^{yz} + z\cos y)\mathbf{j} + (xye^{yz} + \sin y)\mathbf{k}$ over the following paths from (1, 0, 1) to $(1, \pi/2, 0)$.
 - **a.** The line segment $x = 1, y = \pi t/2, z = 1 t, 0 \le t \le 1$

b. The line segment from (1, 0, 1) to the origin followed by the line segment from the origin to $(1, \pi/2, 0)$

c. The line segment from (1, 0, 1) to (1, 0, 0), followed by the *x*-axis from (1, 0, 0) to the origin, followed by the parabola $y = \pi x^2/2, z = 0$ from there to $(1, \pi/2, 0)$

- **31. Evaluating a work integral two ways** Let $\mathbf{F} = \nabla(x^3y^2)$ and let *C* be the path in the *xy*-plane from (-1, 1) to (1, 1) that consists of the line segment from (-1, 1) to (0, 0) followed by the line segment from (0, 0) to (1, 1). Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ in two ways.
 - **a.** Find parametrizations for the segments that make up *C* and evaluate the integral.
 - **b.** Use $f(x, y) = x^3 y^2$ as a potential function for **F**.
- **32. Integral along different paths** Evaluate the line integral $\int_C 2x \cos y \, dx x^2 \sin y \, dy$ along the following paths C in the xy-plane.
 - **a.** The parabola $y = (x 1)^2$ from (1, 0) to (0, 1)
 - **b.** The line segment from $(-1, \pi)$ to (1, 0)
 - **c.** The *x*-axis from (-1, 0) to (1, 0)
 - **d.** The astroid $\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}, 0 \le t \le 2\pi$, counterclockwise from (1, 0) back to (1, 0)

33. a. Exact differential form How are the constants *a*, *b*, and *c* related if the following differential form is exact?

 $(ay^{2} + 2czx) dx + y(bx + cz) dy + (ay^{2} + cx^{2}) dz$

b. Gradient field For what values of *b* and *c* will

16.4

 $\mathbf{F} = (y^2 + 2czx)\mathbf{i} + y(bx + cz)\mathbf{j} + (y^2 + cx^2)\mathbf{k}$ be a gradient field? **34.** Gradient of a line integral Suppose that $\mathbf{F} = \nabla f$ is a conservative vector field and

$$g(x, y, z) = \int_{(0,0,0)}^{(x,y,z)} \mathbf{F} \cdot d\mathbf{r}$$

Show that $\nabla g = \mathbf{F}$.

- **35.** Path of least work You have been asked to find the path along which a force field **F** will perform the least work in moving a particle between two locations. A quick calculation on your part shows **F** to be conservative. How should you respond? Give reasons for your answer.
- **36.** A revealing experiment By experiment, you find that a force field \mathbf{F} performs only half as much work in moving an object along path C_1 from A to B as it does in moving the object along path C_2 from A to B. What can you conclude about \mathbf{F} ? Give reasons for your answer.
- 37. Work by a constant force Show that the work done by a constant force field $\mathbf{F} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ in moving a particle along any path from A to B is $W = \mathbf{F} \cdot \vec{AB}$.

38. Gravitational field

a. Find a potential function for the gravitational field

$$\mathbf{F} = -GmM \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{(x^2 + y^2 + z^2)^{3/2}}$$

(*G*, *m*, and *M* are constants).

b. Let P_1 and P_2 be points at distance s_1 and s_2 from the origin. Show that the work done by the gravitational field in part (a) in moving a particle from P_1 to P_2 is

$$GmM\left(\frac{1}{s_2}-\frac{1}{s_1}\right)$$

Green's Theorem in the Plane

If **F** is a conservative field, then we know $\mathbf{F} = \nabla f$ for a differentiable function f, and we can calculate the line integral of **F** over any path C joining point A to B as $\int_C \mathbf{F} \cdot d\mathbf{r} = f(B) - f(A)$. In this section we derive a method for computing a work or flux integral over a *closed* curve C in the plane when the field **F** is *not* conservative. This method, known as Green's Theorem, allows us to convert the line integral into a double integral over the region enclosed by C.

The discussion is given in terms of velocity fields of fluid flows (a fluid is a liquid or a gas) because they are easy to visualize. However, Green's Theorem applies to any vector field, independent of any particular interpretation of the field, provided the assumptions of the theorem are satisfied. We introduce two new ideas for Green's Theorem: *divergence* and *circulation density* around an axis perpendicular to the plane.

Divergence

Suppose that $\mathbf{F}(x, y) = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ is the velocity field of a fluid flowing in the plane and that the first partial derivatives of *M* and *N* are continuous at each point of a region *R*. Let (x, y) be a point in *R* and let *A* be a small rectangle with one corner at (x, y) that, along with its interior, lies entirely in *R*. The sides of the rectangle, parallel to the coordinate axes, have lengths of Δx and Δy . Assume that the components *M* and *N* do not

FIGURE 16.35 Other regions to which Green's Theorem applies.

This shows the curve C of Figure 16.33 decomposed into the two directed parts $C'_1: x = g_1(y), d \ge y \ge c$ and $C'_2: x = g_2(y), c \le y \le d$. The result of this double integration is

$$\oint_C N \, dy = \iint_R \frac{\partial N}{\partial x} \, dx \, dy. \tag{7}$$

Summing Equations (6) and (7) gives Equation (5). This concludes the proof.

Green's Theorem also holds for more general regions, such as those shown in Figures 16.35 and 16.36, but we will not prove this result here. Notice that the region in Figure 16.36 is not simply connected. The curves C_1 and C_h on its boundary are oriented so that the region R is always on the left-hand side as the curves are traversed in the directions shown. With this convention, Green's Theorem is valid for regions that are not simply connected.

While we stated the theorem in the *xy*-plane, Green's Theorem applies to any region R contained in a plane bounded by a curve C in space. We will see how to express the double integral over R for this more general form of Green's Theorem in Section 16.7.

FIGURE 16.36 Green's Theorem may be applied to the annular region *R* by summing the line integrals along the boundaries C_1 and C_h in the directions shown.

Exercises 16.4

Verifying Green's Theorem

In Exercises 1–4, verify the conclusion of Green's Theorem by evaluating both sides of Equations (3) and (4) for the field $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$. Take the domains of integration in each case to be the disk $R: x^2 + y^2 \le a^2$ and its bounding circle $C: \mathbf{r} = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j}, 0 \le t \le 2\pi$.

1.	$\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$	2. $F = yi$
3.	$\mathbf{F} = 2x\mathbf{i} - 3y\mathbf{j}$	$4. \mathbf{F} = -x^2 y \mathbf{i} + x y^2 \mathbf{j}$

Circulation and Flux

In Exercises 5–14, use Green's Theorem to find the counterclockwise circulation and outward flux for the field \mathbf{F} and curve *C*.

5.
$$\mathbf{F} = (x - y)\mathbf{i} + (y - x)\mathbf{j}$$

C: The square bounded by $x = 0, x = 1, y = 0, y = 1$
6. $\mathbf{F} = (x^2 + 4y)\mathbf{i} + (x + y^2)\mathbf{j}$
C: The square bounded by $x = 0, x = 1, y = 0, y = 1$
7. $\mathbf{F} = (y^2 - x^2)\mathbf{i} + (x^2 + y^2)\mathbf{j}$

C: The triangle bounded by
$$y = 0, x = 3$$
, and $y = x$

8.
$$\mathbf{F} = (x + y)\mathbf{i} - (x^2 + y^2)\mathbf{j}$$

C: The triangle bounded by $y = 0, x = 1$, and $y = x$

- **13.** $\mathbf{F} = (x + e^x \sin y)\mathbf{i} + (x + e^x \cos y)\mathbf{j}$
 - C: The right-hand loop of the lemniscate $r^2 = \cos 2\theta$

14.
$$\mathbf{F} = \left(\tan^{-1}\frac{y}{x}\right)\mathbf{i} + \ln(x^2 + y^2)\mathbf{j}$$

- C: The boundary of the region defined by the polar coordinate inequalities $1 \le r \le 2, 0 \le \theta \le \pi$
- 15. Find the counterclockwise circulation and outward flux of the field $\mathbf{F} = xv\mathbf{i} + v^2\mathbf{j}$ around and over the boundary of the region enclosed by the curves $y = x^2$ and y = x in the first quadrant.
- 16. Find the counterclockwise circulation and the outward flux of the field $\mathbf{F} = (-\sin y)\mathbf{i} + (x \cos y)\mathbf{j}$ around and over the square cut from the first quadrant by the lines $x = \pi/2$ and $y = \pi/2$.
- 17. Find the outward flux of the field

$$\mathbf{F} = \left(3xy - \frac{x}{1+y^2}\right)\mathbf{i} + (e^x + \tan^{-1}y)\mathbf{j}$$

across the cardioid $r = a(1 + \cos \theta), a > 0$.

18. Find the counterclockwise circulation of $\mathbf{F} = (y + e^x \ln y)\mathbf{i} + \mathbf{i}$ (e^{x}/y) **j** around the boundary of the region that is bounded above by the curve $y = 3 - x^2$ and below by the curve $y = x^4 + 1$.

Work

In Exercises 19 and 20, find the work done by F in moving a particle once counterclockwise around the given curve.

- **19.** $\mathbf{F} = 2xv^3\mathbf{i} + 4x^2v^2\mathbf{j}$
 - C: The boundary of the "triangular" region in the first quadrant enclosed by the x-axis, the line x = 1, and the curve $y = x^3$

20.
$$\mathbf{F} = (4x - 2y)\mathbf{i} + (2x - 4y)\mathbf{j}$$

C: The circle $(x - 2)^2 + (y - 2)^2 = 4$

Using Green's Theorem

Apply Green's Theorem to evaluate the integrals in Exercises 21–24.

21.
$$\oint_C (y^2 dx + x^2 dy)$$

C: The triangle bounded by $x = 0, x + y = 1, y = 0$
22.
$$\oint_C (3y dx + 2x dy)$$

C: The boundary of $0 \le x \le \pi, 0 \le y \le \sin x$

23.
$$\oint_C (6y + x) dx + (y + 2x) dy$$

C: The circle $(x - 2)^2 + (y - 3)^2 = 4$

24.
$$\oint_C (2x + y^2) dx + (2xy + 3y) dy$$

C: Any simple closed curve in the plane for which Gree

en's Theorem holds

Calculating Area with Green's Theorem If a simple closed curve C in the plane and the region R it encloses satisfy the hypotheses of Green's Theorem, the area of R is given by

Green's Theorem Area Formula

Area of
$$R = \frac{1}{2} \oint_C x \, dy - y \, dx$$

The reason is that by Equation (3), run backward,

Area of
$$R = \iint_R dy \, dx = \iint_R \left(\frac{1}{2} + \frac{1}{2}\right) dy \, dx$$
$$= \oint_C \frac{1}{2}x \, dy - \frac{1}{2}y \, dx.$$

Use the Green's Theorem area formula given above to find the areas of the regions enclosed by the curves in Exercises 25-28.

- **25.** The circle $\mathbf{r}(t) = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$
- **26.** The ellipse $\mathbf{r}(t) = (a \cos t)\mathbf{i} + (b \sin t)\mathbf{j}, \quad 0 \le t \le 2\pi$
- **27.** The astroid $\mathbf{r}(t) = (\cos^3 t)\mathbf{i} + (\sin^3 t)\mathbf{j}, \quad 0 \le t \le 2\pi$
- **28.** One arch of the cycloid $x = t \sin t$, $y = 1 \cos t$
- **29.** Let C be the boundary of a region on which Green's Theorem holds. Use Green's Theorem to calculate

a.
$$\oint_C f(x) dx + g(y) dy$$

b.
$$\oint_C ky dx + hx dy \quad (k \text{ and } h \text{ constants})$$

30. Integral dependent only on area Show that the value of

$$\oint_C xy^2 dx + (x^2y + 2x) dy$$

around any square depends only on the area of the square and not on its location in the plane.

31. What is special about the integral

$$\oint_C 4x^3 y \, dx + x^4 \, dy?$$

Give reasons for your answer.

32. What is special about the integral

$$\oint_C -y^3 \, dy + x^3 \, dx?$$

Give reasons for your answer.

33. Area as a line integral Show that if *R* is a region in the plane bounded by a piecewise smooth, simple closed curve C, then

Area of
$$R = \oint_C x \, dy = -\oint_C y \, dx.$$

34. Definite integral as a line integral Suppose that a nonnegative function y = f(x) has a continuous first derivative on [a, b]. Let C be the boundary of the region in the xy-plane that is bounded below by the x-axis, above by the graph of f, and on the sides by the lines x = a and x = b. Show that

$$\int_{a}^{b} f(x) \, dx = -\oint_{C} y \, dx.$$

35. Area and the centroid Let *A* be the area and \overline{x} the *x*-coordinate of the centroid of a region *R* that is bounded by a piecewise smooth, simple closed curve *C* in the *xy*-plane. Show that

$$\frac{1}{2} \oint_C x^2 \, dy = - \oint_C xy \, dx = \frac{1}{3} \oint_C x^2 \, dy - xy \, dx = A\overline{x}$$

36. Moment of inertia Let I_y be the moment of inertia about the *y*-axis of the region in Exercise 35. Show that

$$\frac{1}{3} \oint_C x^3 \, dy = - \oint_C x^2 y \, dx = \frac{1}{4} \oint_C x^3 \, dy - x^2 y \, dx = I_y.$$

37. Green's Theorem and Laplace's equation Assuming that all the necessary derivatives exist and are continuous, show that if f(x, y) satisfies the Laplace equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

then

$$\oint_C \frac{\partial f}{\partial y} dx - \frac{\partial f}{\partial x} dy = 0$$

for all closed curves C to which Green's Theorem applies. (The converse is also true: If the line integral is always zero, then f satisfies the Laplace equation.)

38. Maximizing work Among all smooth, simple closed curves in the plane, oriented counterclockwise, find the one along which the work done by

$$\mathbf{F} = \left(\frac{1}{4}x^2y + \frac{1}{3}y^3\right)\mathbf{i} + x\mathbf{j}$$

is greatest. (*Hint:* Where is $(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k}$ positive?)

39. Regions with many holes Green's Theorem holds for a region *R* with any finite number of holes as long as the bounding curves are smooth, simple, and closed and we integrate over each component of the boundary in the direction that keeps *R* on our immediate left as we go along (see accompanying figure).

a. Let $f(x, y) = \ln (x^2 + y^2)$ and let *C* be the circle $x^2 + y^2 = a^2$. Evaluate the flux integral

$$\oint_C \nabla f \cdot \mathbf{n} \, ds.$$

b. Let *K* be an arbitrary smooth, simple closed curve in the plane that does not pass through (0, 0). Use Green's Theorem to show that

$$\oint_{C} \nabla f \cdot \mathbf{n} \, ds$$

i

has two possible values, depending on whether (0, 0) lies inside *K* or outside *K*.

- **40. Bendixson's criterion** The *streamlines* of a planar fluid flow are the smooth curves traced by the fluid's individual particles. The vectors $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$ of the flow's velocity field are the tangent vectors of the streamlines. Show that if the flow takes place over a simply connected region R (no holes or missing points) and that if $M_x + N_y \neq 0$ throughout R, then none of the streamlines in R is closed. In other words, no particle of fluid ever has a closed trajectory in R. The criterion $M_x + N_y \neq 0$ is called **Bendixson's criterion** for the nonexistence of closed trajectories.
- **41.** Establish Equation (7) to finish the proof of the special case of Green's Theorem.
- 42. Curl component of conservative fields Can anything be said about the curl component of a conservative two-dimensional vector field? Give reasons for your answer.

COMPUTER EXPLORATIONS

In Exercises 43–46, use a CAS and Green's Theorem to find the counterclockwise circulation of the field **F** around the simple closed curve *C*. Perform the following CAS steps.

- **a.** Plot *C* in the *xy*-plane.
- **b.** Determine the integrand $(\partial N/\partial x) (\partial M/\partial y)$ for the curl form of Green's Theorem.
- **c.** Determine the (double integral) limits of integration from your plot in part (a) and evaluate the curl integral for the circulation.

43.
$$\mathbf{F} = (2x - y)\mathbf{i} + (x + 3y)\mathbf{j}$$
, C: The ellipse $x^2 + 4y^2 = 4$

44.
$$\mathbf{F} = (2x^3 - y^3)\mathbf{i} + (x^3 + y^3)\mathbf{j}, \quad C: \text{ The ellipse } \frac{x^2}{4} + \frac{y^2}{9} = 1$$

45.
$$\mathbf{F} = x^{-1}e^{y}\mathbf{i} + (e^{y}\ln x + 2x)\mathbf{j}$$

C: The boundary of the region defined by $y = 1 + x^4$ (below) and y = 2 (above)

46.
$$\mathbf{F} = xe^{y}\mathbf{i} + (4x^{2}\ln y)\mathbf{j}$$

C: The triangle with vertices (0, 0), (2, 0), and (0, 4)

Exercises 16.5

Finding Parametrizations

In Exercises 1-16, find a parametrization of the surface. (There are many correct ways to do these, so your answers may not be the same as those in the back of the book.)

- 1. The paraboloid $z = x^2 + y^2, z \le 4$
- **2.** The paraboloid $z = 9 x^2 y^2, z \ge 0$
- 3. Cone frustum The first-octant portion of the cone $z = \sqrt{x^2 + y^2/2}$ between the planes z = 0 and z = 3
- 4. Cone frustum The portion of the cone $z = 2\sqrt{x^2 + y^2}$ between the planes z = 2 and z = 4
- 5. Spherical cap The cap cut from the sphere $x^2 + y^2 + z^2 = 9$ by the cone $z = \sqrt{x^2 + y^2}$
- 6. Spherical cap The portion of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant between the *xy*-plane and the cone $z = \sqrt{x^2 + y^2}$
- 7. Spherical band The portion of the sphere $x^2 + y^2 + z^2 = 3$ between the planes $z = \sqrt{3}/2$ and $z = -\sqrt{3}/2$
- 8. Spherical cap The upper portion cut from the sphere $x^2 + y^2 + z^2 = 8$ by the plane z = -2
- 9. Parabolic cylinder between planes The surface cut from the parabolic cylinder $z = 4 y^2$ by the planes x = 0, x = 2, and z = 0
- 10. Parabolic cylinder between planes The surface cut from the parabolic cylinder $y = x^2$ by the planes z = 0, z = 3, and y = 2
- 11. Circular cylinder band The portion of the cylinder $y^2 + z^2 = 9$ between the planes x = 0 and x = 3
- 12. Circular cylinder band The portion of the cylinder $x^2 + z^2 = 4$ above the *xy*-plane between the planes y = -2 and y = 2
- **13. Tilted plane inside cylinder** The portion of the plane x + y + z = 1
 - **a.** Inside the cylinder $x^2 + y^2 = 9$
 - **b.** Inside the cylinder $y^2 + z^2 = 9$
- 14. Tilted plane inside cylinder The portion of the plane x y + 2z = 2
 - **a.** Inside the cylinder $x^2 + z^2 = 3$
 - **b.** Inside the cylinder $y^2 + z^2 = 2$
- **15. Circular cylinder band** The portion of the cylinder $(x 2)^2 + z^2 = 4$ between the planes y = 0 and y = 3
- 16. Circular cylinder band The portion of the cylinder $y^2 + (z-5)^2 = 25$ between the planes x = 0 and x = 10

Surface Area of Parametrized Surfaces

In Exercises 17–26, use a parametrization to express the area of the surface as a double integral. Then evaluate the integral. (There are many correct ways to set up the integrals, so your integrals may not be the same as those in the back of the book. They should have the same values, however.)

17. Tilted plane inside cylinder The portion of the plane y + 2z = 2 inside the cylinder $x^2 + y^2 = 1$

- 18. Plane inside cylinder The portion of the plane z = -x inside the cylinder $x^2 + y^2 = 4$
- **19.** Cone frustum The portion of the cone $z = 2\sqrt{x^2 + y^2}$ between the planes z = 2 and z = 6
- **20. Cone frustum** The portion of the cone $z = \sqrt{x^2 + y^2}/3$ between the planes z = 1 and z = 4/3
- **21. Circular cylinder band** The portion of the cylinder $x^2 + y^2 = 1$ between the planes z = 1 and z = 4
- **22.** Circular cylinder band The portion of the cylinder $x^2 + z^2 = 10$ between the planes y = -1 and y = 1
- 23. Parabolic cap The cap cut from the paraboloid $z = 2 x^2 y^2$ by the cone $z = \sqrt{x^2 + y^2}$
- 24. Parabolic band The portion of the paraboloid $z = x^2 + y^2$ between the planes z = 1 and z = 4
- **25. Sawed-off sphere** The lower portion cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$
- 26. Spherical band The portion of the sphere $x^2 + y^2 + z^2 = 4$ between the planes z = -1 and $z = \sqrt{3}$

Planes Tangent to Parametrized Surfaces

The tangent plane at a point $P_0(f(u_0, v_0), g(u_0, v_0), h(u_0, v_0))$ on a parametrized surface $\mathbf{r}(u, v) = f(u, v)\mathbf{i} + g(u, v)\mathbf{j} + h(u, v)\mathbf{k}$ is the plane through P_0 normal to the vector $\mathbf{r}_u(u_0, v_0) \times \mathbf{r}_v(u_0, v_0)$, the cross product of the tangent vectors $\mathbf{r}_u(u_0, v_0)$ and $\mathbf{r}_v(u_0, v_0)$ at P_0 . In Exercises 27–30, find an equation for the plane tangent to the surface at P_0 . Then find a Cartesian equation for the surface and sketch the surface and tangent plane together.

- **27.** Cone The cone $\mathbf{r}(r, \theta) = (r \cos \theta)\mathbf{i} + (r \sin \theta)\mathbf{j} + r\mathbf{k}, r \ge 0$, $0 \le \theta \le 2\pi$ at the point $P_0(\sqrt{2}, \sqrt{2}, 2)$ corresponding to $(r, \theta) = (2, \pi/4)$
- **28.** Hemisphere The hemisphere surface $\mathbf{r}(\phi, \theta) = (4 \sin \phi \cos \theta)\mathbf{i}$ + $(4 \sin \phi \sin \theta)\mathbf{j} + (4 \cos \phi)\mathbf{k}, 0 \le \phi \le \pi/2, 0 \le \theta \le 2\pi, \text{ at}$ the point $P_0(\sqrt{2}, \sqrt{2}, 2\sqrt{3})$ corresponding to $(\phi, \theta) = (\pi/6, \pi/4)$
- **29.** Circular cylinder The circular cylinder $\mathbf{r}(\theta, z) = (3 \sin 2\theta)\mathbf{i} + (6 \sin^2 \theta)\mathbf{j} + z\mathbf{k}, 0 \le \theta \le \pi$, at the point $P_0(3\sqrt{3}/2, 9/2, 0)$ corresponding to $(\theta, z) = (\pi/3, 0)$ (See Example 3.)
- **30.** Parabolic cylinder The parabolic cylinder surface $\mathbf{r}(x, y) = x\mathbf{i} + y\mathbf{j} x^2\mathbf{k}, -\infty < x < \infty, -\infty < y < \infty$, at the point $P_0(1, 2, -1)$ corresponding to (x, y) = (1, 2)

More Parametrizations of Surfaces

31. a. A *torus of revolution* (doughnut) is obtained by rotating a circle *C* in the *xz*-plane about the *z*-axis in space. (See the accompanying figure.) If *C* has radius r > 0 and center (*R*, 0, 0), show that a parametrization of the torus is

$$\mathbf{r}(u, v) = ((R + r\cos u)\cos v)\mathbf{i}$$

+ $((R + r \cos u) \sin v)\mathbf{j} + (r \sin u)\mathbf{k}$,

where $0 \le u \le 2\pi$ and $0 \le v \le 2\pi$ are the angles in the figure.

b. Show that the surface area of the torus is $A = 4\pi^2 Rr$.

- **32.** Parametrization of a surface of revolution Suppose that the parametrized curve C: (f(u), g(u)) is revolved about the x-axis, where g(u) > 0 for $a \le u \le b$.
 - a. Show that

 $\mathbf{r}(u, v) = f(u)\mathbf{i} + (g(u)\cos v)\mathbf{j} + (g(u)\sin v)\mathbf{k}$

is a parametrization of the resulting surface of revolution, where $0 \le v \le 2\pi$ is the angle from the *xy*-plane to the point $\mathbf{r}(u, v)$ on the surface. (See the accompanying figure.) Notice that f(u) measures distance *along* the axis of revolution and g(u) measures distance *from* the axis of revolution.

- **b.** Find a parametrization for the surface obtained by revolving the curve $x = y^2, y \ge 0$, about the *x*-axis.
- **33. a. Parametrization of an ellipsoid** The parametrization $x = a \cos \theta$, $y = b \sin \theta$, $0 \le \theta \le 2\pi$ gives the ellipse $(x^2/a^2) + (y^2/b^2) = 1$. Using the angles θ and ϕ in spherical coordinates, show that

 $\mathbf{r}(\theta,\phi) = (a\cos\theta\cos\phi)\mathbf{i} + (b\sin\theta\cos\phi)\mathbf{j} + (c\sin\phi)\mathbf{k}$

is a parametrization of the ellipsoid $(x^2/a^2) + (y^2/b^2) + (z^2/c^2) = 1.$

b. Write an integral for the surface area of the ellipsoid, but do not evaluate the integral.

34. Hyperboloid of one sheet

- **a.** Find a parametrization for the hyperboloid of one sheet $x^2 + y^2 z^2 = 1$ in terms of the angle θ associated with the circle $x^2 + y^2 = r^2$ and the hyperbolic parameter *u* associated with the hyperbolic function $r^2 z^2 = 1$. (*Hint*: $\cosh^2 u \sinh^2 u = 1$.)
- **b.** Generalize the result in part (a) to the hyperboloid $(x^2/a^2) + (y^2/b^2) (z^2/c^2) = 1.$
- **35.** (*Continuation of Exercise 34.*) Find a Cartesian equation for the plane tangent to the hyperboloid $x^2 + y^2 z^2 = 25$ at the point $(x_0, y_0, 0)$, where $x_0^2 + y_0^2 = 25$.
- **36. Hyperboloid of two sheets** Find a parametrization of the hyperboloid of two sheets $(z^2/c^2) (x^2/a^2) (y^2/b^2) = 1$.

Surface Area for Implicit and Explicit Forms

- **37.** Find the area of the surface cut from the paraboloid $x^2 + y^2 z = 0$ by the plane z = 2.
- **38.** Find the area of the band cut from the paraboloid $x^2 + y^2 z = 0$ by the planes z = 2 and z = 6.
- **39.** Find the area of the region cut from the plane x + 2y + 2z = 5 by the cylinder whose walls are $x = y^2$ and $x = 2 y^2$.
- **40.** Find the area of the portion of the surface $x^2 2z = 0$ that lies above the triangle bounded by the lines $x = \sqrt{3}$, y = 0, and y = x in the *xy*-plane.
- **41.** Find the area of the surface $x^2 2y 2z = 0$ that lies above the triangle bounded by the lines x = 2, y = 0, and y = 3x in the *xy*-plane.
- **42.** Find the area of the cap cut from the sphere $x^2 + y^2 + z^2 = 2$ by the cone $z = \sqrt{x^2 + y^2}$.
- **43.** Find the area of the ellipse cut from the plane z = cx (*c* a constant) by the cylinder $x^2 + y^2 = 1$.
- 44. Find the area of the upper portion of the cylinder $x^2 + z^2 = 1$ that lies between the planes $x = \pm 1/2$ and $y = \pm 1/2$.
- **45.** Find the area of the portion of the paraboloid $x = 4 y^2 z^2$ that lies above the ring $1 \le y^2 + z^2 \le 4$ in the *yz*-plane.
- **46.** Find the area of the surface cut from the paraboloid $x^2 + y + z^2 = 2$ by the plane y = 0.
- 47. Find the area of the surface $x^2 2 \ln x + \sqrt{15y} z = 0$ above the square *R*: $1 \le x \le 2, 0 \le y \le 1$, in the *xy*-plane.
- **48.** Find the area of the surface $2x^{3/2} + 2y^{3/2} 3z = 0$ above the square $R: 0 \le x \le 1, 0 \le y \le 1$, in the *xy*-plane.

Find the area of the surfaces in Exercises 49-54.

- **49.** The surface cut from the bottom of the paraboloid $z = x^2 + y^2$ by the plane z = 3
- **50.** The surface cut from the "nose" of the paraboloid $x = 1 y^2 z^2$ by the *yz*-plane
- **51.** The portion of the cone $z = \sqrt{x^2 + y^2}$ that lies over the region between the circle $x^2 + y^2 = 1$ and the ellipse $9x^2 + 4y^2 = 36$ in the *xy*-plane. (*Hint:* Use formulas from geometry to find the area of the region.)
- 52. The triangle cut from the plane 2x + 6y + 3z = 6 by the bounding planes of the first octant. Calculate the area three ways, using different explicit forms.
- 53. The surface in the first octant cut from the cylinder $y = (2/3)z^{3/2}$ by the planes x = 1 and y = 16/3

- 54. The portion of the plane y + z = 4 that lies above the region cut from the first quadrant of the *xz*-plane by the parabola $x = 4 - z^2$
- **55.** Use the parametrization

16.6

$$\mathbf{r}(x, z) = x\mathbf{i} + f(x, z)\mathbf{j} + z\mathbf{k}$$

and Equation (5) to derive a formula for $d\sigma$ associated with the explicit form y = f(x, z).

56. Let S be the surface obtained by rotating the smooth curve $y = f(x), a \le x \le b$, about the x-axis, where $f(x) \ge 0$.

a. Show that the vector function

$$\mathbf{r}(x,\theta) = x\mathbf{i} + f(x)\cos\theta\mathbf{j} + f(x)\sin\theta\mathbf{k}$$

is a parametrization of S, where θ is the angle of rotation around the x-axis (see the accompanying figure).

Surface Integrals

ing over a curve.

Surface Integrals

b. Use Equation (4) to show that the surface area of this surface of revolution is given by

$$A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^2} \, dx$$

Suppose that we have an electrical charge distributed over a surface *S*, and that the function G(x, y, z) gives the *charge density* (charge per unit area) at each point on *S*. Then we can calculate the total charge on *S* as an integral in the following way.

To compute quantities such as the flow of liquid across a curved membrane or the upward force on a falling parachute, we need to integrate a function over a curved surface in space. This concept of a *surface integral* is an extension of the idea of a line integral for integrat-

Assume, as in Section 16.5, that the surface S is defined parametrically on a region R in the uv-plane,

$$\mathbf{r}(u,v) = f(u,v)\mathbf{i} + g(u,v)\mathbf{j} + h(u,v)\mathbf{k}, \qquad (u,v) \in R.$$

In Figure 16.47, we see how a subdivision of R (considered as a rectangle for simplicity) divides the surface S into corresponding curved surface elements, or patches, of area

$$\Delta \sigma_{uv} \approx |\mathbf{r}_u \times \mathbf{r}_v| \, du \, dv.$$

As we did for the subdivisions when defining double integrals in Section 15.2, we number the surface element patches in some order with their areas given by $\Delta \sigma_1, \Delta \sigma_2, \ldots, \Delta \sigma_n$. To form a Riemann sum over *S*, we choose a point (x_k, y_k, z_k) in the *k*th patch, multiply the value of the function *G* at that point by the area $\Delta \sigma_k$, and add together the products:

$$\sum_{k=1}^n G(x_k, y_k, z_k) \, \Delta \sigma_k$$

Depending on how we pick (x_k, y_k, z_k) in the *k*th patch, we may get different values for this Riemann sum. Then we take the limit as the number of surface patches increases, their areas shrink to zero, and both $\Delta u \rightarrow 0$ and $\Delta v \rightarrow 0$. This limit, whenever it exists independent of all choices made, defines the **surface integral of G over the surface** *S* as

$$\iint_{S} G(x, y, z) \, d\sigma = \lim_{n \to \infty} \sum_{k=1}^{n} G(x_k, y_k, z_k) \, \Delta\sigma_k. \tag{1}$$

FIGURE 16.47 The area of the patch $\Delta \sigma_k$ is the area of the tangent parallelogram determined by the vectors $\Delta u \mathbf{r}_u$ and $\Delta v \mathbf{r}_v$. The point (x_k, y_k, z_k) lies on the surface patch, beneath the parallelogram shown here.

$$M_{xy} = \iint_{S} \delta z \, d\sigma = \int_{0}^{2\pi} \int_{1}^{2} \frac{1}{r^{2}} r \sqrt{2}r \, dr \, d\theta$$
$$= \sqrt{2} \int_{0}^{2\pi} \int_{1}^{2} dr \, d\theta$$
$$= \sqrt{2} \int_{0}^{2\pi} d\theta = 2\pi \sqrt{2},$$
$$\bar{z} = \frac{M_{xy}}{M} = \frac{2\pi \sqrt{2}}{2\pi \sqrt{2} \ln 2} = \frac{1}{\ln 2}.$$

The shell's center of mass is the point $(0, 0, 1/\ln 2)$.

Exercises 16.6

Surface Integrals

In Exercises 1–8, integrate the given function over the given surface.

- **1. Parabolic cylinder** G(x, y, z) = x, over the parabolic cylinder $y = x^2, 0 \le x \le 2, 0 \le z \le 3$
- 2. Circular cylinder G(x, y, z) = z, over the cylindrical surface $y^2 + z^2 = 4, z \ge 0, 1 \le x \le 4$
- 3. Sphere $G(x, y, z) = x^2$, over the unit sphere $x^2 + y^2 + z^2 = 1$
- 4. Hemisphere $G(x, y, z) = z^2$, over the hemisphere $x^2 + y^2 + z^2 = a^2, z \ge 0$
- 5. Portion of plane F(x, y, z) = z, over the portion of the plane x + y + z = 4 that lies above the square $0 \le x \le 1$, $0 \le y \le 1$, in the *xy*-plane
- 6. Cone F(x, y, z) = z x, over the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$
- 7. Parabolic dome $H(x, y, z) = x^2 \sqrt{5 4z}$, over the parabolic dome $z = 1 x^2 y^2$, $z \ge 0$
- 8. Spherical cap H(x, y, z) = yz, over the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$
- 9. Integrate G(x, y, z) = x + y + z over the surface of the cube cut from the first octant by the planes x = a, y = a, z = a.
- 10. Integrate G(x, y, z) = y + z over the surface of the wedge in the first octant bounded by the coordinate planes and the planes x = 2 and y + z = 1.
- 11. Integrate G(x, y, z) = xyz over the surface of the rectangular solid cut from the first octant by the planes x = a, y = b, and z = c.
- 12. Integrate G(x, y, z) = xyz over the surface of the rectangular solid bounded by the planes $x = \pm a$, $y = \pm b$, and $z = \pm c$.
- 13. Integrate G(x, y, z) = x + y + z over the portion of the plane 2x + 2y + z = 2 that lies in the first octant.
- 14. Integrate $G(x, y, z) = x\sqrt{y^2 + 4}$ over the surface cut from the parabolic cylinder $y^2 + 4z = 16$ by the planes x = 0, x = 1, and z = 0.
- 15. Integrate G(x, y, z) = z x over the portion of the graph of $z = x + y^2$ above the triangle in the *xy*-plane having vertices (0, 0, 0), (1, 1, 0), and (0, 1, 0). (See accompanying figure.)

16. Integrate G(x, y, z) = x over the surface given by

 $z = x^2 + y$ for $0 \le x \le 1$, $-1 \le y \le 1$.

17. Integrate G(x, y, z) = xyz over the triangular surface with vertices (1, 0, 0), (0, 2, 0), and (0, 1, 1).

18. Integrate G(x, y, z) = x - y - z over the portion of the plane x + y = 1 in the first octant between z = 0 and z = 1 (see the accompanying figure).

Finding Flux Across a Surface

In Exercises 19–28, use a parametrization to find the flux $\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma$ across the surface in the given direction.

- 19. Parabolic cylinder $\mathbf{F} = z^2 \mathbf{i} + x\mathbf{j} 3z\mathbf{k}$ outward (normal away from the *x*-axis) through the surface cut from the parabolic cylinder $z = 4 y^2$ by the planes x = 0, x = 1, and z = 0
- **20.** Parabolic cylinder $\mathbf{F} = x^2\mathbf{j} xz\mathbf{k}$ outward (normal away from the *yz*-plane) through the surface cut from the parabolic cylinder $y = x^2, -1 \le x \le 1$, by the planes z = 0 and z = 2
- 21. Sphere $\mathbf{F} = z\mathbf{k}$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin
- 22. Sphere $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ across the sphere $x^2 + y^2 + z^2 = a^2$ in the direction away from the origin
- **23.** Plane $\mathbf{F} = 2xy\mathbf{i} + 2yz\mathbf{j} + 2xz\mathbf{k}$ upward across the portion of the plane x + y + z = 2a that lies above the square $0 \le x \le a, 0 \le y \le a$, in the *xy*-plane
- 24. Cylinder $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ outward through the portion of the cylinder $x^2 + y^2 = 1$ cut by the planes z = 0 and z = a
- **25.** Cone $\mathbf{F} = xy\mathbf{i} z\mathbf{k}$ outward (normal away from the *z*-axis) through the cone $z = \sqrt{x^2 + y^2}$, $0 \le z \le 1$
- 26. Cone $\mathbf{F} = y^2 \mathbf{i} + xz \mathbf{j} \mathbf{k}$ outward (normal away from the *z*-axis) through the cone $z = 2\sqrt{x^2 + y^2}, 0 \le z \le 2$
- 27. Cone frustum $\mathbf{F} = -x\mathbf{i} y\mathbf{j} + z^2\mathbf{k}$ outward (normal away from the *z*-axis) through the portion of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2
- **28.** Paraboloid $\mathbf{F} = 4x\mathbf{i} + 4y\mathbf{j} + 2\mathbf{k}$ outward (normal away from the *z*-axis) through the surface cut from the bottom of the paraboloid $z = x^2 + y^2$ by the plane z = 1

In Exercises 29 and 30, find the flux of the field **F** across the portion of the given surface in the specified direction.

- **29.** $\mathbf{F}(x, y, z) = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$
 - S: rectangular surface z = 0, $0 \le x \le 2$, $0 \le y \le 3$, direction **k**
- **30.** $\mathbf{F}(x, y, z) = yx^2\mathbf{i} 2\mathbf{j} + xz\mathbf{k}$
 - S: rectangular surface y = 0, $-1 \le x \le 2$, $2 \le z \le 7$, direction -j

In Exercises 31–36, find the flux of the field **F** across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.

хj

31.
$$\mathbf{F}(x, y, z) = z\mathbf{k}$$

32. $\mathbf{F}(x, y, z) = -y\mathbf{i} + \mathbf{k}$

- 33. F(x, y, z) = yi xj + k34. $F(x, y, z) = zxi + zyj + z^2k$ 35. F(x, y, z) = xi + yj + zk36. $F(x, y, z) = \frac{xi + yj + zk}{\sqrt{x^2 + y^2 + z^2}}$
- **37.** Find the flux of the field $\mathbf{F}(x, y, z) = z^2 \mathbf{i} + x \mathbf{j} 3z \mathbf{k}$ outward through the surface cut from the parabolic cylinder $z = 4 y^2$ by the planes x = 0, x = 1, and z = 0.
- **38.** Find the flux of the field $\mathbf{F}(x, y, z) = 4x\mathbf{i} + 4y\mathbf{j} + 2\mathbf{k}$ outward (away from the *z*-axis) through the surface cut from the bottom of the paraboloid $z = x^2 + y^2$ by the plane z = 1.
- **39.** Let *S* be the portion of the cylinder $y = e^x$ in the first octant that projects parallel to the *x*-axis onto the rectangle R_{yz} : $1 \le y \le 2$, $0 \le z \le 1$ in the *yz*-plane (see the accompanying figure). Let **n** be the unit vector normal to *S* that points away from the *yz*-plane. Find the flux of the field $\mathbf{F}(x, y, z) = -2\mathbf{i} + 2y\mathbf{j} + z\mathbf{k}$ across *S* in the direction of **n**.

- **40.** Let *S* be the portion of the cylinder $y = \ln x$ in the first octant whose projection parallel to the *y*-axis onto the *xz*-plane is the rectangle R_{xz} : $1 \le x \le e, 0 \le z \le 1$. Let **n** be the unit vector normal to *S* that points away from the *xz*-plane. Find the flux of $\mathbf{F} = 2y\mathbf{j} + z\mathbf{k}$ through *S* in the direction of **n**.
- **41.** Find the outward flux of the field $\mathbf{F} = 2xy\mathbf{i} + 2yz\mathbf{j} + 2xz\mathbf{k}$ across the surface of the cube cut from the first octant by the planes x = a, y = a, z = a.
- **42.** Find the outward flux of the field $\mathbf{F} = xz\mathbf{i} + yz\mathbf{j} + \mathbf{k}$ across the surface of the upper cap cut from the solid sphere $x^2 + y^2 + z^2 \le 25$ by the plane z = 3.

Moments and Masses

- **43. Centroid** Find the centroid of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ that lies in the first octant.
- **44.** Centroid Find the centroid of the surface cut from the cylinder $y^2 + z^2 = 9, z \ge 0$, by the planes x = 0 and x = 3 (resembles the surface in Example 5).
- **45.** Thin shell of constant density Find the center of mass and the moment of inertia about the *z*-axis of a thin shell of constant density δ cut from the cone $x^2 + y^2 z^2 = 0$ by the planes z = 1 and z = 2.
- **46.** Conical surface of constant density Find the moment of inertia about the *z*-axis of a thin shell of constant density δ cut from the cone $4x^2 + 4y^2 z^2 = 0, z \ge 0$, by the circular cylinder $x^2 + y^2 = 2x$ (see the accompanying figure).

47. Spherical shells

- **a.** Find the moment of inertia about a diameter of a thin spherical shell of radius *a* and constant density δ. (Work with a hemispherical shell and double the result.)
- **b.** Use the Parallel Axis Theorem (Exercises 15.6) and the result in part (a) to find the moment of inertia about a line tangent to the shell.
- **48.** Conical Surface Find the centroid of the lateral surface of a solid cone of base radius *a* and height *h* (cone surface minus the base).

16.7 Stokes' Theorem

FIGURE 16.55 The circulation vector at a point (x, y, z) in a plane in a threedimensional fluid flow. Notice its right-hand relation to the rotating particles in the fluid.

As we saw in Section 16.4, the circulation density or curl component of a two-dimensional field $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ at a point (x, y) is described by the scalar quantity $(\partial N/\partial x - \partial M/\partial y)$. In three dimensions, circulation is described with a vector.

Suppose that **F** is the velocity field of a fluid flowing in space. Particles near the point (x, y, z) in the fluid tend to rotate around an axis through (x, y, z) that is parallel to a certain vector we are about to define. This vector points in the direction for which the rotation is counterclockwise when viewed looking down onto the plane of the circulation from the tip of the arrow representing the vector. This is the direction your right-hand thumb points when your fingers curl around the axis of rotation in the way consistent with the rotating motion of the particles in the fluid (see Figure 16.55). The length of the vector measures the rate of rotation. The vector is called the **curl vector** and for the vector field $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ it is defined to be

$$\operatorname{curl} \mathbf{F} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right)\mathbf{i} + \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}\right)\mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mathbf{k}.$$
 (1)

This information is a consequence of Stokes' Theorem, the generalization to space of the circulation-curl form of Green's Theorem and the subject of this section.

Notice that (curl \mathbf{F}) $\mathbf{k} = (\partial N/\partial x - \partial M/\partial y)$ is consistent with our definition in Section 16.4 when $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$. The formula for curl \mathbf{F} in Equation (1) is often written using the symbolic operator

$$\nabla = \mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}.$$
 (2)

(The symbol ∇ is pronounced "del.") The curl of **F** is $\nabla \times \mathbf{F}$:

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$$
$$= \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right)\mathbf{i} + \left(\frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}\right)\mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)\mathbf{k}$$
$$= \text{curl } \mathbf{F}.$$

FIGURE 16.66 (a) In a simply connected open region in space, a simple closed curve *C* is the boundary of a smooth surface *S*. (b) Smooth curves that cross themselves can be divided into loops to which Stokes' Theorem applies.

Conservative Fields and Stokes' Theorem

In Section 16.3, we found that a field **F** being conservative in an open region *D* in space is equivalent to the integral of **F** around every closed loop in *D* being zero. This, in turn, is equivalent in *simply connected* open regions to saying that $\nabla \times \mathbf{F} = \mathbf{0}$ (which gives a test for determining if **F** is conservative for such regions).

THEOREM 7—Curl F = 0 Related to the Closed-Loop Property If $\nabla \times \mathbf{F} = \mathbf{0}$ at every point of a simply connected open region *D* in space, then on any piecewise-smooth closed path *C* in *D*,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0.$$

Sketch of a Proof Theorem 7 can be proved in two steps. The first step is for simple closed curves (loops that do not cross themselves), like the one in Figure 16.66a. A theorem from topology, a branch of advanced mathematics, states that every smooth simple closed curve C in a simply connected open region D is the boundary of a smooth two-sided surface S that also lies in D. Hence, by Stokes' Theorem,

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma = 0.$$

The second step is for curves that cross themselves, like the one in Figure 16.66b. The idea is to break these into simple loops spanned by orientable surfaces, apply Stokes' Theorem one loop at a time, and add the results.

The following diagram summarizes the results for conservative fields defined on connected, simply connected open regions.

Exercises 16.7

Using Stokes' Theorem to Find Line Integrals

In Exercises 1–6, use the surface integral in Stokes' Theorem to calculate the circulation of the field \mathbf{F} around the curve *C* in the indicated direction.

- **1.** $\mathbf{F} = x^2 \mathbf{i} + 2x \mathbf{j} + z^2 \mathbf{k}$
 - C: The ellipse $4x^2 + y^2 = 4$ in the *xy*-plane, counterclockwise when viewed from above
- F = 2yi + 3xj z²k
 C: The circle x² + y² = 9 in the xy-plane, counterclockwise when viewed from above
- 3. $\mathbf{F} = y\mathbf{i} + xz\mathbf{j} + x^2\mathbf{k}$

C: The boundary of the triangle cut from the plane x + y + z = 1by the first octant, counterclockwise when viewed from above 4. F = (y² + z²)i + (x² + z²)j + (x² + y²)k
C: The boundary of the triangle cut from the plane x + y + z = 1 by the first octant, counterclockwise when viewed from above

5. $\mathbf{F} = (y^2 + z^2)\mathbf{i} + (x^2 + y^2)\mathbf{j} + (x^2 + y^2)\mathbf{k}$

C: The square bounded by the lines $x = \pm 1$ and $y = \pm 1$ in the *xy*-plane, counterclockwise when viewed from above

6. $F = x^2 y^3 i + j + z k$

C: The intersection of the cylinder $x^2 + y^2 = 4$ and the hemisphere $x^2 + y^2 + z^2 = 16$, $z \ge 0$, counterclockwise when viewed from above

Flux of the Curl

7. Let **n** be the outer unit normal of the elliptical shell

S:
$$4x^2 + 9y^2 + 36z^2 = 36$$
, $z \ge 0$,

and let

$$\mathbf{F} = y\mathbf{i} + x^2\mathbf{j} + (x^2 + y^4)^{3/2}\sin e^{\sqrt{xyz}}\mathbf{k}$$

Find the value of

$$\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma.$$

(*Hint*: One parametrization of the ellipse at the base of the shell is $x = 3 \cos t$, $y = 2 \sin t$, $0 \le t \le 2\pi$.)

8. Let **n** be the outer unit normal (normal away from the origin) of the parabolic shell

S:
$$4x^2 + y + z^2 = 4$$
, $y \ge 0$,

and let

$$\mathbf{F} = \left(-z + \frac{1}{2+x}\right)\mathbf{i} + (\tan^{-1}y)\mathbf{j} + \left(x + \frac{1}{4+z}\right)\mathbf{k}.$$

Find the value of

$$\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma.$$

- 9. Let S be the cylinder $x^2 + y^2 = a^2$, $0 \le z \le h$, together with its top, $x^2 + y^2 \le a^2$, z = h. Let $\mathbf{F} = -y\mathbf{i} + x\mathbf{j} + x^2\mathbf{k}$. Use Stokes' Theorem to find the flux of $\nabla \times \mathbf{F}$ outward through S.
- 10. Evaluate

$$\iint_{S} \nabla \times (y\mathbf{i}) \cdot \mathbf{n} \, d\sigma,$$

where *S* is the hemisphere $x^2 + y^2 + z^2 = 1, z \ge 0$. **11. Flux of curl F** Show that

$$\iint\limits_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma$$

has the same value for all oriented surfaces S that span C and that induce the same positive direction on C.

12. Let **F** be a differentiable vector field defined on a region containing a smooth closed oriented surface *S* and its interior. Let **n** be the unit normal vector field on *S*. Suppose that *S* is the union of two surfaces S_1 and S_2 joined along a smooth simple closed curve *C*. Can anything be said about

$$\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma?$$

Give reasons for your answer.

Stokes' Theorem for Parametrized Surfaces

In Exercises 13–18, use the surface integral in Stokes' Theorem to calculate the flux of the curl of the field \mathbf{F} across the surface *S* in the direction of the outward unit normal \mathbf{n} .

13.
$$\mathbf{F} = 2z\mathbf{i} + 3x\mathbf{j} + 5y\mathbf{k}$$

S: $\mathbf{r}(r, \theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (4 - r^2)\mathbf{k},$
 $0 \le r \le 2, \quad 0 \le \theta \le 2\pi$

- 14. $\mathbf{F} = (y z)\mathbf{i} + (z x)\mathbf{j} + (x + z)\mathbf{k}$ S: $\mathbf{r}(r, \theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (9 - r^2)\mathbf{k}$, $0 \le r \le 3$, $0 \le \theta \le 2\pi$
- 15. $\mathbf{F} = x^2 y \mathbf{i} + 2y^3 z \mathbf{j} + 3z \mathbf{k}$ S: $\mathbf{r}(r, \theta) = (r \cos \theta) \mathbf{i} + (r \sin \theta) \mathbf{j} + r \mathbf{k}$, $0 \le r \le 1$, $0 \le \theta \le 2\pi$
- 16. $\mathbf{F} = (x y)\mathbf{i} + (y z)\mathbf{j} + (z x)\mathbf{k}$ S: $\mathbf{r}(r, \theta) = (r\cos\theta)\mathbf{i} + (r\sin\theta)\mathbf{j} + (5 - r)\mathbf{k},$ $0 \le r \le 5, \quad 0 \le \theta \le 2\pi$
- 17. $\mathbf{F} = 3y\mathbf{i} + (5 2x)\mathbf{j} + (z^2 2)\mathbf{k}$ S: $\mathbf{r}(\phi, \theta) = (\sqrt{3}\sin\phi\cos\theta)\mathbf{i} + (\sqrt{3}\sin\phi\sin\theta)\mathbf{j} + (\sqrt{3}\cos\phi)\mathbf{k}, \quad 0 \le \phi \le \pi/2, \quad 0 \le \theta \le 2\pi$
- 18. $\mathbf{F} = y^2 \mathbf{i} + z^2 \mathbf{j} + x \mathbf{k}$ S: $\mathbf{r}(\phi, \theta) = (2 \sin \phi \cos \theta) \mathbf{i} + (2 \sin \phi \sin \theta) \mathbf{j} + (2 \cos \phi) \mathbf{k},$ $0 \le \phi \le \pi/2, \quad 0 \le \theta \le 2\pi$

Theory and Examples

19. Zero circulation Use the identity $\nabla \times \nabla f = \mathbf{0}$ (Equation (8) in the text) and Stokes' Theorem to show that the circulations of the following fields around the boundary of any smooth orientable surface in space are zero.

a.
$$\mathbf{F} = 2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k}$$

b. $\mathbf{F} = \nabla(xy^2z^3)$
c. $\mathbf{F} = \nabla \times (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$
d. $\mathbf{F} = \nabla f$

- **20.** Zero circulation Let $f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$. Show that the clockwise circulation of the field $\mathbf{F} = \nabla f$ around the circle $x^2 + y^2 = a^2$ in the *xy*-plane is zero
 - **a.** by taking $\mathbf{r} = (a \cos t)\mathbf{i} + (a \sin t)\mathbf{j}, 0 \le t \le 2\pi$, and integrating $\mathbf{F} \cdot d\mathbf{r}$ over the circle.

b. by applying Stokes' Theorem.

21. Let C be a simple closed smooth curve in the plane 2x + 2y + z = 2, oriented as shown here. Show that

$$\oint_C 2y \, dx + 3z \, dy - x \, dz$$

depends only on the area of the region enclosed by C and not on the position or shape of C.

22. Show that if $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, then $\nabla \times \mathbf{F} = \mathbf{0}$.

- **23.** Find a vector field with twice-differentiable components whose curl is xi + yj + zk or prove that no such field exists.
- **24.** Does Stokes' Theorem say anything special about circulation in a field whose curl is zero? Give reasons for your answer.
- **25.** Let *R* be a region in the *xy*-plane that is bounded by a piecewise smooth simple closed curve *C* and suppose that the moments of inertia of *R* about the *x* and *y*-axes are known to be I_x and I_y . Evaluate the integral

$$\oint_C \nabla(r^4) \cdot \mathbf{n} \, ds,$$

where $r = \sqrt{x^2 + y^2}$, in terms of I_x and I_y .

26. Zero curl, yet field not conservative Show that the curl of

$$\mathbf{F} = \frac{-y}{x^2 + y^2}\mathbf{i} + \frac{x}{x^2 + y^2}\mathbf{j} + z\mathbf{k}$$

is zero but that

$$\oint_C \mathbf{F} \cdot d\mathbf{r}$$

is not zero if *C* is the circle $x^2 + y^2 = 1$ in the *xy*-plane. (Theorem 7 does not apply here because the domain of **F** is not simply connected. The field **F** is not defined along the *z*-axis so there is no way to contract *C* to a point without leaving the domain of **F**.)

16.8 The Divergence Theorem and a Unified Theory

The divergence form of Green's Theorem in the plane states that the net outward flux of a vector field across a simple closed curve can be calculated by integrating the divergence of the field over the region enclosed by the curve. The corresponding theorem in three dimensions, called the Divergence Theorem, states that the net outward flux of a vector field across a closed surface in space can be calculated by integrating the divergence of the field over the region enclosed by the surface. In this section we prove the Divergence Theorem and show how it simplifies the calculation of flux. We also derive Gauss's law for flux in an electric field and the continuity equation of hydrodynamics. Finally, we unify the chapter's vector integral theorems into a single fundamental theorem.

Divergence in Three Dimensions

The divergence of a vector field $\mathbf{F} = M(x, y, z)\mathbf{i} + N(x, y, z)\mathbf{j} + P(x, y, z)\mathbf{k}$ is the scalar function

div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$
. (1)

The symbol "div **F**" is read as "divergence of **F**" or "div **F**." The notation $\nabla \cdot \mathbf{F}$ is read "del dot **F**."

Div **F** has the same physical interpretation in three dimensions that it does in two. If **F** is the velocity field of a flowing gas, the value of div **F** at a point (x, y, z) is the rate at which the gas is compressing or expanding at (x, y, z). The divergence is the flux per unit volume or flux density at the point.

EXAMPLE 1 The following vector fields represent the velocity of a gas flowing in space. Find the divergence of each vector field and interpret its physical meaning. Figure 16.67 displays the vector fields.

- (a) Expansion: $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
- **(b)** Compression: $\mathbf{F}(x, y, z) = -x\mathbf{i} y\mathbf{j} z\mathbf{k}$

The Fundamental Theorem now says that

$$\mathbf{F}(b) \cdot \mathbf{n} + \mathbf{F}(a) \cdot \mathbf{n} = \int_{[a,b]} \nabla \cdot \mathbf{F} \, dx.$$

The Fundamental Theorem of Calculus, the normal form of Green's Theorem, and the Divergence Theorem all say that the integral of the differential operator $\nabla \cdot$ operating on a field **F** over a region equals the sum of the normal field components over the boundary of the region. (Here we are interpreting the line integral in Green's Theorem and the surface integral in the Divergence Theorem as "sums" over the boundary.)

Stokes' Theorem and the tangential form of Green's Theorem say that, when things are properly oriented, the integral of the normal component of the curl operating on a field equals the sum of the tangential field components on the boundary of the surface.

The beauty of these interpretations is the observance of a single unifying principle, which we might state as follows.

A Unifying Fundamental Theorem

The integral of a differential operator acting on a field over a region equals the sum of the field components appropriate to the operator over the boundary of the region.

Exercises 16.8

Calculating Divergence

In Exercises 1–4, find the divergence of the field.

- 1. The spin field in Figure 16.12
- **2.** The radial field in Figure 16.11
- **3.** The gravitational field in Figure 16.8 and Exercise 38a in Section 16.3
- **4.** The velocity field in Figure 16.13

Calculating Flux Using the Divergence Theorem

In Exercises 5–16, use the Divergence Theorem to find the outward flux of \mathbf{F} across the boundary of the region *D*.

- 5. Cube $\mathbf{F} = (y x)\mathbf{i} + (z y)\mathbf{j} + (y x)\mathbf{k}$
 - D: The cube bounded by the planes $x = \pm 1$, $y = \pm 1$, and $z = \pm 1$
- **6.** $\mathbf{F} = x^2 \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}$
 - **a.** Cube D: The cube cut from the first octant by the planes x = 1, y = 1, and z = 1
 - **b.** Cube D: The cube bounded by the planes $x = \pm 1$, $y = \pm 1$, and $z = \pm 1$
 - **c.** Cylindrical can D: The region cut from the solid cylinder $x^2 + y^2 \le 4$ by the planes z = 0 and z = 1
- 7. Cylinder and paraboloid $\mathbf{F} = y\mathbf{i} + xy\mathbf{j} z\mathbf{k}$
 - D: The region inside the solid cylinder $x^2 + y^2 \le 4$ between the plane z = 0 and the paraboloid $z = x^2 + y^2$

8. Sphere
$$F = x^2 i + xz j + 3z k$$

D: The solid sphere $x^2 + y^2 + z^2 \le 4$

- 9. Portion of sphere F = x²i 2xyj + 3xzk
 D: The region cut from the first octant by the sphere x² + y² + z² = 4
- 10. Cylindrical can $\mathbf{F} = (6x^2 + 2xy)\mathbf{i} + (2y + x^2z)\mathbf{j} + 4x^2y^3\mathbf{k}$ D: The region cut from the first octant by the cylinder $x^2 + y^2 = 4$ and the plane z = 3
- 11. Wedge $\mathbf{F} = 2xz\mathbf{i} xy\mathbf{j} z^2\mathbf{k}$

D: The wedge cut from the first octant by the plane y + z = 4and the elliptical cylinder $4x^2 + y^2 = 16$

- 12. Sphere $\mathbf{F} = x^3\mathbf{i} + y^3\mathbf{j} + z^3\mathbf{k}$ D: The solid sphere $x^2 + y^2 + z^2 \le a^2$
- 13. Thick sphere $\mathbf{F} = \sqrt{x^2 + y^2 + z^2} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$ D: The region $1 \le x^2 + y^2 + z^2 \le 2$
- 14. Thick sphere $\mathbf{F} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})/\sqrt{x^2 + y^2 + z^2}$ D: The region $1 \le x^2 + y^2 + z^2 \le 4$
- **15.** Thick sphere $\mathbf{F} = (5x^3 + 12xy^2)\mathbf{i} + (y^3 + e^y \sin z)\mathbf{j} + (5z^3 + e^y \cos z)\mathbf{k}$
 - D: The solid region between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 2$
- 16. Thick cylinder $\mathbf{F} = \ln (x^2 + y^2)\mathbf{i} \left(\frac{2z}{x}\tan^{-1}\frac{y}{x}\right)\mathbf{j} + z\sqrt{x^2 + y^2}\mathbf{k}$
 - D: The thick-walled cylinder $1 \le x^2 + y^2 \le 2$, $-1 \le z \le 2$

Properties of Curl and Divergence

17. div (curl G) is zero

- **a.** Show that if the necessary partial derivatives of the components of the field $\mathbf{G} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ are continuous, then $\nabla \cdot \nabla \times \mathbf{G} = 0$.
- **b.** What, if anything, can you conclude about the flux of the field $\nabla \times \mathbf{G}$ across a closed surface? Give reasons for your answer.
- **18.** Let \mathbf{F}_1 and \mathbf{F}_2 be differentiable vector fields and let *a* and *b* be arbitrary real constants. Verify the following identities.

a. $\nabla \cdot (a\mathbf{F}_1 + b\mathbf{F}_2) = a\nabla \cdot \mathbf{F}_1 + b\nabla \cdot \mathbf{F}_2$

b. $\nabla \times (a\mathbf{F}_1 + b\mathbf{F}_2) = a\nabla \times \mathbf{F}_1 + b\nabla \times \mathbf{F}_2$

c.
$$\nabla \cdot (\mathbf{F}_1 \times \mathbf{F}_2) = \mathbf{F}_2 \cdot \nabla \times \mathbf{F}_1 - \mathbf{F}_1 \cdot \nabla \times \mathbf{F}_2$$

19. Let **F** be a differentiable vector field and let g(x, y, z) be a differentiable scalar function. Verify the following identities.

a.
$$\nabla \cdot (g\mathbf{F}) = g\nabla \cdot \mathbf{F} + \nabla g \cdot \mathbf{F}$$

b.
$$\nabla \times (g\mathbf{F}) = g\nabla \times \mathbf{F} + \nabla g \times \mathbf{F}$$

20. If $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ is a differentiable vector field, we define the notation $\mathbf{F} \cdot \nabla$ to mean

$$M\frac{\partial}{\partial x} + N\frac{\partial}{\partial y} + P\frac{\partial}{\partial z}.$$

For differentiable vector fields \mathbf{F}_1 and \mathbf{F}_2 , verify the following identities.

- a. $\nabla \times (\mathbf{F}_1 \times \mathbf{F}_2) = (\mathbf{F}_2 \cdot \nabla)\mathbf{F}_1 (\mathbf{F}_1 \cdot \nabla)\mathbf{F}_2 + (\nabla \cdot \mathbf{F}_2)\mathbf{F}_1 (\nabla \cdot \mathbf{F}_1)\mathbf{F}_2$
- **b.** $\nabla(\mathbf{F}_1 \cdot \mathbf{F}_2) = (\mathbf{F}_1 \cdot \nabla)\mathbf{F}_2 + (\mathbf{F}_2 \cdot \nabla)\mathbf{F}_1 + \mathbf{F}_1 \times (\nabla \times \mathbf{F}_2) + \mathbf{F}_2 \times (\nabla \times \mathbf{F}_1)$

Theory and Examples

21. Let **F** be a field whose components have continuous first partial derivatives throughout a portion of space containing a region *D* bounded by a smooth closed surface *S*. If $|\mathbf{F}| \le 1$, can any bound be placed on the size of

$$\iiint_D \nabla \cdot \mathbf{F} \, dV?$$

Give reasons for your answer.

22. The base of the closed cubelike surface shown here is the unit square in the *xy*-plane. The four sides lie in the planes x = 0, x = 1, y = 0, and y = 1. The top is an arbitrary smooth surface whose identity is unknown. Let $\mathbf{F} = x\mathbf{i} - 2y\mathbf{j} + (z + 3)\mathbf{k}$ and suppose the outward flux of \mathbf{F} through Side *A* is 1 and through Side *B* is -3. Can you conclude anything about the outward flux through the top? Give reasons for your answer.

- **23.** a. Show that the outward flux of the position vector field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ through a smooth closed surface *S* is three times the volume of the region enclosed by the surface.
 - **b.** Let **n** be the outward unit normal vector field on *S*. Show that it is not possible for **F** to be orthogonal to **n** at every point of *S*.
- **24.** Maximum flux Among all rectangular solids defined by the inequalities $0 \le x \le a, 0 \le y \le b, 0 \le z \le 1$, find the one for which the total flux of $\mathbf{F} = (-x^2 4xy)\mathbf{i} 6yz\mathbf{j} + 12z\mathbf{k}$ outward through the six sides is greatest. What *is* the greatest flux?
- **25.** Volume of a solid region Let $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and suppose that the surface *S* and region *D* satisfy the hypotheses of the Divergence Theorem. Show that the volume of *D* is given by the formula

Volume of
$$D = \frac{1}{3} \iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
.

- **26.** Outward flux of a constant field Show that the outward flux of a constant vector field $\mathbf{F} = \mathbf{C}$ across any closed surface to which the Divergence Theorem applies is zero.
- **27.** Harmonic functions A function f(x, y, z) is said to be *harmonic* in a region *D* in space if it satisfies the Laplace equation

$$\nabla^2 f = \nabla \cdot \nabla f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

throughout D.

- **a.** Suppose that f is harmonic throughout a bounded region D enclosed by a smooth surface S and that **n** is the chosen unit normal vector on S. Show that the integral over S of $\nabla f \cdot \mathbf{n}$, the derivative of f in the direction of **n**, is zero.
- **b.** Show that if f is harmonic on D, then

$$\iint\limits_{S} f \,\nabla f \cdot \mathbf{n} \, d\sigma = \iiint\limits_{D} |\nabla f|^2 \, dV.$$

28. Outward flux of a gradient field Let S be the surface of the portion of the solid sphere $x^2 + y^2 + z^2 \le a^2$ that lies in the first octant and let $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$. Calculate

$$\iint_{S} \nabla f \cdot \mathbf{n} \, d\sigma.$$

 $(\nabla f \cdot \mathbf{n} \text{ is the derivative of } f \text{ in the direction of outward normal } \mathbf{n}.)$

29. Green's first formula Suppose that f and g are scalar functions with continuous first- and second-order partial derivatives throughout a region D that is bounded by a closed piecewise smooth surface S. Show that

$$\iint_{S} f \,\nabla g \cdot \mathbf{n} \, d\sigma = \iiint_{D} \left(f \,\nabla^{2}g + \,\nabla f \cdot \nabla g \right) \, dV. \tag{9}$$

Equation (9) is **Green's first formula**. (*Hint:* Apply the Divergence Theorem to the field $\mathbf{F} = f \nabla g$.)

30. Green's second formula (*Continuation of Exercise 29.*) Interchange f and g in Equation (9) to obtain a similar formula. Then subtract this formula from Equation (9) to show that

$$\iint_{S} (f \nabla g - g \nabla f) \cdot \mathbf{n} \, d\sigma = \iiint_{D} (f \nabla^{2} g - g \nabla^{2} f) \, dV.$$
(10)

This equation is Green's second formula.

31. Conservation of mass Let $\mathbf{v}(t, x, y, z)$ be a continuously differentiable vector field over the region *D* in space and let p(t, x, y, z) be a continuously differentiable scalar function. The variable *t* represents the time domain. The Law of Conservation of Mass asserts that

$$\frac{d}{dt}\iiint_{D} p(t, x, y, z) \, dV = -\iint_{S} p\mathbf{v} \cdot \mathbf{n} \, d\sigma$$

where S is the surface enclosing D.

- **a.** Give a physical interpretation of the conservation of mass law if **v** is a velocity flow field and *p* represents the density of the fluid at point (*x*, *y*, *z*) at time *t*.
- b. Use the Divergence Theorem and Leibniz's Rule,

$$\frac{d}{dt}\iiint_D p(t, x, y, z) \, dV = \iiint_D \frac{\partial p}{\partial t} \, dV,$$

to show that the Law of Conservation of Mass is equivalent to the continuity equation,

$$\nabla \cdot p \mathbf{v} + \frac{\partial p}{\partial t} = 0.$$

(In the first term $\nabla \cdot p\mathbf{v}$, the variable *t* is held fixed, and in the second term $\partial p/\partial t$, it is assumed that the point (x, y, z) in *D* is held fixed.)

- **32.** The heat diffusion equation Let T(t, x, y, z) be a function with continuous second derivatives giving the temperature at time *t* at the point (x, y, z) of a solid occupying a region *D* in space. If the solid's heat capacity and mass density are denoted by the constants *c* and ρ , respectively, the quantity $c\rho T$ is called the solid's heat energy per unit volume.
 - **a.** Explain why $-\nabla T$ points in the direction of heat flow.
 - **b.** Let $-k\nabla T$ denote the **energy flux vector**. (Here the constant *k* is called the **conductivity**.) Assuming the Law of Conservation of Mass with $-k\nabla T = \mathbf{v}$ and $c\rho T = p$ in Exercise 31, derive the diffusion (heat) equation

$$\frac{\partial T}{\partial t} = K \nabla^2 T_t$$

where $K = k/(c\rho) > 0$ is the *diffusivity* constant. (Notice that if T(t, x) represents the temperature at time *t* at position *x* in a uniform conducting rod with perfectly insulated sides, then $\nabla^2 T = \partial^2 T/\partial x^2$ and the diffusion equation reduces to the one-dimensional heat equation in Chapter 14's Additional Exercises.)

Chapter 16 Questions to Guide Your Review

- 1. What are line integrals? How are they evaluated? Give examples.
- **2.** How can you use line integrals to find the centers of mass of springs? Explain.
- 3. What is a vector field? A gradient field? Give examples.
- **4.** How do you calculate the work done by a force in moving a particle along a curve? Give an example.
- 5. What are flow, circulation, and flux?
- 6. What is special about path independent fields?
- 7. How can you tell when a field is conservative?
- **8.** What is a potential function? Show by example how to find a potential function for a conservative field.
- **9.** What is a differential form? What does it mean for such a form to be exact? How do you test for exactness? Give examples.
- 10. What is the divergence of a vector field? How can you interpret it?
- 11. What is the curl of a vector field? How can you interpret it?
- 12. What is Green's Theorem? How can you interpret it?

Chapter 16 Practice Exercises

Evaluating Line Integrals

1. The accompanying figure shows two polygonal paths in space joining the origin to the point (1, 1, 1). Integrate $f(x, y, z) = 2x - 3y^2 - 2z + 3$ over each path.

- 14. How do you integrate a function over a parametrized surface in space? Of surfaces that are defined implicitly or in explicit form? What can you calculate with surface integrals? Give examples.
- **15.** What is an oriented surface? How do you calculate the flux of a three-dimensional vector field across an oriented surface? Give an example.
- 16. What is Stokes' Theorem? How can you interpret it?
- 17. Summarize the chapter's results on conservative fields.
- 18. What is the Divergence Theorem? How can you interpret it?
- 19. How does the Divergence Theorem generalize Green's Theorem?
- 20. How does Stokes' Theorem generalize Green's Theorem?
- **21.** How can Green's Theorem, Stokes' Theorem, and the Divergence Theorem be thought of as forms of a single fundamental theorem?

