next up previous
Next: Problem 2 Up: Problem 1 Previous: Problem 1

Solution of Problem 1

Given $ A =
\left[ \begin{array}{rr}
4&1\\
3&2\\
\end{array}\right] $, we can find


\begin{displaymath}A^{-1} = {( 8-3) }^{-1} \left[ \begin{array}{rr}
2&-1\\
-3&4...
...-1} \left[ \begin{array}{rr}
2&-1\\
-3&4\\
\end{array}\right]\end{displaymath}

But this matrix does not have integer entries, and is not very halpful. Since oure conversion table has 26 letters, we may want to use modular arithmetic, with $\mbox {mod}26 $. Since $ 5 \times 21 = 1 \mbox {mod}26 $, we may replace $ \frac{ 1} {5} $ by 21. Therefore,


\begin{displaymath}A^{-1} = 21 \left[ \begin{array}{rr}
2&-1\\
-3&4\\
\end{arr...
...t]
=\left[ \begin{array}{rr}
16&5\\
15&6\\
\end{array}\right]\end{displaymath}




in the multiplications above modular arithmetics ( $\mbox {mod}26 $) is used.

To double check, find $ A A^{-1}$,which should be equal to the identy matrix.


\begin{displaymath}\left[ \begin{array}{rr}
4&1\\
3&2\\
\end{array}\right]
\l...
...\left[ \begin{array}{rr}
1&0\\
0&1\\
\end{array}\right]
= I.\end{displaymath}

Now, knowing that $A^{-1} =\left[ \begin{array}{rr}
16&5\\
15&6\\
\end{array}\right]$, we can divide the whole message into pairs, and convert them into their correspoing numerical values.

11 14 15 24 1 15 10 24

Now multiply $A^{-1}$ by each of these encoded vector, the numbers change to

\begin{displaymath}246 249 360 369 91 105 280 294\end{displaymath}

Using modular arithmetic, mod 26, the numbers become

12 15 22 5 13 1 20 8

Which converts to the following string of letters:

L O V E M A T H

This yields the message,

LOVE MATH


next up previous
Next: Problem 2 Up: Problem 1 Previous: Problem 1
Ali A. Daddel 2000-09-18