next up previous
Next: Example 2: Up: Polygraphic System Previous: Polygraphic System

Example 1:

Suppose you want to encode and send the following message:

"STUDY LINEAR ALGEBRA"

First, using the conversion table, find the corresponding numbers associate with each letter.

STUDY LINEAR ALGEBRA

produces the following string of numbers:

19 20 21 4 25 12 9 14 5 1 18 1 12 7 5 2 18 1.

Then, divide the number into groups of 3 and write each group in the form of a $ 3\times 1$ vector.


$\left[ \begin{array}{r}
19\\
20\\
21\\
\end{array}\right]\hspace{.5cm}
\lef...
...ight]\hspace{.5cm}
\left[ \begin{array}{r}
2\\
18\\
1\\
\end{array}\right]$

The next step is to find the product of $ A $ with any of these vectors:

$A \left[ \begin{array}{r}
19\\
20\\
21\\
\end{array}\right], A\left[ \begin{array}{r}
4\\
25\\
12\\
\end{array}\right], \cdots $.

Now you have the following vectors:



$\left[ \begin{array}{r}
19\\
0\\
-18\\
\end{array}\right]\hspace{.5cm}
\left...
...ht]\hspace{.5cm}
\left[ \begin{array}{r}
35\\
-33\\
-19\\
\end{array}\right]$


This will provide you with the following string which can be sent.

19 0 -18 38 -34 -17 23 -14 -18 25 -34 -18 9 3 -14 35 -33 -19

The party who receives the message, should divide it into groups of 3 and form $ 3\times 1$ vectors and then multiplies each vector by $A^{-1}$.

For example $A^{-1}$ $\left[ \begin{array}{r}
19\\
0\\
-18\\
\end{array}\right]=\left[ \begin{arra...
...\end{array}\right]=\left[ \begin{array}{r}
19\\
20\\
21\\
\end{array}\right]$

After obtaining a string of numbers, the conversion table can be used to convert the string to letters and obtain the decoded message.


next up previous
Next: Example 2: Up: Polygraphic System Previous: Polygraphic System
Ali A. Daddel 2000-09-18