NOTES ON LP AND SOBOLEV SPACES

STEVE SHKOLLER

1. LP SPACES
1.1. Definitions and basic properties.

Definition 1.1. Let 0 < p < oo and let (X, M, u) denote a measure space. If
f: X — R is a measurable function, then we define

1l = ( /. fl”dx> and [l x) = ess sup,x | F()].

Note that || f||zr(x) may take the value co.

Definition 1.2. The space LP(X) is the set
LP(X)={f: X =R | [fllLr(x) < oo}
The space LP(X) satisfies the following vector space properties:
(1) For each o € R, if f € LP(X) then af € LP(X);
(2) If f,g € LP(X), then
|f +glP < 2P| 1P +1glP)

so that f 4+ g € LP(X).
(3) The triangle inequality is valid if p > 1.
The most interesting cases are p = 1, 2, 0o, while all of the L? arise often in nonlinear
estimates.

Definition 1.3. The space IP, called “little LP”, will be useful when we introduce
Sobolev spaces on the torus and the Fourier series. For 1 < p < oo, we set

1P = {{xn};’i"ﬂ IDENES OO} -
n=1

1.2. Basic inequalities.
Lemma 1.4. For A € (0,1), 2 < (1 —\) + A\x.

Proof. Set f(x) = (1 — \) + Az — 2*; hence, f'(x) = A — Ax*~! = 0 if and only if
A(1—2*71) = 0 so that 2 = 1 is the critical point of f. In particular, the minimum
occurs at x = 1 with value

f)=0< (1 =N+ Az —a.
([l
Lemma 1.5. For a,b> 0 and X € (0,1), a*b'=* < Xa + (1 — \)b with equality if
a="0.
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Proof. If either a = 0 or b = 0, then this is trivially true, so assume that a,b > 0.
Set = a/b, and apply Lemma 1 to obtain the desired inequality. ([

Theorem 1.6 (Holder’s inequality). Suppose that 1 < p < oo and 1 < ¢ < oo with
% + % =1. Iffe€ LP and g € LY, then fg € L*. Moreover,

gl < [ fllzellgllze -

Note that if p = ¢ = 2, then this is the Cauchy-Schwarz inequality since || fg||1 =
[(f,9)rz]-

Proof. We use Lemma 1.5. Let A = 1/p and set
P q
S R
1f11Ze lgllze
for all z € X. Then a*b'~* = a'/Pb1=1/P = ¢1/Pp1/4 50 that
/119l L1 gl
< - P . q -
Il llgllze = p ILfIZ, — allgllia
Integrating this inequality yields

: 1 1fP 1 gl 11
|f] - lgl dzg/( Iflp +Iglq)dx:+:1.
x I fllzellgllza x \2Iflzs gl P q

Definition 1.7. ¢ = p%l or

% =1- % 1s called the conjugate exponent of p.

Theorem 1.8 (Minkowski’s inequality). If 1 < p < oo and f,g € L? then
1f +gllee < fllze + llgllze -

Proof. If f+ g =0 a.e., then the statement is trivial. Assume that f + g # 0 a.e.
Consider the equality

[f+alP =1f+gl-1f +glP~" < (If1+1gDIf + 977,
and integrate over X to find that

/ I+ glPde < / (151 + g)If + glP~"] da
X X

Hélder’s

< (I1fllee + Ngllzo) I1F + g7~ L -

[

Since ¢ =

=

p—

H|f+gp‘1||m=(/X|f+g|f’dx) :

from which it follows that

1—1
( / |f+gpdw) <l + llgle
X

which completes the proof, since % =1- %.

Corollary 1.9. For 1 <p < oo, LP(X) is a normed linear space.
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Example 1.10. Let Q denote a (Lebesque) measure-1 subset of R™. If f € L1(Q)
satisfies f(x) > M > 0 for almost all x € Q, then log(f) € LY(Q) and satisfies

/Q log fdz < log( /Q fdz).

To see this, consider the function g(t) =t —1—logt for t > 0. Compute ¢'(t) =
1—1=0s0t=11is a minimum (since g"(1) > 0). Thus, logt <t —1 and letting

t— % we see that

1
1—¥glogt§t—1. (L.1)

Since log x is continuous and f is measurable, then log f is measurable for f > 0.
Let t = L&) in (1.1) to find that

[FHP!
Wl f@)
f(x) 121
Since g(z) < log f(x) < h(z) for two integrable functions g and h, it follows that

log f(x) is integrable. Next, integrate (1.2) to finish the proof, as fX (I\]Jc”(\f?l — 1) dr =
0.

<log f(z) —log||fllzr < (1.2)

1.3. The space (LP(X), ||-||z»(X) is complete. Recall the a normed linear space
is a Banach space if every Cauchy sequence has a limit in that space; furthermore,
recall that a sequence z, — z in X if lim,_, ||z, — z||x = 0.

The proof of completeness makes use of the following two lemmas which are
restatements of the Monotone Convergence Theorem and the Dominated Conver-
gence Theorem, respectively.

Lemma 1.11 (MCT). If f, € L*(X), 0 < fi(z) < fa(z) < - -+, and || fo|lpr(x) <

C < oo, then lim,, o fn(x) = f(z) with f € LY(X) and || fn — fllzr — 0 as n — 0.

Lemma 1.12 (DCT). If f, € LY(X), lim, oo fu(z) = f(z) a.e., and if 3 g €
LY(X) such that | f,(2)| < |g(2)| a.e. for alln, then f € L'(X) and || fn—f|z2 — 0.

Proof. Apply the Dominated Convergene Theorem to the sequence h,, = |f, — f| —
0 a.e., and note that |h,| < 2g. O

Theorem 1.13. If 1< p < oo then LP (X) is a Banach space.

Proof. Step 1. The Cauchy sequence. Let {f,}22; denote a Cauchy sequence
in LP, and assume without loss of generality (by extracting a subsequence if neces-
sary) that || fni1 — follLr <277

Step 2. Conversion to a convergent monotone sequence. Define the se-
quence {g,}>2; as
91=0, gn=Ifil+|fo= fil +- -+ [fu = fu-a| for n=2.

It follows that
0<gi<g2 < <gp <o

so that g, is a monotonically increasing sequence. Furthermore, {g,} is uniformly
bounded in LP as

o] p
/Xgﬁdfﬂ = [lgnllfs < <||f1||Lp +) Ilfi— fi—1||Lp> < (Ifller +1)P5

=2
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thus, by the Monotone Convergence Theorem, g2 " gP a.e., g € LP, and g, < ¢
a.e.

Step 3. Pointwise convergence of {f,}. For all k > 1,

|f"+k - fn| = |fn+k - fn—Hc—l + fn,+k_1 + = fn+1 + foar1 — fn|
k+1
< N0 1fi— fical = gnak — g0 — 0 e,
i=n+1

Therefore, f,, — f a.e. Since

ol S LA+ 1fi = fical Sgn < gforalln €N,

i=2
it follows that |f| < g a.e. Hence, |fn|P < ¢P, |f|P < gP, and |f — f,|P < 2¢P, and
by the Dominated Convergence Theorem,

lim |fffn|pd:v:/ lim |f — fulPdz=0.
X XnHOO

n—oo

]

1.4. Convergence criteria for L? functions. If {f,} is a sequence in LP(X)
which converges to f in LP(X), then there exists a subsequence {f,, } such that
fn () — f(x) for almost every = € X (denoted by a.e.), but it is in general not true
that the entire sequence itself will converge pointwise a.e. to the limit f, without
some further conditions holding.

Example 1.14. Let X = [0, 1], and consider the subintervals

CIT U] Ta] T2] 2] Tt T2l [28] 3] f
72 727 ) 73 7373 737 ) ’4 7474 7474 747 ) ’5 )
Let f,, denote the indicator function of the n'" interval of the above sequence. Then
| fullLe — O, but f,(x) does not converge for any x € [0, 1].
Example 1.15. Set X =R, and forn € N, set f, = 13, nq1y. Then fro(xz) — 0 as
n — 00, but ||fullr =1 for p € [1,00); thus, f, — 0 pointwise, but not in LP.
Example 1.16. Set X = [0,1], and for n € N, set f, =nly 1j. Then fn(z) — 0
a.e. asn — oo, but ||fnllzr = 1; thus, f, — 0 pointwise, but not in LP.
Theorem 1.17. For 1 < p < oo, suppose that {f,} C LP(X) and that fn(z) —
f(z) ace. Iflimy oo || fullzex) = [ fllLe(x), then fn — f in LP(X).
Proof. Given a,b > 0, convexity implies that (“T“’)p < 1(aP+0bP) so that (a+b)?P <
2P~1(aP 4-bP), and hence |a—b|P < 2P~ (|a|P +|b|?). Set a = f,, and b = f to obtain
the inequality
027 (fal? +117) = 1~ FI7.

Since f,(z) — f(z) a.e.,

2 [ 1fpde= [t (2AP + USP) < Ufa 7)o
X X n—oo
Thus, Fatou’s lemma asserts that

2p/ |f\pdx§liminf/ (2p71(|f7l\p+|f|p)f|fn—f|p)d:1:
X n—ee Jx



NOTES ON LP AND SOBOLEV SPACES 5
Since || fullzrx)y = I fllzr(x), We see limsup,, . ||fn — fllzr(x) = 0. O

1.5. The space L>*(X).

Definition 1.18. With || f| = x) = inf{M >0 | |f(z)]| < M a.c.}, we set
L(X) = {f: X = R | | fllsex) < 00}

Theorem 1.19. (L*(X),| - ||r~(x)) is a Banach space.

Proof. Let f, be a Cauchy sequence in L>®(X). It follows that |f, — fi| < ||fn —
JmllL=(x) a.e. and hence f,(z) — f(z) a.e., where f is measurable and essentially
bounded.

Choose € > 0 and N () such that || f, — fml[ Lo (x) < € for all n,m > N(e). Since
If(z) = fu(z)| = limpy—oo | frn(2) — fu(z)] < € holds ae. z € X, it follows that
Ilf = fullLe(x) < € for n > N(e), so that || fr, — fl|z(x) — 0. O

Remark 1.20. In general, there is no relation of the type LP C L%. For example,
suppose that X = (0,1) and set f(z) = 2~2. Then f € L*(0,1), but f & L2(0,1).
On the other hand, if X = (1,00) and f(x) = 2=, then f € L?(1,00), but f ¢
LY(1,00).

Lemma 1.21 (L? comparisons). If 1 < p < ¢ < r < oo, then (a) LP N L" C L9,
and (b) L9 C LP + L.

Proof. We begin with (b). Suppose that f € L9, define the set E = {x € X
|f(x)] > 1}, and write f as

f=/1e+ flg-
=g+h.
Our goal is to show that g € L and h € L". Since |g|? = |f|P1g < |f|?1g and

|h|" = |f|"1ge < |f|?1ge, assertion (b) is proven.
For (a), let A € [0,1] and for f € L9,

11 = ([ 1s1vae) " = ([ 1)

1
-2 a -
< (IR 1A1E77) " = IR 15

Theorem 1.22. If u(X) < co and q > p, then LY C LP.

Proof. Consider the case that ¢ = 2 and p = 1. Then by the Cauchy-Schwarz
inequality,

/ flde = / 1 1dz < [[fl] 220 V(XD
X X
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1.6. Approximation of L?(X) by simple functions.

Lemma 1.23. Ifp € [1,00), then the set of simple functions f = >, a;1g,, where
each E; is an element of the o-algebra A and p(E;) < oo, is dense in LP(X, A, u).

Proof. It f € LP, then f is measurable; thus, there exists a sequence {¢,}52; of
simple functions, such that ¢, — f a.e. with

0< o] <l <--- <|f,

i.e., ¢, approximates f from below.

Recall that |¢, — f|P — 0 a.e. and |¢,, — f|P < 2P|f|P € L', so by the Dominated
Convergence Theorem, ||¢, — f||z» — 0.

Now, suppose that the set F; are disjoint; then b definition of the Lebesgue

integral,
n

[ dnda =" lai () < oe.
X

i=1
If a; # 0, then p(E;) < oo. O

1.7. Approximation of L?(Q2) by continuous functions.

Lemma 1.24. Suppose that Q C R™ is bounded. Then C°(Q) is dense in LP(£2)
forp € [1,00).
Proof. Let K be any compact subset of 2. The functions

1
Fgp(zt) = ———
Ko () 1+ ndist(z, K)
and decrease monotonically to the characteristic function 1x. The Monotone Con-
vergence Theorem gives

frkm—1g in LP(Q), 1<p<co.

€ C(Q) satisfy Fg,, <1,

Next, let A C Q be any measurable set, and let A denote the Lebesgue measure.
Then
AMA) =sup{u(K) : K C A, K compact}.
It follows that there exists an increasing sequence of K; of compact subsets of A
such that A(A\U; K;) = 0. By the Monotone Convergence Theorem, 1x;, — 14 in
LP(§2) for p € [1,00). According to Lemma 1.23, each function in LP(f2) is a norm
limit of simple functions, so the lemma is proved. ([l

1.8. Approximation of L”(Q2) by smooth functions. For 2 C R"™ open, for
€ > 0 taken sufficiently small, define the open subset of 2 by
Qe :={x € Q| dist(z,00) > €}.
Definition 1.25 (Mollifiers). Define n € C*°(R™) by
_f celsP =0T Gzl <1
"(x)'_{o if Jal>1 "
with constant C > 0 chosen such that [o, n(z)dz = 1.
For e > 0, the standard sequence of mollifiers on R™ is defined by

ne(x) =€ "n(z/e),

and satisfy [5. ne(z)dr =1 and spt(ne) C B(0,¢).
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Definition 1.26. For ) C R™ open, set
P () ={u:Q—=R|uecIP(Q) VQccQ},

loc

where Q CC Q means that there exists K compact such that Q € K C Q. We say
that © is compactly contained in €.

Definition 1.27 (Mollification of L'). If f € L{ (Q), define its mollification

loc

fe=mex fin Q,
so that

fo(x) = /Q ne( — ) f (y)dy = /B o S =y Ve 0.

Theorem 1.28 (Mollification of LP(f2)).
(A) fee ().

(B) f¢— f a.e. ase— 0.
(C) If f € C°(Q), then f¢ — f uniformly on compact subsets of 2.
(D) Ifpel,00) and f € LY _(Q), then f¢ — f in LY (Q).

loc
Proof. Part (A). We rely on the difference quotient approximation of the partial
derivative. Fix x € ()., and choose h sufficiently small so that = + he; € Q. for
i=1,...,n, and compute the difference quotient of f€:

Methe) 20 o [ AT, (2he=y) _ (220Y] i,

6’"/@% [n (zﬂf y) -7 (zey)] fy)dy

for some open set Q cC Q. On €,

i L (EERe YY) (2] 100 (2oy _ 0w (2
WSon | € " € ez € - oz; € ’

so by the Dominated Convergence Theorem,

Ofc (2) = / e (o ) fly)dy.

axi Q 8:@

A similar argument for higher-order partial derivatives proves (A).

loc

Step 2. Part (B). By the Lebesgue differentiation theorem,
1
m ————
e—0 |B(‘T7 6)‘ B(z,e€)
Choose z € 2 for which this limit holds. Then
fe) = S@I < [ nde = pliw) - F)ldy

B(z,e€)

|f(y) — f(x)|dy for a.e. z € Q.

1 n((z —y)/)|f(y) — f(x)|dy

en B(x,e)

C
< Bg fo 1) Sy —0 a5 0.
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Step 3. Part (C). For Q C Q, the above inequality shows that if f € C°(Q) and
hence uniformly continuous on 2, then f¢(z) — f(x) uniformly on .

Step 4. Part (D). For f € LI (Q), p € [1,00), choose open sets U CC D CC
then, for e > 0 small enough,

1N zewy < 1 llLe (o) -
To see this, note that

()] < /B e =l wldy

=/B( )ne(w—y)(’"”/pne(rv—y)l/”lf(y)Idy

(p—1)/p 1/p
: (/Bu,e) ”6<””‘y>dy> ( L ne(w—y)lf(y)pdy> 7

so that for € > 0 sufficiently small
[r@ras [ [ pa-pliwrad
U U J B(z,e)

< /D F)P ( /B (y’e)m(xy)dx) dy < /D )Py

Since C°(D) is dense in LP(D), choose g € C°(D) such that || f — gl|»(p) <
thus

1f€ = flleeqy S NfC =9 ey + 1195 = glle@wy + lg — flle @)
<2|f = glleroy + l9° = 9llr@w) <20+ [l9° = gl Lo vy -
O

1.9. Continuous linear functionals on LP(X). Let LP(X)' denote the dual
space of LP(X). For ¢ € LP(X)’, the operator norm of ¢ is defined by ||¢[lop =

SUP Ly (x)=1 [0(f)]-

Theorem 1.29. Let p € (1,00, ¢ = ;5. For g € LU(X), define Fy : LP(X) — R
as

Fy(f) = /X fod.

Then F, is a continuous linear functional on LP(X) with operator norm || Fyllop =
lgllLe(x)-

Proof. The linearity of F; again follows from the linearity of the Lebesgue integral.

Since
/ fgdx
X

with the last inequality following from Holder’s inequality, we have that supy p —y [Fy (f)| <
191l La-

[Fy ()] =

< /X \Faldz < £l llgl o »
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For the reverse inequality let f = |g|?"'sgng. f is measurable and in LP since
[FIP =177 = |g|* and since fg = |g|",

.
F(D = [ goto= [ |g|de=( /. |qux)
- ( /. f|”dm)‘° ( /. |gQ|dx)q 1l 9] e

E (D _
17l = Fallop

so that |lgl|L, =
O

Remark 1.30. Theorem 1.29 shows that for 1 < p < oo, there exists a linear
isometry g — Fy from L9(X) into LP(X)', the dual space of LP(X). When p = oo,
g— Fy: LY(X) — L>(X) is rarely onto (L°°(X) is strictly larger than L'(X));
on the other hand, if the measure space X is o-finite, then L>=(X) = LY(X)'.

1.10. A theorem of F. Riesz.

Theorem 1.31 (Representation theorem). Suppose that 1 < p < oo and ¢ €

LP(X)'. Then there exists g € L1(X), ¢ = ;£ such that

o(f) = /X fodz f € LP(X),

and [|¢llop = [gllza-
Corollary 1.32. For p € (1,00) the space LP (X, p) is reflexive, i.e., LP(X)" =
LP(X).

The proof Theorem 1.31 crucially relies on the Radon-Nikodym theorem, whose
statement requires the following definition.

Definition 1.33. If u and v are measure on (X, A) then v < p if v(E) = 0 for
every set E for which u(E) = 0. In this case, we say that v is absolutely continuous
with respect to .

Theorem 1.34 (Radon-Nikodym). If u and v are two finite measures on X, i.e.,
w(X) < oo, v(X) < 00, and v < p, then

/F(:v) du(az):/ F(z)h(z)du(z) (1.3)
X

X

holds for some nonnegative function h € L*(X,u) and every positive measurable
function F.

Proof. Define measures o = p+ 2v and w = 2u + v, and let H = L? (X,a) (a
Hilbert space) and suppose ¢ : L? (X,a) — R is defined by ¢ (f) = / fdw. We
show that ¢ is a bounded linear functional since *
o) = | [ sausn| < [ ig1aeu a2 [ 111do
b's b's X
< £l oy V(X)) .
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Thus, by the Riesz representation theorem, there exists g € L?(X, a) such that

qb(f):/)(fdw:/xfgdm

[ #2-var= [ 12 gyau. (1.4)
X X

Given 0 < F' a measurable function on X, if we set f = Tlil and h = 2297—791 then

Fdv = |, Fhdx which is the desired result, if we can prove that 1/2 < g(x) < 2.
X X
Define the sets

which implies that

1 1 1
Erlbz{xeX|g(x)<—n} and Ei:{xeX|g(x)>2+n}.

2
By substituting f =15,, j = 1,2 in (1.4), we see that
w(E}) = v(E]) =0 for j =1,2,
from which the bounds 1/2 < g(z) < 2 hold. Also u({z € X | g(z) =1/2}) =0
and v({z € X | g(z) = 2}) = 0. Notice that if F' =1, then h € L'(X). O

Remark 1.35. The more general version of the Radon-Nikodym theorem. Suppose
that p(X) < oo, v is a finite signed measure (by the Hahn decomposition, v = v~ +
vt ) such that v < p; then, there exists h € L'(X, ) such that [ Fdv = [ Fhdp.

Lemma 1.36 (Converse to Holder’s inequality). Let u(X) < oo. Suppose that g
is measurable and fg € LY (X) for all simple functions f. If

M(g) = sup {‘/ngdu

IfllLp=1
then g € LX), and ||glp«x)y = M(g)-

. f is a simple function} < 00, (1.5)

Proof. Let ¢, be a sequence of simple functions such that ¢, — g a.e. and |¢,| <
lg|. Set

|67 sgn (6)
lpnll%s’

so that || ful|lz» = 1 for p = ¢/(¢ — 1). By Fatou’s lemma,

fn:

9/l La(x) < liminf ||¢p || a(x) = liminf/ | frnton|di .
n—oo n—oo X
Since ¢, — ¢ a.e., then

lgllzex) < limint / fudonldps < limin / [ fugldi < M(g)

The reverse inequality is implied by Hoélder’s inequality. (I

Proof of the LP(X)' representation theorem. We have already proven that there ex-
ists a natural inclusion ¢ : L9(X) — LP(X)’ which is an isometry. It remains to
show that ¢ is surjective.

Let ¢ € LP(X)" and define a set function v on measurable subsets E C X by

I/(E) = /X ].EdV = ¢(1E> .
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Thus, if u(E) = 0, then v(E) = 0. Then

/fw—¢

for all simple functions f, and by Lemma 1.23, this holds for all f € LP(X). By
the Radon-Nikodym theorem, there exists 0 < g € L'(X) such that

/del/:/xfgd,u VvV felP(X).

/fw—/mw (1.6)

and since ¢ € LP(X)', then M (g) given by (1.5) is finite, and by the converse to
Holder’s inequality, g € LY(X), and ||¢lop = M( ) = Hg||Lq . O

But

1.11. Weak convergence. The importance of the Representation Theorem 1.31
is in the use of the weak-* topology on the dual space LP(X)’. Recall that for a
Banach space B and for any sequence ¢; in the dual space B, ¢; X ¢ in B’ weak-*,
if (¢;, f) — (&, f) for each f € B, where (-,-) denotes the duality pairing between
B’ and B.

Theorem 1.37 (Alaoglu’s Lemma). If B is a Banach space, then the closed unit
ball in B is compact in the weak -* topology.

Definition 1.38. For 1 < p < o0, a sequence {fn,} C LP(X) is said to weakly
converge to f € LP(X) if

/fn(x) dz—>/f 2)dzr Y€ LUX),q= —L—.
D'e p—1
We denote this convergence by saying that fr, — f in LP(X) weakly.

Given that LP(X) is reflexive for p € (1,00), a simple corollary of Alaoglu’s
Lemma is the following

Theorem 1.39 (Weak compactness for L, 1 < p < 00). If 1 <p < oo and {fn}

is a bounded seequence in LP(X), then there exists a subsequence {fn,} such that
for — [ in LP(X) weakly.

Definition 1.40. A sequence {f,} C L>®(X) is said to converge weak-* to f €
Lo(X) if

/f da;—>/f 2z Vo e L'(X).
We denote this convergence by saying that f, — f in L>°(X) weak-*.

Theorem 1.41 (Weak-* compactness for L>). If {f,} is a bounded sequence in
L>®(X), then there exists a subsequence { f,,} such that f,, — f in L=(X) weak-*.

Lemma 1.42. If f,, — f in LP(X), then f, — f in LP(X).
Proof. By Hélder’s inequality,

mAMh*fMBSthNthm
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Note that if f,, is weakly convergent, in general, this does not imply that f, is
strongly convergent.

Example 1.43. If p =2, let f,, denote any orthonormal sequence in L*(X). From

Bessel’s inequality
/ fngdx
X

This example shows that the map f +— ||f|/L» is continuous, but not weakly
continuous. It is, however, weakly lower-semicontinuous.

< llgllZz(x) »

o0
n=1

we see that f, — 0 in L?(X).

Theorem 1.44. If f, — [ weakly in LP(X), then ||f||rr < liminf, o || fnllze-

Proof. As a consequence of Theorem 1.31,

/X fods

< sup liminf || fullzell9llLe -

llgllLax)=1 "

”fHLP(X) = sup
llgllrax)y=1

= sup lim ‘ / frngdz
X

llgllLa(x)=1"7"°

Theorem 1.45. If f,, — f in LP(X), then f, is bounded in LP(X).
Theorem 1.46. Suppose that @ C R™ is a bounded. Suppose that

sup || fullzro) < M <oo and f, — [ ae

If1 < p<oo, then f, — f in LP(Q).

Proof. Egoroff’s theorem states that for all € > 0, there exists £ C € such that
w(E) < e and f, — f uniformly on E°. By definition, f, — f in LP(Q) for
p e (1,00)if [,(fn—f)gdr — 0 forall g € LI(Q), g = 527- We have the inequality

[ = nade < [ 1= llgldo+ [ 11, = Fllgldo.

Choose n € N sufficiently large, so that |f,(z) — f(z)| < ¢ for all z € E°. By
Holder’s inequality,

/E‘ [fn = flglde < \[fn = fllze e lgllLe e < op(E)gllLa@) < CO

for a constant C' < oc.

By the Dominated Convergence Theorem, || f, — f|Lr(o) < 2M so by Holder’s
inequality, the integral over E is bounded by 2M||g||z«(z). Next, we use the fact
that the integral is continuous with respect to the measure of the set over which
the integral is taken. In particular, if 0 < & is integrable, then for all § > 0, there
exists € > 0 such that if the set E. has measure u(E.) < €, then fE hdx < 6. To see
this, either approximate h by simple functions, or use the Dominated Convergence
theorem for the integral [, 1g, (z)h(z)dz. O
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Remark 1.47. The proof of Theorem 1.46 does not work in the case that p = 1,
as Hélder’s inequality gives

léUh—ﬂmwwSWﬁ—fMWMMMﬂm,

so we lose the smallness of the right-hand side.

Remark 1.48. Suppose that E C X is bounded and measurable, and let g = 1.

If f, = f in LP(X), then
/Efn(x)da? — /Ef(:v)dx;

hence, if f, — f, then the average of f, converges to the average of f pointwise.

1.12. Integral operators. If u : R™ — R satisfies certain integrability conditions,
then we can define the operator K acting on the function u as follows:

Kulz) = [ ke, puly)dy.

where k(z,y) is called the integral kernel. The mollification procedure, introduced
in Definition 1.27, is one example of the use of integral operators; the Fourier
transform is another.

Definition 1.49. Let L(LP(R™), LP(R™)) denote the space of bounded linear oper-
ators from LP(R™) to itself. Using the Representation Theorem 1.31, the natural
norm on L(LP(R™), LP(R™)) is given by

Kf(z)g(z)dx| .

||KH£(LP(RH),LP(Rn)) = Ssup sup

IfllLp=1llgllLa=1|JR"

Theorem 1.50. Let 1 < p < oo, Ku(z) = [, k(z,y)u(y)dy, and suppose that

/ |k(z,y)|de < Cy Yy € R" and |k(z,y)|dy < Cy Vo € R™,
-

where 0 < Cy,Cy < co. Then K : LP(R™) — LP(R"™) is bounded and

p—1

1
1K £ (zr (gm), Lo@ny) < CF Co "
In order to prove Theorem 1.50, we will need another well-known inequality.
Lemma 1.51 (Cauchy-Young Inequality). If% + % =1, then for all a,b >0,
al b

ab < — 4+ —.
p q

Proof. Suppose that a,b > 0, otherwise the inequality trivially holds.
ab = exp(log(ab)) = exp(loga + logb) (since a,b > 0)

1 1
= exp ( loga? + —log bq>
p q

1 1
< —exp(loga?) + — exp(logb?) (using the convexity of exp)
p q
al b
R _|_ J—
p q
where we have used the condition % + % =1. O
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Lemma 1.52 (Cauchy-Young Inequality with ¢). If 1%+% =1, then for all a,b > 0,
ab < daP + Csb? , 0>0,

with Cs = (6p)~9/Pq~'.

Proof. This is a trivial consequence of Lemma 1.51 by setting

b
=a- 1/p
ab=a- (6p) )i
O
Proof of Theorem 1.50. According to Lemma 1.51, | f(y)g(z)] < ‘f(i)‘p + |g(;;-)\q o
that
| [ kaa fgta)dyds
k(z,y k(x,y
< [ [ R asgpay+ [ EE g
Gy Cy
< — f pT’ +— g qq-
o 1l + = lallz
To improve this bound, notice that
[ ks
k k
< [ [ B agpag+ [ [ gty
n n P R™ n q
CqtP Cot™4
<= Il + g1z =: F(2).
Find the value of ¢ for which F'(¢) has a minimum to establish the desired bounded.
O

Theorem 1.53 (Simple version of Young’s inequality). Suppose that k € L*(R™)
and f € LP(R™). Then

1B fllze < \[E[ll fllze -
Proof. Define

Kp(f) = k# f o= / K(z — ) f(y)dy

n

Let C1 = Co = ||k||p1rn). Then according to Theorem 1.50, Kj : LP(R") —
LP(R™) and || Kkl £(Lr @), Le@n)) < Ch. O

Theorem 1.50 can easily be generalized to the setting of integral operators K :
LY(R™) — L"(R™) built with kernels k € LP(R™) such that 1 4+ 1 = % + %. Such a
generalization leads to

Theorem 1.54 (Young’s inequality). Suppose that k € LP(R™) and f € LI(R™).

Then

1 1 1
1kx fllr < \[Bllzellfllze for 14 == —+~.
ropoq
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1.13. Appendix 1: The Fubini and Tonelli Theorems. Let (X, A, u) and
(Y, B,v) denote two fixed measure spaces. The product o-algebra A x B of subsets
of X xY is defined by

AxB={AxB : A€ A B e B}.
The set function p x v : A x B — [0, 00| defined by
(4 x v)(A x B) = p(4) - v(B)
for each A x B € A x B is a measure.

Theorem 1.55 (Fubini). Let f: X XY — R be a p X v-integrable function. Then
both iterated integrals exist and

/Xxyfduxy //fdudyf//fdydu

The existence of the iterated integrals is by no means enough to ensure that the
function is integrable over the product space. As an example, let X =Y = [0, 1]
and g = v = A with A the Lebesgue measure. Set

2 2

f(fv,y){ ﬁ)’ E%y)i((),())

Then compute that

1 1
[ sty = [ i =7.

Fubini’s theorem shows, of course, that f is not integrable over [0, 1]?

There is a converse to Fubini’s theorem, however, according to which the exis-
tence of one of the iterated integrals is sufficient for the integrability of the function
over the product space. The theorem is known as Tonelli’s theorem, and this result
is often used.

Theorem 1.56 (Tonelli). Let (X, A, ) and (Y, B,v) denote two o-finite measure
spaces, and let f : X xY — R be a p X v-measurable function. If one of the
iterated integrals [y [y |fldvdp or [y, [ |f|dudy exists, then the function f is pxv-
integrable and hence, the other iterated integral exists and

/Xxyfd(uxu)Z/Y/deudI/Z/X/yfdydu.

2. SOBOLEV SPACES
2.1. Weak derivatives.
Definition 2.1 (Test functions). For Q C R", set
C5e(Q) ={ueC™(Q) | spt(u) CV CC Q},

the smooth functions with compact support. Traditionally D(Q) is often used to
denote C§° (), and D(QY) is often referred to as the space of test functions.

For u € C1(R), we can define ‘;—g by the integration-by-parts formula; namely,

du d¢
(@@ =~ [ w@) @)t vo € CFR).

Notice, however, that the right-hand side is well-defined, whenever u € L (R)
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Definition 2.2. An element o € Z" s called a multi-index. For such an o =

), [ 8(11 ... 8(1" fr— oo .
(a1, .o, ), we write D* = Doa B ond ol = a1+ -ap.

Example 2.3. Let n =2. If |a| =0, then a = (0,0); if |a| =1, then a = (1,0) or
a=(0,1). If |a| =2, then a = (1,1).

Definition 2.4 (Weak derivative). Suppose that u € LL (). Then v® € LL (Q)

loc loc
is called the o weak derivative of u, written v® = D%u, if

/ u(z) Db(z)dz = (—1)l! / v* (2)(z)dz ¥ € C5(Q).
Q

Q
Example 2.5. Let n =1 and set Q = (0,2). Define the function

() = z, 0<x<1
Y=L, 1<a <2

Then the function

w{ L 0se<l
YWIEY 0, 1<e<2

is the weak derivative of u. To see this, note that for ¢ € C5°(0,2),
2 d(b 1 d¢) 2 d¢
/0 u(m)%(x)dx = /0 a:%(x)dx —|—/1 %(x)dm
1 1
—— [ ot@yds+ aoly+ ofi = - [ o@is
0 0

2
= —/ v(z)p(x)dx .
0
Example 2.6. Let n =1 and set Q = (0,2). Define the function

()_ z, 0<x<1
Y=Y 2, 1<a<2?

Then the weak derivative does not exist!
To prove this, assume for the sake of contradiction that there exists v € Li ()
such that for all ¢ € C§°(0,2),

2 - 2 dg S
/0 v(z)p(x)dx = /0 u(x)dw( Ydx .
Then
/0 v(z)p(x)dx = —/ md—(x)dx -2 @(x)dx

0 x 1
- / o(x)dz — 6(1) + 26(1)
:/o o(z)dx + ¢(1).

Suppose that ¢; is a sequence in C3°(0,2) such that ¢;(1) =1 and ¢;(z) — 0 for
x #1. Then

1= (1) = /01 6, (2)d = /02 o(2)éy () da — /01 6;(x)dx — 0,

which provides the contradiction.
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Definition 2.7. Forp € [1, ], define WHP(Q) = {u € LP(Q) | weak derivative exists , Du €
LP(Q)}, where Du is the weak derivative of u.

Example 2.8. Let n =1 and set Q@ = (0,1). Define the function f(x) = sin(1/x).
Then u € L*(0,1) and % = —cos(1/z)/z* € L} (0,1), but u ¢ W'P(Q) for any
p. In the case p =2, we set H(Q) = W1P(Q).
Example 2.9. Let Q = B(0,1) C R? and set u(z) = |z|~%. We want to determine
the values of a for which u € H(Q).

Since |x|”® = Z;Zl(xjxj)_aﬂ, then Oy, |z|~* = —alz|~* 22, is well-defined
away from x = 0.
Step 1. We show thatu € Li, (). To see this, note that [, |z|~*dx = 027r fol r=%rdrdf <
oo whenever o < 2.
Step 2. Set v(x) = —alz|~* 2z;. We show that

/ u(z)Do(z)dr = f/ v(x)p(x)dx V¢ € C5°(B(0,1)).
B(0,1)

B(0,1)

To see this, let Qs = B(0,1)— B(0,9), let n denote the inward-pointing unit normal
to 0€)s. Integration by parts yields

2
[ lel e Dola)de =
Qs

Since limg o 617 fo% o(z)n(x)dd =0 if a < 1, we see that

0" P(x)n(x)ddd + a/ 2|~ %2 ¢(x)dx .

Qs

lim |x| " *D¢(x)dx = lim a/ ||~ 2z ¢(x)dx
6—0 Qs 6—0 Q5

Since fo% fol r~@ lrdrdf < oo if o < 1, the Dominated Convergence Theorem
shows that v is the weak derivative of u.

Step 3. v € L*(), whenever fozﬂ fol r=292rdrdf < oo which holds if a < 0.

Remark 2.10. Note that if the weak derivative exists, it is unique. To see this,
suppose that both vy and ve are the weak derivative of u on . Then fQ(vl —
va)pdr = 0 for all ¢ € C§° (), so that v1 = va a.e.

2.2. Definition of Sobolev Spaces.
Definition 2.11. For integers k >0 and 1 < p < oo,

WHhP(Q) = {u € LL.(Q) |D% exists and is in LP() for |a| < k}.
Definition 2.12. For u € W*?(Q) define

lullwes@ = [ 3 1D,y | for1<p <o
o <k
and
[ullwr.o @) = Z [D%ul[ Lo () -
|| <k
The function || - |lyr.»(q) is clearly a norm since it is a finite sum of L norms.

Definition 2.13. A sequence u; — w in W*P(Q) if lim;_ o [Juj — ullyr.no) = 0.
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Theorem 2.14. W*P(Q) is a Banach space.

Proof. Let u; denote a Cauchy sequence in W*P(Q). Tt follows that for all |a| < k,
Du; is a Cauchy sequence in LP(). Since LP() is a Banach space (see Theorem
1.19), for each « there exists u® € LP(2) such that

D%u; — u® in LP(Q).
When a = (0,...,0) we set u := u(®0) so that u; — u in LP(Q). We must show
that u® = D%u.
For each ¢ € C§°(Q),

/uDaq’)dx = lim [ u;D%¢dx
Q

I JO

= (=D lim [ Dujpdz

J—=x JO

— (1" [ woda
Q
thus, u* = D%y and hence D%u; — D%u in LP(Q) for each |a| < k, which shows
that u; — u in WHP(Q). O
Definition 2.15. For integers k > 0 and p = 2, we define

HF(Q) =Wk2(Q).
H¥(Q) is a Hilbert space with inner-product (u, V) r(Q) = Z‘algk(Do‘u, D) r2(q)-
2.3. A simple version of the Sobolev embedding theorem. For two Banach
spaces B and Ba, we say that By is embedded in By if ||Ju|lp, < C||lu|lg, for some
constant C' and for u € B;. We wish to determine which Sobolev spaces W*?(Q)

can be embedded in the space of continuous functions. To motivate the type of
analysis that is to be employed, we study a special case.

Theorem 2.16 (Sobolev embedding in 2-D). For kp > 2,
max [u(x)| < Cllullwrrmey Yu € C5°(52). (2.1)
zER?

Proof. Given u € C§°(2), we prove that for all = € spt(u),
lu(z)| < Cl[D%u(z)|[L2(0) V]a| < k.
By choosing a coordinate system centered about =, we can assume that = = 0; thus,
it suffices to prove that
[u(0)] < Cl[D%u(z)||L2(0) VIa| < k.
Let 0 < g € C*([0,00)) such that g(z) = 1 for € [0,4] and g(z) = 0 for
z € [2,00).
By the fundamental theorem of calculus,

w(0) = — [ Orfg(r)u(r,0))dr = — / Oy (r) Or[g(r)u(r, 0)]dr
0 0

= / r02[g(r)u(r,0))dr

0
(=D*
(k—1)!

)k gt !
_ D A7WJw@@mmmur: A7WQ&MWMM®VW

(k—1)!
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Integrating both sides from 0 to 27, we see that

u(0) = i /27r /1 k=2 0k [g(r)u(r, 0)]rdrdd .
2r(k— 1) Sy Jo
The change of variables from Cartesian to polar coordinates is given by
x(r,0) =rcosf, y(r,0) =rsind.
By the chain-rule,
Oru(z(r,8),y(r,0)) = Oyucosf + Oyusinb ,
O2u(x(r,0),y(r,0)) = 0%ucos® 6 + 28£yu cosfsin 6 + (“)zu sin? @

It follows that 9% = 2 |a|<k @a(0)D® so that

_ (=D* k=2 a “Mg(r)u(x)|dx
w0 = 55 Lo 3 o)D)t

<P lLesoay Y ID*(9w)llLes0.1)

le| <k
—1
b p—z) o
<C / rr=1 rdr llwllwe.e w2y -
0
Hence, we require % +1>—-1orkp>2. g

2.4. Approximation of W*?(Q) by smooth functions. Recall that Q. = {z €
Q| dist(x,09Q) > €}.
Theorem 2.17. For integers k>0 and 1 < p < oo, let
u® =ne xu in Qe
where 1 is the standard mollifier defined in Definition 1.25. Then
(A) uc € C>®(8) for each e >0, and
(B) uf — u in W"P(Q) as e — 0.

loc

Definition 2.18. A sequence u; — u in Wllgf(Q) if uj — u in WEP(Q) for each
Qcca.

Proof of Theorem 2.17. Theorem 1.28 proves part (A). Next, let v* denote the the
ath weak partial derivative of u. To prove part (B), we show that D*u® = 7, * v®
in Q.. For z € Q,,

D*uf(x) = D /Q Ne(x — y)u(y)dy
= / Dgne(z — y)uly)dy
Q
— (1)l @ Tr—Y)u
(1) /QDy ne(@ — y)uly)dy
- /Qm(x — v (y)dy = (e xv)(z).

By part (D) of Theorem 1.28, D*uf — v® in L

loc

Q). O



20 STEVE SHKOLLER

It is possible to refine the above interior approximation result all the way to the
boundary of €2. We record the following theorem without proof.

Theorem 2.19. Suppose that @ C R™ is a smooth, open, bounded subset, and that
u € W’“’p@) for some 1 < p < 0o and integers k > 0. Then there exists a sequence
uj € C>(Q) such that

uj —u in WEP(Q).
It follows that the inequality (2.1) holds for all u € WP (R?).
2.5. Holder Spaces. Recall that for 2 C R™ open and smooth, the class of Lips-
chitz functions v : 2 — R satisfies the estimate
(@) —u(y)| < Cle —y| Va,y cQ
for some constant C.

Definition 2.20 (Classical derivative). A function u : Q — R is differentiable at
x € Q if there exists f : Q — L(R™;R™) such that

(@) —uly) = f(=)-(z—y)|
[z =y
We call f(x) the gradient of u(x), and denote it by Du(zx).

Definition 2.21. Ifu: Q — R is bounded and continuous, then
Jull o = max [u(2)]
If in addition v has a continuous and bounded derivative, then
[uller @y = lullco@ + [1Dull o) -
The Hoélder spaces interpolate between C°(2) and C1(9).

Definition 2.22. For 0 < < 1, the space C*7(Q) consists of those functions for
which

||U‘|co,w(§) = HUHCO@) + [u]covv(ﬁ) <00,

where the ~vyth Holder semi-norm [u]CM@) is defined as

tlonn @y = ma (=01

AN L]

The space C%7(QQ) is a Banach space.

2.6. Morrey’s inequality. We can now offer a refinement and extension of the
simple version of the Sobolev Embedding Theorem 2.16.

Theorem 2.23 (Morrey’s inequality). For n < p < oo, let B(xz,r) C R™ and let
y € B(x,r). Then

Ju(@) = u(y)| < Or' ™% | Dul 1o (e 20 Yu € CH(R™) .
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Notation 2.24 (Averaging). Let B(0,1) C R™. The volume of B(0,1) is given by
n?

T and the surface area is |[S*71| = na,,. We define

Ay =

1
dy = d
]ZB Ty = /B Ty

1
Fly)dS = 7/ F(y)dsS.
][[;B(z,r) ( ) nay,r" ! 0B(z,r) ( )

Lemma 2.25. For B(z,r) CR", y € B(z,r) and u € C*(B(x,r)),

|Du(y)|

B(z,r) |(E - y‘nil

£ ) -ty < ©
B(z,r)

Proof. For some 0 < s < r, let y = 2 + sw where w € S""! = 9B(0,1). By the
fundamental theorem of calculus, for 0 < s < r,

u(z + sw) —u(x) = /OS %u(x + tw)dt

:/ Du(z + tw) wdt .
0
Since |w| = 1, it follows that
(s + sw) — ulx)] < / \Du(z + tw)|dt
0

Thus, integrating over S*~! yields

/ |u(z + sw) — u(z)|dw < / / | Du(z + tw)|dwdt
Sn—1 S§n—1
/ / |Du(z + tw)
0 Jsn-1

D
[ o,
B(z,r) |J3—y|

where we have set y = x + tw for the last equality.
Multipling the above inequality by s”~' and integrating s from 0 to r shows that

T n D
/ / [u(x + sw) — u(x)|dws™ ds < 7A—/ ‘ui(y)_‘ldy
0 Jsn—t " JB(z,r) "/I; - y|n
D
e -
B

(z,r) |.13 - y|n—1

which proves the lemma. (I
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Proof of Theorem 2.23. Assume first that v € C*(B(z,2r)). Let D = B(z,r) N
B(y,r) and set r = | — y|. Then

) = ()| = £, Ju(o) = uly)la:
][|u —u(z |dz+][ [u(y) — u(z)|d=

< u(e) — u(z)|dz+ C u(y) — u(z)|dz
B(r ) B(y,r)

< C][ |u(z) — u(2)|dz .
B(x,2r)
Thus, by Lemma 2.25,
u(z) —u(y)| < C |z — 2" " | Du(z)|d=
B(z,2r)

and by Holder’s inequality,

p=1 1

lu(z) — u(y)] < C / 5 1 sl / |\ Du(2)|Pd=
B(0,2r) B(z,2r)

Morrey’s inequality implies the following embedding theorem.

O

Theorem 2.26 (Sobolev embedding theorem for k = 1). There exists a constant
C = C(p,n) such that

Hu”co,le(R”) S CH’U,le P(R™) Yu € Wl’p(Rn) .

Proof. First assume that u € C1(R"). Given Morrey’s inequality, it suffices to show
that max [u| < Cllul|w1.»rny. Using Lemma 2.25, for all z € R”,

u(z)] < ][B )~y + ]i L

[Du(y)|

S c y|n71

) 7 dy + Cllul| Lo rn)

< Ollullwre ey

the last inequality following whenever p > n.
Thus,

lull goi- oy < Cllullwrre) Vo€ CHRT). (2.2)

By the density of C§°(R™) in WP (R™), there is a sequence u; € C§°(R™) such
that
uj —u € WHP(R™).
By (2.2), for j,k € N,
lu; — uk||00’1*%(R") < Cllu; — ukHWl,p (Rn) -
Since €%~ % (R™) is a Banach space, there exists a U € C%*~% (R") such that
uj — U in C™'7%(R").
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It follows that U = u a.e. in ). By the continuity of norms with respect to strong
convergence, we see that
10Nl gor-3 gny < Cliullwrrgn

which completes the proof. [

Remark 2.27. By approzimation, Morrey’s inequality holds for allu € WP (B(z,2r))
forn < p < oco. You are asked to prove this.

As a consequence of Morrey’s inequality, we extract information about the clas-
sical differentiability properties of weak derivatives.

Theorem 2.28 (Differentiability a.e.). If Q CR", n < p < co and u € Wli’f(Q),
then wu is differentiable a.e. in 2, and its gradient equals its weak gradient almost
everywhere.

Proof. We first restrict n < p < oco. By Lebesgue’s differentiation theorem, for
almost every = € (Q,

lim |Du(z) — Du(z)[Pdz = 0. (2.3)
r—0 B(z,r)

Fix x € 2 for which (2.3) holds, and define the function
wa(y) = u(y) —u(z) — Du(z) - (y — ).
Notice that w,(x) = 0 and that
Dyw(y) = Du(y) — Du(z) .
Set r = |z — y|. An application of Morrey’s inequality then yields the estimate
lu(y) —u(z) — Du(z) - (y — 2)| = |wa(y) — wa ()]
|D.wz(2)]
B(x,2r) |Z‘ - Z|n_1
|Du(z) — Du(z)|

B(z2r) |T—2["t

<Ccr'Th (/B( : |Du(z) — Du(x)|pdz>

<Cr <]{B(W) |Du(z) — Du(x)|sz>

=o(r)asr —0.

<C dz

=C dz

1
P

The case that p = oo follows from the inclusion W,5>°(Q) € W,bP(Q) for all

loc
1<p<oo. O
2.7. The Gagliardo-Nirenberg-Sobolev inequality. In the previous section,
we considered the embedding for the case that p > n.

Theorem 2.29 (Gagliardo-Nirenberg inequality). For 1 < p < n, set p* = %,
Then
[ull Lo~ gy < Cpnll Dull ey Yu € WHP(R™).
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Proof for the case n = 2. Suppose first that p = 1 in which case p* = 2, and we
must prove that
||u||L2(R2) < C||Du||L1(R2) Yu € C&(Rz) . (24)

Since u has compact support, by the fundamental theorem of calculus,

xq T2
uw(x, x2) =/ Oru(yr, z2)dys =/ Oau(x1,y2)dy2
— 00 — 00

so that
[u(w1,22)| < /O:O |Ovu(yr, v2)|dyr < /Z | Du(y, x2)|dy:
and
|u(z1, z2)| < /Z |02u(x1, y2)|dy2 < /Z | Du(z1,y2)|dys -
Hence, it follows that
o) < [ 1Dutpnelan [ |DuCen, o)l

Integrating over R?, we find that

/ / .1‘1,.132 | dl‘ldl‘g
/ / (/ | Du( y1,xz)\dy1/ IDu(xl,yz)dy2> drydxy
2
< (/ / |Du(x1,:cg)|dx1dx2)

which is (2.4).
Next, if 1 < p < 2, substitute |u|” for v in (2.4) to find that

1
3
( |u27dx) §C’7/ |u|"" Y| Du|dx
R? R?

p—1
p(y— P
< OrllDulurge) [ 155 )
R
p(y—1),
p—1

_
; hence, v = 7 and

Choose v so that 2y =

2-p

_2p 3
( ) u|2—pdx> < Cv|[Dul[ e (rz2) ,
R

so that

Jul, 22, . < CpnllDulzogee (2:5)

for all u € C§(R?).
Since C§°(R?) is dense in WP(R?), there exists a sequence u; € C§°(R?) such
that
uj —u in WHP(R?).
Hence, by (2.5), for all j, k € N,

[ = k” 7% &) < CpnllDuj — Dugl| o zn)



NOTES ON L? AND SOBOLEV SPACES 25

so there exists U € L"‘%(R”) such that

wj — U in L7 (R").
Hence U = u a.e. in R2 and by continuity of the norms, (2.5) holds for all
u € WHP(R?). O

It is common to employ the Gagliardo-Nirenberg inequality for the case that
p = 2; as stated, the inequality is not well-defined in dimension two, but in fact,
we have the following theorem.

Theorem 2.30. Suppose that u € H'(R?). Then for all 1 < q < oo,
[ullaey < CVallulla g2y -

Proof. Let x and y be points in R?, and write 7 = |2 — y|. Let # € S'. Introduce
spherical coordinates (r, ) with origin at x, and let g be the same cut-off function
that was used in the proof of Theorem 2.16. Define U := g(r)u(r,8). Then

Lou ! _0U
u(z) = — ; E(r,&)dr—/o |z — y] 5(7‘, 0)rdr

and
1
|u(ac)|§/ & — y| 1| DU(r, 0)|rdr .
0

Integrating over S', we obtain:

1 _
(@) < 5= [ Aneale —ylDUGIdy = K+ DU,
™ JRr2
where the integral kernel K (z) = 5=1p(0,1)|z| "
Using Young’s inequality from Theorem 1.54, we obtain the estimate

1 1 1
K * fllpae)y < K| pr @2yl fllz2m2) for i .2 +1. (2.6)

Using the inequality (2.6) with f = |DU|, we see that

1

k

[ull Larz) < C|DU||p2(r2) [/ yl_kdy]
B(0,1)

)

1
1 &
< CHDUHL2(R2) [/ Tl_kd’r]
0

1
qg+2|*
— Cllull s s [4} |

Whenq—>oo,%—>%,so

1
llullLarz)y < Cq? |lull g1 g2y -

(]

Evidently, it is not possible to obtain the estimate ||u||ze®n) < Cllullw1.n@n)
with a constant C' < co. The following provides an example of a function in this
borderline situation.
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Example 2.31. Let Q C R? denote the open unit ball in R%2. The unbounded
function u = loglog (1 + ) belongs to H'(B(0,1)).

First, note that

/Q \u(x)|2dm = /O27T /01 {log log (1 + %)rrdrde,

The only potential singularity of the integrand occurs at v = 0, but according to
L’Hospital’s rule,

Tl

Tlii%r[loglog (1 n %)} ‘o, (2.7)

so the integrand is continuous and hence u € L*(12).
In order to compute the partial derivatives of u, note that

0 x; d f(x)d—i
lelzi, d—|f(z)|: dz
;) || z £ (=)
where f: R — R is differentiable. It follows that for x away from the origin,
—x
~log(L+ &) (] + D]af?

Ta]

Let ¢ € C3°(QY) and fix e > 0. Then

d¢ L ou 4
/Q @ g @ = /Q Y IO /8 o BN

where N = (Ni,...,N,,) denotes the inward-pointing unit normal on the curve
0B(0,¢€), so that N dS = e(cos 0,sin0)df. It follows that

/ u(x)Dp(x)dx = 7/ Du(z)p(z)dx
Q—B.(0) Q—B(0)

27
- / €(cos B, sin ) log log (1 + })¢(679)d9. (2.8)
0 €

We claim that Du € L*(Q) (and hence also in L*(2)), for

2m
/ |Du(x)|?dz = / / 5 drdf
@ r(r

+1)? log(1—|— )}

IN

12 4 1 1
71'/ ﬁdr‘i’ﬂ'/ 2d7’
o r(logr) 2 p(p 4 1)2 [log (1 n %)}

where we use the inequality log(1 + %) > log% = —logr >0 for 0 <r <1. The
second integral on the right-hand side is clearly bounded, while

1/2 1 —log2 1 —log2 1
— t
0 T( Og 7’) —00 — 00 X

so that Du € L?(Q). Letting ¢ — 0 in (2.8) and using (2.7) for the boundary
integral, by the Dominated Convergence Theorem, we conclude that

/Qu() /Du v)dz Vo € C2(Q).



NOTES ON L? AND SOBOLEV SPACES 27

2.8. Local coordinates near 90€). Let Q C R™ denote an open, bounded subset
with C' boundary, and let {Ul}fil denote an open covering of 0f2, such that for
each [ € {1,2,..., K}, with

V, = B(0,7;), denoting the open ball of radius r; centered at the origin and,

V=V, n{z, >0},

VvV, =Vin{z, <0},
there exist C'-class charts 6 which satisfy

0, :V, — U, is a C! diffeomorphism , (2.9)
oV ) =UnQ,
o (Vin{z,=0})=U;NN.

2.9. Sobolev extensions and traces. Let 2 C R"™ denote an open, bounded
domain with C*! boundary.

Theorem 2.32. Suppose that Q C R" is a bounded and open domain such that
Q ccC Q. Then for 1 < p < oo, there exists a bounded linear operator
E:WhP(Q) - WhP(R™)

such that for all u € WHP(Q),

(1) Bu=wu a.e. in Y

(2) spt(u) C Q; }

(3) [Eullwrr@ny < Cllullwie) for a constant C = C(p,Q,Q).
Theorem 2.33. For 1 < p < oo, there exists a bounded linear operator

T :WhP(Q) — LP(Q)

such that for all u € WHP(Q)

(1) Tu = ulaq for allu € WHP(Q) U C°(Q);

(2) [|Tullra0) < Cllullwrr) for a constant C' = C(p,Q2).
Proof. Suppose that u € C1(Q2), z € 09, and that 9Q is locally flat near z. In
particular, for r > 0 sufficiently small, B(z,r) U9Q C {z, = 0}. Let 0 < £ €
C§°(B(z,7) such that ¢ = 1 on B(z,7/2). Set T' = QU B(z,7/2), B*(z,1) =
B(z,r)UQ, and let dxy, = dxy - - - dep—1. Then

/|u|pdxh§/ ElulPday,
r {z,=0}

—— [ g(eluP)is

+(zyr) OTn

< —/ ﬁ|u|pdx —p/ f\u|p*2uﬁdx

Bt (z,r) OTn B+ (2,25) Oxyp

ou

<C ulPdz + C||ulP7|| e ‘

Bt(z,r) i Il ”LZFI (B (zm) || Oz, L»(B*(z,r))
<C (|u|P + |Dul?)dz . (2.10)

Bt (z,r)

On the other hand, if the boundary is not locally flat near z € 9f2, then we use
a O diffeomorphism to locally straighten the boundary. More specifically, suppose
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that z € 9Q U U; for some | € {1,..., K} and consider the C' chart 6, defined in
(2.9). Define the function U = uof;; then U : V;© — R. Setting I' = V,U{z,, = 0|,
we see from the inequality (2.10), that

/ |U|Pdxy, §Cl/ (JU|P + |DU|P)dzx .
r 7

Using the fact that D6, is bounded and continuous on Vl+, the change of variables

formula shows that
/ lufPds < cl/ (Jul? + |Dul?)dz .
U,udQ Ut

Summing over all [ € {1,..., K'} shows that
/ |u|PdS < C/ (lu|” + |Dul?)dx . (2.11)
a0 Q

The inequality (2.11) holds for all u € C*(Q). According to Theorem 2.19, for
u € WHP(Q) there exists a sequence u; € C*(Q) such that u; — u in WHP(Q).
By inequality (2.11),

[Tur = Tujllr o) < Cllur — ujllwreg)
so that T'u; is Cauchy in LP(9), and hence a limit exists in L”(0€2) We define the
trace operator 1" as this limit:

jli_{% [Tu — Tugl|Lra0) = 0.

Since the sequence u; converges uniformly to w if u € C°(Q), we see that Tu =
ulaq for all w € WHP(Q) U CO(Q). O

Sketch of the proof of Theorem 2.32. Just as in the proof of the trace theorem, first
suppose that u € C'(@) and that near z € 99, dQ is locally flat, so that for
some r > 0, 9Q U B(z,7) C {z, = 0}. Letting Bt = B(z,r) U {z, > 0} and
B~ = B(z,r) U{x, <0}, we define the extension of u by

(w) = u(z) if z € Bt
| Bulwy, e T, =) +Au(Ty, 21, — %) iz e BT

Define u™ = u|g+ and u™ = u|g-.
It is clear that vt = u~ on {x, = 0}, and by the chain-rule, it follows that
ou~ ou~ ou~ Ty
= ey — - 2— ey ——
Oz, (z) 3896” (@1, 0y =) Oxy (@1, 2 )
so that g%: = gg; on {z,, = 0}. This shows that @ € C'(B(z,7). using the charts

6, to locally straighten the boundary, and the density of the C°°(Q) in WP(Q),
the theorem is proved.
O

2.10. The subspace W,"*(1).
Definition 2.34. We let W,"* () denote the closure of C3°(Q) in WhP(Q).

Theorem 2.35. Suppose that Q C R™ is bounded with C' boundary, and that
u € WhP(Q). Then

weWyP(Q) iff Tu=0 on Q.
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We can now state the Sobolev embedding theorems for bounded domains €.

Theorem 2.36 (Gagliardo-Nirenberg inequality for W1P(Q)). Suppose that  C
R"™ is open and bounded with C' boundary, 1 < p <n, and u € W'P(Q). Then

||u||Ln@p @ < Cllullwrrqy for a constant C = C(p,n, Q).

Proof. Choose © C R™ bounded such that Q cc €, and let Fu denote the Sobolev
extension of u to R™ such that Eu = u a.e., spt(Eu) C Q, and ||[Euwir@n) <

Cllullw.p (.-
Then by the Gagliardo-Nirenberg inequality,
||U||Ln”—_f’p(m < [|Bull |z ' S ClID(Eu)| e ®n) < CllEullwirwn) < Cllullwiz(q) -

]

Theorem 2.37 (Gagliardo-Nirenberg inequality for W, *(2)). Suppose that Q C
R™ is open and bounded with C* boundary, 1 < p < n, and u € Wol’p(Q). Then for
all1<q< &,

ull Lago) < Cl|Dul|pr(q) for a constant C = C(p,n, Q). (2.12)

Proof. By definition there exists a sequence u; € C§°(f2) such that u; — u in
WP(Q). Extend each uj by 0 on Q°. Applying Theorem 2.29 to this extension,
and using the continuity of the norms, we obtain HuHanfp @ < C||Du|pr(q)- Since

Q) is bounded, the assertion follows by Holder’s inequality. (Il

Theorem 2.38. Suppose that Q2 C R? is open and bounded with C' boundary, and
u € HE(Q). Then for all1 < q < oo,

llulla() < CVaqllDullp2(q) for a constant C = C(€2). (2.13)

Proof. The proof follows that of Theorem 2.30. Instead of introducing the cut-off
function g, we employ a partition of unity subordinate to the finite covering of the
bounded domain £, in which case it suffices that assume that spt(u) C spt(U) with
U also defined in the proof Theorem 2.30. O

Remark 2.39. Inequalities (2.12) and (2.13) are commonly referred to as Poincaré
inequalities. They are invaluable in the study of the Dirichlet problem for Poisson’s
equation, since the right-hand side provides an H'(Q)-equivalent norm for all u €
HY(Q). In particular, there exists constants Cy,Cy such that

Cil|Dullp2) < llulla @) < Col|Dullp(q) -
2.11. Weak solutions to Dirichlet’s problem. Suppose that 2 C R™ is an

open, bounded domain with C' boundary. A classical problem in the linear theory
of partial differential equations consists of finding solutions to the Dirichlet problem:

—Au=f in Q, (2.14a)
u=0 on 09, (2.14b)
where A = >, 68;2 denotes the Laplace operator or Laplacian. As written,

(2.14) is the so—calledlstmng form of the Dirichlet problem, as it requires that u to
possess certain weak second-order partial derivatives. A major turning-point in the

modern theory of linear partial differential equations was the realization that weak
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solutions of (2.14) could be defined, which only require weak first-order derivatives
of u to exist. (We will see more of this idea later when we discuss the theory of
distributions.)

Definition 2.40. The dual space of H}(Q) is denoted by H-1(2). For f €
H(Q),
Hf”H*l(Q) = sup <f71/)>7
”"Z’”Hé(g)zl
where (f,1) denotes the duality pairing between H~1(Q) and Hg ().

Definition 2.41. A function u € H}(Q) is a weak solution of (2.14) if
/ Du - Dvdx = (f,v) Vv €& H} Q).
Q

Remark 2.42. Note that f can be taken in H~1(Q). According to the Sobolev
embedding theorem, this implies that when n = 1, the forcing function f can be
taken to be the Dirac Delta distribution.

Remark 2.43. The motivation for Definition 2.41 is as follows. Since C§°(2) is
dense in H}(Q), multiply equation (2.14a) by ¢ € C§°(RY), integrate over Q, and
employ the integration-by-parts formula to obtain fQ Du - Dopdxr = fQ fodx; the
boundary terms vanish because ¢ is compactly supported.

Theorem 2.44 (Existence and uniqueness of weak solutions). For any f € H=1(1),
there exists a unique weak solution to (2.14).

Proof. Using the Poincaré inequality, ||Dul|z2(q) is an H I_equivalent norm for all
u € H(Q), and (Du, Dv)12(q) defines the inner-product on H}(2). As such,
according to the definition of weak solutions to (2.14), we are seeking u € HE(9)
such that

(1w, 0) gy = (fo0) Vo € HA(S). (2.15)
The existence of a unique u € H} () satisfying (2.15) is provided by the Riesz
representation theorem for Hilbert spaces. [l

Remark 2.45. Note that the Riesz representation theorem shows that there exists
a distribution, denote —Au € H~*(2) such that

<7Aua ’U> = <f,U> Vv € H&(Q) :
The operator —A : HY(Q) — HY(Q) is thus an isomorphism.

A fundamental question in the theory of linear partial differential equations
is commonly referred to as elliptic reqularity, and can be explained as follows: in
order to develop an existence and uniqueness theorem for the Dirichlet problem, we
have significantly generalized the notion of solution to the class of weak solutions,
which permitted very weak forcing functions in H~1(). Now suppose that the
forcing function is smooth; is the weak solution smooth as well? Furthermore, does
the weak solution agree with the classical solution? The answer is yes, and we
will develop this regularity theory in Chapter 6, where it will be shown that for
integers k > 2, —A : H*(Q) N HZ(Q) — H*2(Q) is also an isomorphism. An
important consequence of this result is that (—A)~!: H*=2(Q) — H*(Q) N H(Q)
is a compact linear operator, and as such has a countable set of eigenvalues, a fact
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that is eminently useful in the construction of solutions for heat- and wave-type
equations.

For this reason, as well as the consideration of weak limits of nonlinear combi-
nations of sequences, we must develop a compactness theorem, which generalizes
the well-known Arzela-Ascoli theorem to Sobolev spaces.

2.12. Strong compactness. In Section 1.11, we defined the notion of weak con-
verence and weak compactness for LP-spaces. Recall that for 1 < p < o0, a se-
quence u; € LP(Q) converges weakly to u € LP(Q), denoted u; — u in LP(2), if
Jo ujvdz — [, uvdz for all v € LK), with ¢ = 5. We can extend this definition
to Sobolev spaces.

Definition 2.46. For 1 < p < oo, u; — u in WYP(Q) provided that u; — u in
L?(Q) and Du; — Du in LP(Q2).

Alaoglu’s Lemma (Theorem 1.37) then implies the following theorem.
Theorem 2.47 (Weak compactness in WP (Q)). For Q C R", suppose that
sup [|ujlwir) < M < oo for a constant M # M(j) .
Then there exists a subsequence uj, — u in WHP(Q).

It turns out that weak compactness often does not suffice for limit processes
involving nonlinearities, and that the Gagliardo-Nirenberg inequality can be used
to obtain the following strong compactness theorem.

Theorem 2.48 (Rellich’s theorem). Suppose that Q C R™ is an open, bounded do-
main with C* boundary, and that 1 < p < n. Then WP (Q) is compactly embedded
in LYQ) for all1 < g < nL_pp, e if

sup [|ujl|wir) < M < oo for a constant M # M(j),

then there exists a subsequence uj, — w in LI(QY). In the case thatn =2 and p = 2,
HY(Q) is compactly embedded in LI(Q) for 1 < q < co.

In order to prove Rellich’s theorem, we need two lemmas.

Lemma 2.49 (Arzela-Ascoli Theorem). Suppose that u; € C°(Q), [ujllco@y <
M < oo, and u; is equicontinuous. Then there exists a subsequence uj — u
uniformly on Q.

Lemma 2.50. Let 1 <r < s <t < oo, and suppose that u € L"(Q) N L*(Q). Then
for k=24 e

[l

L) < Tulle oy lull b

Proof. By Holder’s inequality,
(1—a)s

/|u|sdl‘:/ |u|as|u‘(17a)sdl,
Q Q
42 . -
< ( / |uasa:dx) ( / |u|“—a>3<w>sdx) = [lull g @y lul S
Q Q

O
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Proof of Rellich’s theorem. Let Q) C R™ denote an open, bounded domain such that
1 CC Q. By the Sobolev extension theorem, the sequence u; satisfies spt(u;) C €,
and
sup || Eugllw1.p@ny < CM .

Denote the sequence Eu; by ;. By the Gagliardo-Nirenberg inequality, if 1 < ¢ <
_np_
n—p’

sup HuHLq(Q) < sup HﬂHLq(Rn) < Csup Hﬂj“wl,p(Rn) <CM.

For € > 0, let n. denote the standard mollifiers and set u§ = ne * Eu;. By

choosing € > 0 sufficiently small, u§ € C§° (Q). Since

. 1y _

G o = 1(=)u;(z —y)dy = n(2)u;(x — ez)dz,

B(0,e

€ e B(0,1)

and if u; is smooth,

1 1
d
j(r —ez) —uj(x) = /0 &ﬂj(x — etz)dt = 76/0 Duj(x —etz) - zdt.

Hence,

jaj(x) — u;(z)| = 6/ 77(2)/0 |Du;(z — etz)|dzdt,

B(0,1)
so that

/QW;(x) — uj(z)|dx = 6/3(0,1) n(z) /O1 /Q |Diij(z — etz)| dudzdt

< EHDﬂjHLl(Q) < €||DﬁjHLp(Q) < eCM.

Using the LP-interpolation Lemma 2.50,

a5 =l Loy < a5 — 4517, g5 — ﬂjll;%p @
< eCM | D — Dﬂj||1L;ElQ)
< eCMM'™@ (2.16)

The inequality (2.16) shows that @S is arbitrarily close to %; in L?(2) uniformly in
j € N; as such, we attempt to use the smooth sequence ﬂ; to construct a convergent
subsequence 4§, . Our goal is to employ the Arzela-Ascoli Theorem, so we show that
for € > 0 fixed,

||ﬁ;-||cg(@) <M< oo and uj is equicontinous.
For z € R™,
sup 45l oy <swp [ e = w)lay(w)ldy
i J B(z,e)
< lImell o rmy sup [|%;]] 11y < Ce™™ < o0,
j
and similarly

sup || Du§ || oy < 11076l Loy sp (|5 116y < Ce™™ 7 < 0.
J J
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€
VR
exists a subsequence u;, which converges uniformly on (2, so that

The latter inequality proves equicontinuity of the sequence @S, and hence there

limsup |[af, — 45|/ qq) = 0.
J—o00

It follows from (2.16) and the triangle inequality that

limsup [[@, — ;]| pa(q) < Ce.
)00
Letting Ce = 1, 3, 1, etc., and using the diagonal argument to extract further
subsequences, we can arrange to find a subsequence again denoted by {;, } of {;}
such that

lim sup ”ajk — Uy, HLQ(Q) =0,
Jl—o0

and hence
liIIll sup ”ujk — Uj, HL‘?(Q) =0,
The case that n = p = 2 follows from Theorem 2.30. (|

3. THE FOURIER TRANSFORM

3.1. Fourier transform on L!(R") and the space S(R").

Definition 3.1. For all f € L*(R™) the Fourier transform F is defined by

Ff(E) = f(&)=(2m)"% s (@) Edz .
By Hélder’s inequality, F : Ll(R") — L®(RM).

Definition 3.2. The space of Schwartz functions of rapid decay is denoted by

SR") = {u € C*(R") | 2° D% € L*(R") Va,B € Z}.
It is not difficult to show that
F:SR") — S(R"),

and that

D¢ f = (=) (=) F(DZa ).
Definition 3.3. For all f € L*(R"), we define operator F* by

Frf(x)=(2m)~F [ fg)e™td.

Rﬂ,
Lemma 3.4. For all u,v € S(R™),
(fu, ’U)Lz(Rn) = (u, f*U)Lz(]Rn) .

Recall that the L2(R") inner-product for complex-valued functions is given by
(u,v) 2@ny = [ u(x)v(z)de.
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Proof. Since u,v € S(R™), by Fubini’s Theorem,

Fuv)o = @0 [ [ e dnigag

(2m)~ / / z)ei€u(€) de da

@0t [ ule) [ dede = (0. F ) e

Theorem 3.5. F*oF =1d = F o F* on S(R").
Proof. We first prove that for all f € S(R™), F*F f(x) = f(x).

Frrfa) = n [ oo ([ ey ac
= (2m)7" / ) / T f(y) dy de .

By the dominated convergence theorem,
FFf(x) = lim(2m)” / / —eleP gile=u)E £ (y) dy de .

For all € > 0, the convergence factor e~ €l¢ * allows us to interchange the order of
integration, so that by Fubini’s theorem,

FFf ) = tmem ™ [ 1) ( [ e d&) dy.

Define the integral kernel

pe(z) = (27r)‘"/ el +iv ge
Then
FE@) = limpo = [ o= iy

n

Let p(z) = p1(x) = (2m) 7" [on e~ ISP +iw€de Then
pla/ve) = (2m) " [ el menvigg

= (2m)™" / eTle et ae = cEp ().

We claim that

1 =2

pe(x) = (no)? e~ % and that /n p(z)de =1. (3.1)

Given (3.1), then for all f € S(R™), p. * f — f uniformly as e — 0, which shows
that F*F = Id, and similar argument shows that FF* = Id. (Note that this follows
from the proof of Theorem 1.28, since the standard mollifiers 7. can be replaced
by the sequence p. and all assertions of the theorem continue to hold, for if (3.1) is
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FIGURE 1. As € — 0, the sequence of functions p. becomes more
localized about the origin.

true, then even though p. does not have compact support, fB(O 5)e pe(x)dx — 0 as

e — 0 for all 6 > 0.)
Thus, it remains to prove (3.1). It suffices to consider the case € = %; then by
definition

p

1
2

() = (2m) " / ) R
:.7-"((27r)_"/ e_£2|2> :

=2
In order to prove that py (z) = (27r)*"/2e’%, we must show that with the Gauss-

2|2
ian function G(z) = (27r)_”/2e_%,
G(z) = F(G(S)) -
By the multiplicative property of the exponential,
eTIEP/2 — o=E1/2 . o—Eh/2
it suffices to consider the case that n = 1. Then the Gaussian satisfies the differen-
tial equation

d
%G(x) +zG(x) =0.

Computing the Fourier transform, we see that

fid%é(z) —itG(x) =0.
Thus,
G(e) = Ce ¥

To compute the constant C,

C = G’(O) =(2m)! /Re%d:c = (2%)*%

which follows from the fact that

/ % dz = (2m)
i

[N
—
w
)
~
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To prove (3.2), one can again rely on the multiplication property of the exponential

to observe that
o2 o3 %423
/erx/erx:/ e 2 dx
R R R2

27 [e’e]
= / / e 2 rdrdf = 27 .
0 0

It follows from Lemma 3.4 that for all u,v € S(R"),

(}'u, f’U)Lz(Rn) = (u, f*fU)Lz(Rn) = (u, U)L2(Rn) .
Thus, we have established the Plancheral theorem on S(R™).

Theorem 3.6 (Plancheral’s theorem). F : S(R") — S(R™) is an isomorphism
with inverse F* preserving the L?(R™) inner-product.

3.2. The topology on S(R") and tempered distributions. An alternative to
Definition 3.2 can be stated as follows:

Definition 3.7 (The space S(R™)). Setting (z) = \/1+ |22,
S(R™) = {u € C®°(R"™) | (x)¥|D%| < Ch.o Yk EZy}.
The space S(R™) has a Fréchet topology determined by seminorms.
Definition 3.8 (Topology on S(R™)). For k € Z,., define the semi-norm

pe(u) = sup (2)"|D%(z)],
z€R™,|a|<k

and the metric on S(R™)
N pr(u—)
dlu,v) =) 27F 2
(u,v) kzzo L+ pr(u—v)
The space (S(R™),d) is a Fréchet space.

Definition 3.9 (Convergence in S(R™)). A sequence u; — u in S(R™) if pp(u; —
u) — 0 as j — oo forallk € Zy.

Definition 3.10 (Tempered Distributions). A linear map T : S(R™) — C is con-
tinuous if there exists some k € Z, and constant C' such that

[T, u)| < Cpr(u) Yu e S(R™).

The space of continuous linear functionals on S(R™) is denoted by S'(R™). Elements
of 8'(R™) are called tempered distributions.

Definition 3.11 (Convergence in S'(R™)). A sequence T; — T in S'(R™) if
(Tj,u) — (T, u) for all u € S(R™).

For 1 < p < o0, there is a natural injection of LP(R™) into S’(R™) given by
(f,u) = f(@)u(z)dzr Yu e S(R™).
Rn

Any finite measure on R" provides an element of S'(R™). The basic example of
such a finite measure is the Dirac delta ‘function’ defined as follows:

(6,u) =u(0) or, more generally, (d,,u) =u(x) Yu e S(R").
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Definition 3.12. The distributional derivative D : 8'(R™) — S(R"™) is defined by
the relation

(DT, u) = —(T, Du) Yue SR").
More generally, the ath distributional derivative exists in S'(R™) and is defined by
(DT, u) = (—1)1*N(T, DY) Yu e S(R™).

Multiplication by f € S(R™) preserves §’'(R™); in particular, if T € §’'(R™), then
fT € S(R™) and is defined by

(fT,u) = (T, fu) Vu e SR").
Example 3.13. Let H := 1y ) denote the Heavyside function. Then

dH , ,
— = R"™).
T d in S'(R™)
This follows since for all u € S(R™),
dH du > du
——,u) =—(H,—)=— —dx = = (6,u).
(G =t 50 == | e = () = (3,u)
Example 3.14 (Distributional derivative of Dirac measure).
do du n

3.3. Fourier transform on &’'(R").
Definition 3.15. Define F : S'(R") — S'(R™) by
(FT,u) = (T, Fu) Yue SR"),

with the analogous definition for F* : S'(R") — S'(R™).
Theorem 3.16. FF*=1d = F*F on S'(R").
Proof. By Definition 3.15, for all v € S(R™)

(FF*T,u) = (F*w, Fu) = (T, F*Fu) = (T, u),
the last equality following from Theorem 3.5. g

Example 3.17 (Fourier transform of §). We claim that F6 = (2r)~ 2. According
to Definition 3.15, for all u € S(R™),

(F,u) = (5, Fu) = Fu(0) = / (2m)" % u(z)ds,

n

so that F§ = (2m)~=.

n

Example 3.18. The same argument shows that F*§ = (2r)~ % so that F*[(2m)2] =
1. Using Theorem 8.16, we see that F(1) = (27)~%§. This demonstrates nicely the
identity

[§* (&) = [D%u(z)].
In other the words, the smoother the function x — u(x) is, the faster & — 4(€)
must decay.
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3.4. The Fourier transform on L?(R"). In Theorem 1.28, we proved that C§°(R")
is dense in LP(R™) for 1 < p < o0. Since C§°(R™) C S(R™), it follows that S(R™)
is dense in LP(R") as well. Thus, for every u € L*(R"), there exists a sequence
u; € S(R™) such that u; — u in L*(R"), so that by Plancheral’s Theorem 3.6,

||ﬁj — ﬁk||L2(Rn) = ||’LL] — ukHLZ(Rn) < €.
It follows from the completeness of L2(R™) that the sequence 1; converges in
L2(R™).
Definition 3.19 (Fourier transform on L*(R")). For u € L*(R") let u; denote an
approximating sequence in S(R™). Define the Fourier transform as follows:

Jj—oo
Note well that F on L?(R") is well-defined, as the limit is independent of the
approximating sequence. In particular,

4] 2 (mn) ZjEH;O 4] L2 (mn) =jli_)ﬂolo lujllLz®ny = [lullL2@n) -
By the polarization identity

1 . . ) .
(u,v)2(mn) = B (HU + U||2L2(Rn) —illu+ ZUH%Z(]R") - (1= Z)HU”%%RTL) (1= Z)||U||2L2(R"))
we have proved the Plancheral theorem! on L?(R™):
Theorem 3.20. (u,v)Lz(Rn) = (fu,fv)Lz(Rn) Vu,v S L2(R").
3.5. Bounds for the Fourier transform on LP(R"). We have shown that for
uw e LYR™), ||if poorny < (2)7 2 ||ul| L1 (rn), and that for u € L*(R"), ||i| 2@n) =
llul| 2 (rny- Interpolating p between 1 and 2 yields the following result.

Theorem 3.21 (Hausdorfl-Young inequality). If u € LP(R™) for 1 < p < 2, the

for q = pp%l, there exists a constant C' such that

il Laen) < CllullLe@ny -

Returning to the case that u € L'(R™), not only is Fu € L°(R"), but the
transformed function decays at infinity.

Theorem 3.22 (Riemann-Lebesgue “lemma”). For u € L*(R™), Fu is continuous
and Fu(§) — 0 as |£] — oo.

Proof. Let By = B(0, M) C R™. Since f € L'(R"), for each € > 0, we can choose
M sufficiently large such that f(€) < e+ IBM e~ €| f(z)|dr. Using Lemma 1.23,
choose a sequence of simple functions ¢;(z) — f(x) a.e. on Bjs. For jnN chosen
sufficiently large,

f(€) <2+ dj(x)e " d .

Bm

Write ¢,(x) = Zfil Ci1g,(x) so that

N
&) <2e+> G [ pj(x)e " dua.
=1 E,

IThe unitarity of the Fourier transform is often called Parseval’s theorem in science and engi-
neering fields, based on an earlier (but less general) result that was used to prove the unitarity of
the Fourier series.
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By the regularity of the Lebesgue measure u, for all ¢ > 0 and each [ € {1,..., N},
there exists a compact set K; and an open set O; such that

(O — e/2 < p(E) < () + /2.

Then O; = {Uaea, VL | V;* C R™ is open rectangle , A; arbitrary set }, and K; C
U;V:llel C O; where {1, ..., N;} C A; such that

(B = n(UjL V)] < e.

/ e*"'gdxf/N e 8y
By UL V)

On the other hand, for each rectangle V. fvl e~ @8dy| < C/(& -+ &,), so that

Since € > 0 is arbitrary, we see that f(f) — 0 as [¢] — oo. Continuity of Fu follows
easily from the dominated convergence theorem. O

It follows that

< €.

3.6. The Fourier transform and convolution.
Theorem 3.23. If u,v € L*(R"), then uxv € L*(R") and
Fluxv) = (2n)2 FuFv.

Proof. Young’s inequality (Theorem 1.53) shows that u x v € L'(R™) so that the
Fourier transform is well-defined. The assertion then follows from a direct compu-
tation:

Fluxv) = (2n)" 2 /" e (uxv)(z)dx

7%/ / (xz —y)v(y)dy e ™ da
(2m)~ / / (z —y)e TV dry(x) eV E dy

= (2m)%ad (by Fubini’s theorem).

O

By using Young’s inequality (Theorem 1.54) together with the Hausdorff-Young
inequality, we can generalize the convolution result to the following

Theorem 3.24. Suppose that v € LP(R™) and v € L1(R™), and let v satisfy
1= % +%— 1 for 1 <p,q,r <2. Then F(uxv) € L1 (R") and

T

Fluxv) = (2n)2 FuFv.
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4. THE SOBOLEV SPACES H*(R"), s € R

The Fourier transform allows us to generalize the Hilbert spaces H*(R") for
k € Z4 to H*(R™) for all s € R, and hence study functions which possess fractional
derivatives (and anti-derivatives) which are square integrable.

Definition 4.1. For any s € R™, let (£) = /1 + |£|?, and set
H*(R") = {u € S'(R") | (§)"a € L*(R")}
={uecSR") | Auc L*R")},

where ASu = F*((£)°4).

The operator A® can be thought of as a “differential operator” of order s, and
according to Rellich’s theorem, A™* is a compact operator, yielding the isomorphism

H*(R") = A°L*(R").
Definition 4.2. The inner-product on H*(R™) is given by
(u, v) gy = (A°u, A*0)p2mny Yu,v € H¥(R").
and the norm on H®(R™) is
[wllfremny = (u, ) omny Yu € H*(R™).

The completeness of H*(R™) with respect to the || - ||+ ®n)) is induced by the
completeness of L?(R™).

Theorem 4.3. For s € R, (H*(R"), || - || s ®n)) is a Hilbert space.

Example 4.4 (H'(R")). The H'(R") in Fourier representation is exactly the same
as the that given by Definition 2.12:

iy oy = [ (€PN
= [ a+ierya©lPae
R™
= [ (@) + [Du(e) .

the last equality following from the Plancheral theorem.

Example 4.5 (H2 (R™)). The H2 (R™) can be viewed as interpolating between decay
required for @ € L*>(R") and @ € H*(R"):

TR = fue 2R | | VTFIEPla(e) P de < o).

Example 4.6 (H~1(R")). The space H~1(R") can be heuristically described as
those distributions whose anti-derivative is in L>(R™); in terms of the Fourier rep-
resentation, elements of H=*(R™) possess a transforms that can grow linearly at
infinity:

|a(é)[?
1+ ¢

H™ (R = {u e S'(R") |/Rn € < oo}
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For T € H~*(R"™) and u € H*(R™), the duality pairing is given by
(T,u) = (A™°T, A°u) 2 (mny
from which the following result follows.
Proposition 4.7. For all s € R, [H*(R")] = H—*(R") .

The ability to define fractional-order Sobolev spaces H*(R™) allows us to refine
the estimates of the trace of a function which we previously stated in Theorem 2.33.
That result, based on the Gauss-Green theorem, stated that the trace operator was
continuous from H'(R?%) into L*(R™!). In fact, the trace operator is continuous
from H'(R?) into Hz (R™1).

To demonstrate the idea, we take n = 2. Given a continuous function v : R? —
{z1 = 0}, we define the operator

Tu = u(0,22) .

The trace theorem asserts that we can extend 7T to a continuous linear map from
H'(R2) into Hz(R) so that we only lose one-half of a derivative.

Theorem 4.8. T : H'(R?) — H=(R), and there is a constant C such that

1Tl ;4 gy < Cllulla @) -
Before we proceed with the proof, we state a very useful result.

Lemma 4.9. Suppose that u € S(RQ) and define f(x2) = u(0,z2). Then

f(é'?) \/7 c (51752)6151 .

Proof. f(fg) \/ﬂ Jg @(€1, E2)dEy if and only if f(&2) = 12‘”.7-"* Jg W(é1,&2)dEr, and

\/g]:*/ (&1, 82)dén = // (&1, &) dEr e ™€ e, .

On the other hand,

) = Ffi(6n 0] = 3= [ [t eemerinedsde,
so that
u(0,22) = (6 &) = 3= [ [ (6 ee e derdn.
]

Proof of Theorem 4.8. Suppose that u € S(R?) and set f(x2) = u(0,21). Accord-
ing to Lemma 4.9,

fl&) = W(€1,82)dEr = (&, &)(€) (&)~ 1déy

\ﬁ Re, \/127771 Re,
<= (Aa(fl,£2>|2<£>2dfl)2 (/R<s>—2d§1)2 ,

fE)P<C /}R a6r, &) (€)% /R (&) 2de,

and hence



42 STEVE SHKOLLER

The key to this trace estimate is the explicit evaluation of the integral [ () 2d&::

+oo
tan_1< &1 )
L Ve b
7d . \V T2/ . .
/Rl+£%+5§ = Ji+ & <m(1+4+&) (4.1)

It follows that [, (14+€2) 72| f(&2)[2dé < C [, [a(&1,&2)[2(€)2déy, so that integration
of this inequality over the set {£, € R} yields the result. Using the density of S(R?)
in H'(R?) completes the proof. O

The proof of the trace theorem in higher dimensions and for general H*(R™)
spaces, § > %, replacing H!(R™) proceeds in a very similar fashion; the only dif-
ference is that the integral [, (¢)~2d¢; is replaced by [o, 1 (€§)™%%d&; - - - d€n—1, and
instead of obtaining an explicit anti-derivative of this integral, an upper bound is

instead found. The result is the following general trace theorem.
Theorem 4.10 (The trace theorem for H*(R")). For s > &, the trace operator
T : H*(R") — H*"2(R™) is continuous.
We can extend this result to open, bounded, C*° domains 2 C R".
Definition 4.11. Let 9 denote a closed C°° manifold, and let {w;}£, denote

an open covering of 0, such that for each | € {1,2,..., K}, there exist C*-class
charts 9; which satisfy

92 B(0,1) C R — w is a C™ diffeomorphism.
Next, for each 1 <1 < K, let 0 < ¢; € C5°(U;) denote a partition of unity so that
Zlel wi(x) =1 for all x € Q. For all real s > 0, we define
H*(09Q) = {u € L*(09) : lull s (90) < o0},
where for all u € H*(09Q),

K
el Fre 00y = D 1 (pru) © IullFys s -
1=1

The space (H*(09Q), || - || z+ (o)) is a Hilbert space by virtue of the completeness
of H*(R"~1); furthermore, any system of charts for 9Q with subordinate partition
of unity will produce an equivalent norm.

Theorem 4.12 (The trace map on ). For s > 3, the trace operator T : @ — 09
18 continuous.

Proof. Let {U;}, denote an n-dimensional open cover of €2 such that U; N 9Q =
wy. Define charts 0; : V; — Uy, as in (2.9) but with each chart being a C'* map, such
that ¥, is equal to the restriction of ; to the (n — 1)-dimensional ball B(0,r;) C
R"~1).  Also, choose a partition of unity 0 < ¢, € C§°(U;) subordinate to the
covering U such that ¢; = (., -

Then by Theorem 4.10, for s > %,

K K
2 _ 2 2 2
||U||HS,%(8Q) = ; (o) o 191||H57%(Rn71) < C’; (1) © Dl 37smny < Cllullgs(q) -

O
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Remark 4.13. The restriction s > 5 arises from the requirement that
/ (€)72%d& -+ - d€p—q < 00.
Rn—1

One may then ask if the trace operator T' is onto; namely, given f € Hs" 2 (R*1)
for s > %, does there exist au € H*(R™) such that f = T'u? By essentially reversing
the order of the proof of Theorem 4.8, it is possible to answer this question in the
affirmative. We first consider the case that n =2 and s = 1.

Theorem 4.14. T : H'(R?) — H2(R) is a surjection.

Proof. With £ = (&1,&2), we define (one of many possible choices) the function u
on R? via its Fourier representation:

(&1)
(€32’

for a constant K # 0 to be determined shortly. To verify that ||ullg@m) <
note that

W, &) = Kf(&) 2

113 ey

/ / A(Er, £)/2(€)2derdes = K / / >d51d52

o0 1
—K/ 1+51)/_001+§%+§§d52d51
<C|fIP s

H3®)’

where we have used the estimate (4.1) for the inequality above.
It remains to prove that u(z1,0) = f(x1), but by Lemma 4.9, it suffices that

/_ (e, €0)des = VITA(EL)

Integrating @, we find that

/ (&1, &2)dé = Kf(€1)\/1+§%/ ﬁd& < Knf(&)
— 0o —o0 1 2

so setting K = /2w /7 completes the proof. (Il

A similar construction yields the general result.
Theorem 4.15. For s > 1, T': H*(R") — H*=3(R"Y) is a surjection.

By using the system of charts employed for the proof of Theorem 4.12, we also
have the surjectivity of the trace map on bounded domains.

Theorem 4.16. For s > 1, T : H*(Q) — H*=2(09Q) is a surjection.

The Fourier representation provides a very easy proof of a simple version of the
Sobolev embedding theorem.

Theorem 4.17. For s > n/2, if u € H*(R™), then u is continuous and

max u()| < Cllufl o).
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Proof. By Theorem 3.6, u = F*u; thus according to Holder’s inequality and the
Riemann-Lebesgue lemma (Theorem 3.22), it suffices to show that

lall o mry < Cllull gs ey -

But this follows from the Cauchy-Schwarz inequality since

[ ity = [ Taener e

(s (L)

< Cu

Hs(R™) 5

the latter inequality holding whenever s > n /2. d

Example 4.18 (Euler equation on T?). On some time interval [0,T] suppose that
u(x,t), » € T2, t € [0,T), is a smooth solution of the Euler equations:
O+ (u- D)u+ Dp =0 in T? x (0,T],
divu =0 in T? x (0,T],
with smooth initial condition u|i—g = ug. Written in components, u = (u',u?)
satisfies ul+u ' G 4p,i = 0 fori = 1,2, where we are using the Einstein summation
convention for summing repeated indices from 1 to 2 and where u',; = Ou’/0z; and
psi = Op/0x;.
Computing the L?*(T?) inner-product of the Euler equations with u yields the
equality
1d

f—/ |u(x,t)|2dx+/ ui,jujuidx—i—/ piutdr =0.
th T2 T2 T2

I Zs

Notice that

1 9 , 1 9 1.

Iy == | (Ju),;vde =< |u|* divudz =0,

2 T2 2 T2
the second equality arising from integration by parts with respect to 0/0x;. In-
tegration by parts in the integral To shows that Iy = 0 as well, from which the
conservation law %Hu(-,t)HZL%Tz) follows.

To estimate the rate of change of higher-order Sobolev norms of u relies on the

use of the Sobolev embedding theorem. In particular, we claim that on a short
enough time interval [0,T), we have the inequality

d
%HU('J)H%{s(T?) < Cllul, 8) I3 r2y (4.2)

from which it follows that ||u(-,t)||?{3(T2) < M for some constant M < co.

To prove (4.2), we compute the H3(T?) inner-product of the Euler equations with
w:

1d 2 o, b J o, feY o, i
5%\\u(o,t)||H3(T2)+ Z 2D u',;uw! D*u'dx + Z 2D D, D%u'dr = 0.
jaj<s T jaj<3 T

The third integral vanishes by integration by parts and the fact that D divu = 0;
thus, we focus on the nonlinearity, and in particular, on the highest-order deriva-
tives |a| = 3, and use D? to denote all third-order partial derivatives, as well as
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the notation l.o.t. for lower-order terms. We see that

D3(u',; u?)D¥u'dr = /

D3ui,j u? D3uidx+/ ui,j D3/ D3uid:v+/ l.o.t.dx.
T2 T2

T2 T2

K:l K:Q

By definition of being lower-order terms, sz Lo.t.dx < C||u||3H3(T2), so it remains
to estimate the integrals K1 and K. But the integral K1 vanishes by the same
argument that proved Z; = 0. On the other hand, the integral Ko is estimated by
Holder’s inequality:
ICa| < |Ju'sj [ oo (r2y (|1 DP0 || g2y | D?ul|| gra(re) -
Thanks to the Sobolev embedding theorem, for s = 2 (s needs only to be greater than
1),
[t lLoe (=) < Cllu’sj |2 w2y < lullms ) ,

from which it follows that Ko < C’Hu||§{3(T2), and this proves the claim.

Note well, that it is the Sobolev embedding theorem that requires the use of the

space H3(T?) for this analysis; for example, it would not have been possible to
establish the inequality (4.2) with the H?(T?) norm replacing the H3(T?) norm.

5. THE SOBOLEV SPACES H*(T"), s € R
5.1. Fourier Series: Revisited.

Definition 5.1. For u € L'(T"), define
Fu(k) =i = (2m)™" / e~ Ty (z)dr
Trn
and
Frife) =Y e
keZm
Note that F : L'(T™) — [°°(Z"). If u is sufficiently smooth, then integration by
parts yields
F(D) = (=)l k0, k™ =k§ . ko
Example 5.2. Suppose that u € C1(T"). Then for j € {1,...,n},

ou

7e—ik~:£dx
Tn 3xj

F {gxﬂ (k) = 2m) "

= 7(271')7"/ u(z) (—ikj) e **dx
= Zk‘]ak .
Note that T™ is a closed manifold without boundary; alternatively, one may iden-

tify T™ with the [0,1]™ with periodic boundary conditions, i.e., with opposite faces
identified.

Definition 5.3. Let s = S(Z") denote the space of rapidly decreasing functions @
on Z" such that for each N € N,

pn(u) = sup <k>N|ﬁk| < 00.
kEZﬂ
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Then
FiO®(T) =5, Fris— ORI,
and F*F = 1Id on C*°(T") and FF* =Id on s. These properties smoothly extend
to the Hilbert space setting:

F:L*(T") — 12 F* 1?2 — L3(T")
F*F=1Idon L*(T") FF*=Idonl?.

Definition 5.4. The inner-products on L?(T™) and I* are

(w o)y = (2m)F [ u(o)ile)de

n

and
(@, 0)p = Y iy,
kezn
respectively.
Parseval’s identity shows that |lu|g2(rey = [|@]]s2.

Definition 5.5. We set
D'(T") = [C®(T™)]" and s' =[s]".
The space D'(T™) is termed the space of periodic distributions.

In the same manner that we extended the Fourier transform from S(R™) to
S'(R™) by duality, we may produce a similar extension to the periodic distributions:

F:D(T") - F* s — D'(T")
FF=Idon D(T") FF*=Idons.

Definition 5.6 (Sobolev spaces H*(T™)). For all s € R, the Hilbert spaces H*(T")
are defined as follows:

H*(T") = {u € D'(T") | |Jullgs(rn) < o0},
where the norm on H*(T™) is defined as
el Fre ey = > laxl* (k)%
kezn
The space (H*(T"), || - ||gs(rn)) is a Hilbert space, and we have that
B (1) = [ (T
5.2. The Poisson Integral Formula and the Laplace operator. For f:S' —

R, denote by PI(f)(r,0) the harmonic function on the unit disk D = {z € R?
|z| < 1} with trace f:

API(f)=0 in D
PI(f)=f on 0D =S'.
PI(f) has an explicit representation via the Fourier series

PI(f)(r,0) = > fir™e™ r<1,0<6 <2m, (5.1)
keZ
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as well as the integral representation

_ 1= f(9)
PI(f)(r,0) = —— /Slr272rcos(07¢)+1d¢7‘<1,0§9<27‘(’. (5.2)

The dominated convergence theorem shows that if f € CO(SY), then PI(f) €
C>(D)NCD).
Theorem 5.7. PI extends to a continuous map from H*=2(S') to H*(D) for all
keZ,.
Proof. Define u = PI(f).
Step 1. The case that k = 0. Assume that f € H=2(T) so that

SR T < My < 0.

kez

Since the functions {r/*le’*® . k € Z} are orthogonal with respect to the L?(D)

inner-product,
Z f ,r,\k:\ezke

27
Wty = [ [
kEZ

<o U [ P = S P ) < I

HZ (Sh)
kEZ keZ

rdr df

)

where we have used the monotone convergence theorem for the first inequality.
Step 2. The case that k = 1. Next, suppose that f € H%(F) so that

DAk < My < oo,
kEZ

Since we have shown that u € L?(D), we must now prove that uy = Jpu and
u, = dpu are both in L?(D). Notice that by definition of the Fourier transform and
(5.1),

d
% PI(f) = PI(fs). (5.3)

By definition, 9 : Hz(S') — H™2 (Sl) continuously, so that for some constant C,
ol oy < CllFly o,
It follows from the analysis of Step 1 and (5.3) that (with v = PI(f)),
uellz2(py < C|If|
Next, using the identity (5.1) notice that |ru,| = |ug|. It follows that
lrurllL2 oy < CIF|

HZ(sY)

e (5.4)

By the interior regularity of —A proven in Theorem 6.1, w,(r,6) is smooth on
{r < 1}; hence the bound (5.4) implies that, in fact,

el z20) < CI 13 g
and hence

lell o) < Cl Ny )
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Step 3. The case that k£ > 2. Since f € H’“*%(Sl)’ it follows that
10 £1 LS ClAl ey

and by repeated application of (5.3), we find that

H™% (st )

lullzrr oy < ClFll e ) -

6. THE LAPLACIAN AND ITS REGULARITY

We have studied the regularity properties of the Laplace operator on D =
B(0,1) C R? using the Poisson integral formula. These properties continue to
hold on more general open, bounded, C'*° subsets 2 of R™.

We revisit the Dirichlet problem

Au=0 in Q, (6.1a)
u=f on 0. (6.1b)

Theorem 6.1. For k € N, given f € H*2(99Q), there exists a unique solution
u € H*(Q) to (6.1) satisfying

lellmeoy < Il ey oy s C=CO).

Proof. Step 1. k = 1. We begin by converting (6.1) to a problem with homo-
geneous boundary conditions. Using the surjectivity of the trace operator pro-
vided by Theorem 4.16, there exists F' € H'(Q) such that T(F) = f on 99, and
1) o) < CHf”H%(aQ)' Let U = u— F; then U € H'(Q2) and by linearity of the
trace operator, T(U) = 0 on 9Q. It follows from Theorem 2.35 that U € H{ ()
and satisfies —AU = AF in H}(Q2); that is (—AU,v) = (AF,v) for all v € H} ().

According to Remark 2.45, —A : H}(Q) — H~1(Q) is an isomorphism, so that

AF € H™Y(Q); therefore, by Theorem 2.44, there exists a unique weak solution
U € H} (), satisfying

/DU-DUdas:(AF,v) Yo e H} (),
Q

with
U1 0) < ClIAF|[g-1(0) » (6.2)
and hence
u=U+Fen Q) ad [uliw < 1fl,3 0
Step 2. k = 2. Next, suppose that f € H*(9Q). Again employing Theorem 4.16,
we obtain F' € H?(Q) such that T(F) = f and ||F||g2(q) < C|| f|l#r15(60); thus, we
see that AF € L?(2) and that, in fact,

/DU~Dvd:z::/Ade:v Yo € Hy(9Q). (6.3)
Q Q

We first establish interior regularity. Choose any (nonempty) open sets 3 CC
Ny CcC Qand let ¢ € C§°(Q2) with 0 < ( < 1land ¢ =1 on Q. Let ¢ =
min dist(spt(¢), dQ2)/2. For all 0 < € < e, define U¢(z) = n * U(x) for all z € Qq,
and set

V= e Xk <C2U€7j )aj .
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Then v € H}(Q) and can be used as a test function in (6.3); thus,
—/ Ui me* (CPUS5 )i da = —/ Ui e * [CPUi; +2¢C,i US55 do
Q Q

= ; CPU<,i; US,ij da — 2/9776 *[CC,i U], Uy dxe,

and

/ AFvdr = — AFne*((zUﬂj),j de = — AFnE*[C2U€,jj +2¢¢,; UC,; ] dx.
Q QQ QQ

By Young’s inequality (Theorem 1.53),
Ime % [CPU<,55 +2¢C,5 U35 Mleza) < G055 +2¢C,5 U5 [l 20
hence, by the Cauchy-Young inequality with §, Lemma 1.52, for § > 0,

| AP vt < SICDAU s + Coll DU sy + 1AF o).
Similarly,
2/9776 *[CC,i U5 )55 Uy dx < 8||CD?UC|[ 72, + Gl DU 220y + IAF|F2(0)] -

By choosing § < 1 and readjusting the constant Cs, we see that
ID?U |20,y < IKD?UC |20y < CslIDUS|[72(0y) + I1AF|[72(0)]
< C5||AF|F2(0 »

the last inequality following from (6.2), and Young’s inequality.
Since the right-hand side does not depend on € > 0, there exists a subsequence

DU =W in L*().
By Theorem 2.17, U¢ — U in H'(Q4), so that W = D?U on Q;. As weak conver-

gence is lower semi-continuous, ||[D?*U||12(q,) < Ce||AF|[12(q)- As Q) and Qs are
arbitrary, we have established that U € HZ (f2) and that

[Ullzz, (o) < ClIAF||r2(0) -
For any w € H}(Q), set v = (w in (6.3). Since u € HZ (), we may integrate by
parts to find that
/(—AU — AF)Cwdr =0 Yw € Hy(Q).
Q

Since w is arbitrary, and the spt(¢) can be chosen arbitrarily close to 912, it follows
that for all z in the interior of €2, we have that

—AU(xz) = AF(x) for almost every x € Q. (6.4)

We proceed to establish the regularity of U all the way to the boundary 0f).
Let {U4}[£, denote an open cover of Q which intersects the boundary 9, and let
{6,} | denote a collection of charts such that

0, : B(0,r;) — U; is a C*° diffeomorphism ,
det DO, =1,

0,(B(0,r) N{z, =0}) = U NN,
0,(B(0,r)N{x, >0} U NQ.
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Let 0 < ¢ < 1 in C§°(Y;) denote a partition of unity subordinate to the open
covering U, and define the horizontal convolution operator, smoothing functions
defined on R" in the first 1,...,n — 1 directions, as follows:

pe *p F(xn,xn) = / pe(xn — yn)F (yn, xn)dyn ,
]Rn—l

where p(zn) = e Vp(xp/€), p the standard mollifier on R, and z;, =
(z1,...,2n—1). Let « range from 1 to n — 1, and substitute the test function

v=—(pe*n [(Co0) pexn (U0 0)salia) 06" € Hi ()

into (6.3), and use the change of variables formula to obtain the identity

/ Af(UOHZ),kAg(WOGZ),j dx:/ (AF)o0vob,dx, (6.5)
B+(O,Tl)

B4 (0,m1)

where the C> matrix A(z) = [D§;(x)]~! and B (0,7) = B(0,7;) N {z, > 0}. We
define

Ul=Uo 0, , and denote the horizontal convolution operator by H, = p. *p, .
Then, with & = (; 0 0;, we can rewrite the test function as
vol = —HJ[EHU 4]0
Since differentiation commutes with convolution, we have that
(vob),j=—H(EHU" o )a —2H (&6, HU 0 ) o

and we can express the left-hand side of (6.5) as
/ AU o) Al(vo b)), de =T, + Io,
B4 (0,m1)
where
L= [ AU H(GHU ) e,
B+(0,1"1)
L—-2f WAL HAGG B ) do.
B1(0,m)
Next, we see that
L= [ A (GHU o) do =T+ Tay,
B4(0,m1)
where
T, :/ (AAYHU ) EHU 0 de,
B4 (0,m1)
Ilb = / ([HeaAgAf]UlﬂC)ﬂl leHeUlijé dl‘,
B4 (0,m1)

and where
[He, AJATIU' o= Ho(A] AU ) — AJAF HU' (6.6)
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denotes the commutator of the horizontal convolution operator and multiplication.

The integral Z;, produces the positive sign-definite term which will allow us to
build the global regularity of U, as well as an error term:

Ty, = / [€FA]AFHU' ko HU' o +(AAY) 0 HU' s §HU' o ] dos
B+(O,’r‘l)
thus, together with the right hand-side of (6.5), we see that

/ EAAYH U 4o HU o dz <
B(0,m)

/ (AzAf)va HeUlvk ngeUlaja]dJ?
B+(0,T1)

+ ‘Ilb| + |I2| +

/ (AF)o0vob,dx| .
B4 (0,m1)

Since each 6; is a C* diffeomorphism, it follows that the matrix A A7 is positive
definite: there exists A > 0 such that

MY |2 < AJARYSY;, VY e R,
It follows that

)\/ E|1ODHU' > da <
B4 (0,m)

[ A HU S G )
B+(0,T1)

+ [ Z1p| + [ Z2| +

)

/ (AF)o0vofde
B+(O,Tl)

where D = (0y,, ..., 0z, ) and p = (O, ..., Ox,,_, ). Application of the Cauchy-Young
inequality with § > 0 shows that

+ |Z2| +

/ (AzAf)vaHeUlak ngeUlaja}df
B1(0,m)

/ (AF)OQ[UOQ[dCL’
B+(0,’I‘L)
< 5/ GIODHU' dx + C5||AF |75 -

B+(0,Tl)

It remains to establish such an upper bound for |Z7,]. '
To do so, we first establish a pointwise bound for (6.6): for A% = A7 A¥,

[H., AL ARUY () = / pe(xn — yn) A" (yn, w0) — A7*(n, 2)]U 1 (yn, ) dyn,
B(xp,€)

By Morrey’s inequality, |[A7*(yp, 2n) — A7 (21, 20)]] < Ce||Allwroe (B, (0,r))- Since

1 x—h—yp
Orpelon =) = 5o/ (T

we see that

‘ 1 —h—
Oz, ([HaAfAﬂUl,k) (96)‘ < C/ 0 (w> Uk (yns @0)| dyn
B

(zh.e) € €

and hence by Young’s inquality,

[0 (1. Al 480" )| < O||U || (@) < CIAF| 120y -

L2(B4(0,r1)
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It follows from the Cauchy-Young inequality with 6 > 0 that

T1p| <6 §IODHU' ] dx + C5||AF |72 -
B1(0,m)

By choosing 2§ < A, we obtain the estimate
/ §IODHU'? dz < C5||AF |72 (g -
B4(0,r1)
Since the right hand-side is independent of €, we find that
/ E10DU' dx < C5| AF |22y, - (6.7)
B4 (0,m1)
From (6.4), we know that AU (z) = AF(x) for a.e. € U;. By the chain-rule
this means that almost everywhere in By (0,1;),
—Aijl,kj = Ajk,j Ul,k +AF 00,
or equivalently,
—AMUL = AU A APRU s + AR U AR 06
Since A™ > 0, it follows from (6.7) that

/ &|D?U' )P de < Cs[|AF |72 - (6.8)
B4 (0,m1)

Summing over [ from 1 to K and combining with our interior estimates, we have
that
[ull zr2(0) < CAF|L2(q) -
Step 3. k > 3. At this stage, we have obtained a pointwise solution U € H?(Q2) N
H(Q) to AU = AF in Q, and AF € H*~1. We differentiate this equation r times
until D"AF € L?(), and then repeat Step 2. d
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