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Appendix

In this appendix, we summarize some results about the integration and differ-
entiation of Banach-space valued functions of a single variable. In a rough sense,
vector-valued integrals of integrable functions have similar properties, often with
similar proofs, to scalar-valued L1-integrals. Nevertheless, the existence of different
topologies (such as the weak and strong topologies) in the range space of integrals
that take values in an infinite-dimensional Banach space introduces significant new
issues that do not arise in the scalar-valued case.

6.A. Vector-valued functions

Suppose that X is a real Banach space with norm ‖ · ‖ and dual space X ′.
Let 0 < T < ∞, and consider functions f : (0, T ) → X . We will generalize some
of the definitions in Section 3.A for real-valued functions of a single variable to
vector-valued functions.

6.A.1. Measurability. If E ⊂ (0, T ), let

χE(t) =

{

1 if t ∈ E,
0 if t /∈ E,

denote the characteristic function of E.

Definition 6.13. A simple function f : (0, T ) → X is a function of the form

(6.38) f =
N
∑

j=1

cjχEj

where E1, . . . , EN are Lebesgue measurable subsets of (0, T ) and c1, . . . , cN ∈ X .

Definition 6.14. A function f : (0, T ) → X is strongly measurable, or mea-
surable for short, if there is a sequence {fn : n ∈ N} of simple functions such that
fn(t) → f(t) strongly in X (i.e. in norm) for t a.e. in (0, T ).

Measurability is preserved under natural operations on functions.

(1) If f : (0, T ) → X is measurable, then ‖f‖ : (0, T ) → R is measurable.
(2) If f : (0, T ) → X is measurable and φ : (0, T ) → R is measurable, then

φf : (0, T ) → X is measurable.
(3) If {fn : (0, T ) → X} is a sequence of measurable functions and fn(t) →

f(t) strongly in X for t pointwise a.e. in (0, T ), then f : (0, T ) → X is
measurable.

We will only use strongly measurable functions, but there are other definitions
of measurability. For example, a function f : (0, T ) → X is said to be weakly
measurable if the real-valued function 〈ω, f〉 : (0, T ) → R is measurable for every
ω ∈ X ′. This amounts to a ‘coordinatewise’ definition of measurability, in which
we represent a vector-valued function by its real-valued coordinate functions. For
finite-dimensional, or separable, Banach spaces these definitions coincide, but for
non-separable spaces a weakly measurable function need not be strongly measur-
able. The relationship between weak and strong measurability is given by the
following Pettis theorem (1938).
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Definition 6.15. A function f : (0, T ) → X taking values in a Banach space
X is almost separably valued if there is a set E ⊂ (0, T ) of measure zero such that
f ((0, T ) \ E) is separable, meaning that it contains a countable dense subset.

This definition is equivalent to the condition that f ((0, T ) \ E) is included in
a closed, separable subspace of X .

Theorem 6.16. A function f : (0, T ) → X is strongly measurable if and only

if it is weakly measurable and almost separably valued.

Thus, if X is a separable Banach space, f : (0, T ) → X is strongly measurable if
and only 〈ω, f〉 : (0, T ) → R is measurable for every ω ∈ X ′. This theorem therefore
reduces the verification of strong measurability to the verification of measurability
of real-valued functions.

Definition 6.17. A function f : [0, T ] → X taking values in a Banach space
X is weakly continuous if 〈ω, f〉 : [0, T ] → R is continuous for every ω ∈ X ′. The
space of such weakly continuous functions is denoted by Cw([0, T ];X).

Since a continuous function is measurable, every almost separably valued,
weakly continuous function is strongly measurable.

Example 6.18. Suppose that H is a non-separable Hilbert space whose dimen-
sion is equal to the cardinality of R. Let {et : t ∈ (0, 1)} be an orthonormal basis
of H, and define a function f : (0, 1) → H by f(t) = et. Then f is weakly but not
strongly measurable. If K ⊂ [0, 1] is the standard middle thirds Cantor set and
{ẽt : t ∈ K} is an orthonormal basis of H, then g : (0, 1) → H defined by g(t) = 0
if t /∈ K and g(t) = ẽt if t ∈ K is almost separably valued since |K| = 0; thus, g is
strongly measurable and equivalent to the zero-function.

Example 6.19. Define f : (0, 1) → L∞(0, 1) by f(t) = χ(0,t). Then f is not
almost separably valued, since ‖f(t)− f(s)‖L∞ = 1 for t 6= s, so f is not strongly
measurable. On the other hand, if we define g : (0, 1) → L2(0, 1) by g(t) = χ(0,t),

then g is strongly measurable. To see this, note that L2(0, 1) is separable and for
every w ∈ L2(0, 1), which is isomorphic to L2(0, 1)′, we have

(w, g(t))L2 =

∫ 1

0

w(x)χ(0,t)(x) dx =

∫ t

0

w(x) dx.

Thus, (w, g)L2 : (0, 1) → R is absolutely continuous and therefore measurable.

6.A.2. Integration. The definition of the Lebesgue integral as a supremum
of integrals of simple functions does not extend directly to vector-valued integrals
because it uses the ordering properties of R in an essential way. One can use
duality to define X-valued integrals

∫

f dt in terms of the corresponding real-valued
integrals

∫

〈ω, f〉 dt where ω ∈ X ′, but we will not consider such weak definitions of
an integral here.

Instead, we define the integral of vector-valued functions by completing the
space of simple functions with respect to the L1(0, T ;X)-norm. The resulting in-
tegral is called the Bochner integral, and its properties are similar to those of the
Lebesgue integral of integrable real-valued functions. For proofs of the results stated
here, see e.g. [44].
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Definition 6.20. Let

f =

N
∑

j=1

cjχEj

be the simple function in (6.38). The integral of f is defined by

∫ T

0

f dt =

N
∑

j=1

cj |Ej | ∈ X

where |Ej | denotes the Lebesgue measure of Ej .

The value of the integral of a simple function is independent of how it is rep-
resented in terms of characteristic functions.

Definition 6.21. A strongly measurable function f : (0, T ) → X is Bochner
integrable, or integrable for short, if there is a sequence of simple functions such
that fn(t) → f(t) pointwise a.e. in (0, T ) and

lim
n→∞

∫ T

0

‖f − fn‖ dt = 0.

The integral of f is defined by
∫ T

0

f dt = lim
n→∞

∫ T

0

fn dt,

where the limit exists strongly in X .

The value of the Bochner integral of f is independent of the sequence {fn} of
approximating simple functions, and

∥

∥

∥

∥

∥

∫ T

0

f dt

∥

∥

∥

∥

∥

≤

∫ T

0

‖f‖ dt.

Moreover, if A : X → Y is a bounded linear operator between Banach spaces X , Y
and f : (0, T ) → X is integrable, then Af : (0, T ) → Y is integrable and

(6.39) A

(

∫ T

0

f dt

)

=

∫ T

0

Af dt.

More generally, this equality holds whenever A : D(A) ⊂ X → Y is a closed linear

operator and f : (0, T ) → D(A), in which case
∫ T

0
f dt ∈ D(A).

Example 6.22. If f : (0, T ) → X is integrable and ω ∈ X ′, then 〈ω, f〉 :
(0, T ) → R is integrable and

〈

ω,

∫ T

0

f dt

〉

=

∫ T

0

〈ω, f〉 dt.

Example 6.23. If J : X →֒ Y is a continuous embedding of a Banach space X
into a Banach space Y , and f : (0, T ) → X , then

J

(

∫ T

0

f dt

)

=

∫ T

0

Jf dt.

Thus, the X and Y valued integrals agree, and we can identify them.
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The following result, due to Bochner (1933), characterizes integrable functions
as ones with integrable norm.

Theorem 6.24. A function f : (0, T ) → X is Bochner integrable if and only if

it is strongly measurable and
∫ T

0

‖f‖ dt <∞.

Thus, in order to verify that a measurable function f is Bochner integrable
one only has to check that the real valued function ‖f‖ : (0, T ) → R, which is
necessarily measurable, is integrable.

Example 6.25. The functions f : (0, 1) → H in Example (6.18) and f :
(0, 1) → L∞(0, 1) in Example (6.19) are not Bochner integrable since they are not
strongly measurable. The function g : (0, 1) → H in Example (6.18) is Bochner
integrable, and its integral is equal to zero. The function g : (0, 1) → L2(0, 1) in
Example (6.19) is Bochner integrable since it is measurable and ‖g(t)‖L2 = t1/2 is
integrable on (0, 1). We leave it as an exercise to compute its integral.

The dominated convergence theorem holds for Bochner integrals. The proof is
the same as for the scalar-valued case, and we omit it.

Theorem 6.26. Suppose that fn : (0, T ) → X is Bochner integrable for each

n ∈ N,

fn(t) → f(t) as n→ ∞ strongly in X for t a.e. in (0, T ),

and there is an integrable function g : (0, T ) → R such that

‖fn(t)‖ ≤ g(t) for t a.e. in (0, T ) and every n ∈ N.

Then f : (0, T ) → X is Bochner integrable and

∫ T

0

fn dt →

∫ T

0

f dt,

∫ T

0

‖fn − f‖ dt→ 0 as n→ ∞.

The definition and properties of Lp-spaces of X-valued functions are analogous
to the case of real-valued functions.

Definition 6.27. For 1 ≤ p <∞ the space Lp(0, T ;X) consists of all strongly
measurable functions f : (0, T ) → X such that

∫ T

0

‖f‖p dt <∞

equipped with the norm

‖f‖Lp(0,T ;X) =

(

∫ T

0

‖f‖p dt

)1/p

.

The space L∞(0, T ;X) consists of all strongly measurable functions f : (0, T ) → X
such that

‖f‖L∞(0,T ;X) = sup
t∈(0,T )

‖f(t)‖ <∞,

where sup denotes the essential supremum.
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As usual, we regard functions that are equal pointwise a.e. as equivalent, and
identify a function that is equivalent to a continuous function with its continuous
representative.

Theorem 6.28. If X is a Banach space and 1 ≤ p ≤ ∞, then Lp(0, T ;X) is a

Banach space.

Simple functions of the form

f(t) =

n
∑

i=1

ciχEi
(t),

where ci ∈ X and Ei is a measurable subset of (0, T ), are dense in Lp(0, T ;X). By
mollifying these functions with respect to t, we get the following density result.

Proposition 6.29. If X is a Banach space and 1 ≤ p <∞, then the collection

of functions of the form

f(t) =

n
∑

i=1

ciφi(t) where φi ∈ C∞
c (0, T ) and ci ∈ X

is dense in Lp(0, T ;X).

The characterization of the dual space of a vector-valued Lp-space is analogous
to the scalar-valued case, after we take account of duality in the range space X .

Theorem 6.30. Suppose that 1 ≤ p < ∞ and X is a reflexive Banach space

with dual space X ′. Then the dual of Lp(0, T ;X) is isomorphic to Lp′

(0, T ;X ′)
where

1

p
+

1

p′
= 1.

The action of f ∈ Lp′

(0, T ;X ′) on u ∈ Lp(0, T ;X) is given by

〈〈f, u〉〉 =

∫ T

0

〈f(t), u(t)〉 dt,

where the double brackets denote the Lp′

(X ′)-Lp(X) duality pairing and the single

brackets denote the X ′-X duality pairing.

The proof is more complicated than in the scalar case and some condition on
X is required. Reflexivity is sufficient (as is the condition that X ′ is separable).

6.A.3. Differentiability. The definition of continuity and pointwise differ-
entiability of vector-valued functions are the same as in the scalar case. A function
f : (0, T ) → X is strongly continuous at t ∈ (0, T ) if f(s) → f(t) strongly in X as
s → t, and f is strongly continuous in (0, T ) if it is strongly continuous at every
point of (0, T ). A function f is strongly differentiable at t ∈ (0, T ), with strong
pointwise derivative ft(t), if

ft(t) = lim
h→0

[

f(t+ h)− f(t)

h

]

where the limit exists strongly in X , and f is continuously differentiable in (0, T ) if
its pointwise derivative exists for every t ∈ (0, T ) and ft : (0, T ) → X is a strongly
continuously function.
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The assumption of continuous differentiability is often too strong to be useful,
so we need a weaker notion of the differentiability of a vector-valued function.
As for real-valued functions, such as the step function or the Cantor function, the
requirement that the strong pointwise derivative exists a.e. in (0, T ) does not lead to
an effective theory. Instead we use the notion of a distributional or weak derivative,
which is a natural generalization of the definition for real-valued functions.

Let L1
loc(0, T ;X) denote the space of measurable functions f : (0, T ) → X that

are integrable on every compactly supported interval (a, b) ⋐ (0, T ). Also, as usual,
let C∞

c (0, T ) denote the space of smooth, real-valued functions φ : (0, T ) → R with
compact support, suppφ ⋐ (0, T ).

Definition 6.31. A function f ∈ L1
loc(0, T ;X) is weakly differentiable with

weak derivative ft = g ∈ L1
loc(0, T ;X) if

(6.40)

∫ T

0

φ′f dt = −

∫ T

0

φg dt for every φ ∈ C∞
c (0, T ).

The integrals in (6.40) are understood as Bochner integrals. In the commonly
occurring case where J : X →֒ Y is a continuous embedding, f ∈ L1

loc(0, T ;X), and
(Jf)t ∈ L1

loc(0, T ;Y ), we have from Example 6.23 that

J

(

∫ T

0

φ′f dt

)

=

∫ T

0

φ′Jf dt = −

∫ T

0

φ(Jf)t dt.

Thus, we can identify f with Jf and use (6.40) to define the Y -valued derivative
of an X-valued function. We then write, for example, that f ∈ Lp(0, T ;X) and
ft ∈ Lq(0, T ;Y ) if f(t) is Lp in t with values in X and its weak derivative ft(t) is
Lq in t with values in Y .

If f : (0, T ) → R is a scalar-valued, integrable function, then the Lebesgue
differentiation theorem, Theorem 1.21, implies that the limit

lim
h→0

1

h

∫ t+h

t

f(s) ds

exists and is equal to f(t) for t pointwise a.e. in (0, T ). The same result is true for
vector-valued integrals.

Theorem 6.32. Suppose that X is a Banach space and f ∈ L1(0, T ;X), then

f(t) = lim
h→0

1

h

∫ t+h

t

f(s) ds

for t pointwise a.e. in (0, T ).

Proof. Since f is almost separably valued, we may assume thatX is separable.
Let {cn ∈ X : n ∈ N} be a dense subset of X , then by the Lebesgue differentiation
theorem for real-valued functions

‖f(t)− cn‖ = lim
h→0

1

h

∫ t+h

t

‖f(s)− cn‖ ds
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for every n ∈ N and t pointwise a.e. in (0, T ). Thus, for all such t ∈ (0, T ) and
every n ∈ N, we have

lim sup
h→0

1

h

∫ t+h

t

‖f(s)− f(t)‖ ds

≤ lim sup
h→0

1

h

∫ t+h

t

(‖f(s)− cn‖+ ‖f(t)− cn‖) ds

≤ 2 ‖f(t)− cn‖ .

Since this holds for every cn, it follows that

lim sup
h→0

1

h

∫ t+h

t

‖f(s)− f(t)‖ ds = 0.

Therefore

lim sup
h→0

∥

∥

∥

∥

∥

1

h

∫ t+h

t

f(s) ds− f(t)

∥

∥

∥

∥

∥

≤ lim sup
h→0

1

h

∫ t+h

t

‖f(s)− f(t)‖ ds = 0,

which proves the result. �

The following corollary corresponds to the statement that a regular distribution
determines the values of its associated locally integrable function pointwise almost
everywhere.

Corollary 6.33. Suppose that f : (0, T ) → X is locally integrable and

∫ T

0

φf dt = 0 for every φ ∈ C∞
c (0, T ).

Then f = 0 pointwise a.e. on (0, T ).

Proof. Choose a sequence of test functions 0 ≤ φn ≤ 1 whose supports are
contained inside a fixed compact subset of (0, T ) such that φn → χ(t,t+h) pointwise,
where χ(t,t+h) is the characteristic function of the interval (t, t + h) ⊂ (0, T ). If

f ∈ L1
loc(0, T ;X), then by the dominated convergence theorem

∫ t+h

t

f(s) ds = lim
n→∞

∫ T

0

φn(s)f(s) ds.

Thus, if
∫ T

0 φf ds = 0 for every φ ∈ C∞
c (0, T ), then

∫ t+h

t

f(s) ds = 0

for every (t, t + h) ⊂ (0, T ). It then follows from the Lebesgue differentiation
theorem, Theorem 6.32, that f = 0 pointwise a.e. in (0, T ). �

We also have a vector-valued analog of Proposition 3.6 that the only functions
with zero weak derivative are the constant functions. The proof is similar.

Proposition 6.34. Suppose that f : (0, T ) → X is weakly differentiable and

f ′ = 0. Then f is equivalent to a constant function.



6.A. VECTOR-VALUED FUNCTIONS 203

Proof. The condition that the weak derivative f ′ is zero means that

(6.41)

∫ T

0

fφ′ dt = 0 for all φ ∈ C∞
c (0, T ).

Choose a fixed test function η ∈ C∞
c (0, T ) whose integral is equal to one, and

represent an arbitrary test function φ ∈ C∞
c (0, T ) as

φ = Aη + ψ′

where A ∈ R and ψ ∈ C∞
c (0, T ) are given by

A =

∫ T

0

φdt, ψ(t) =

∫ t

0

[φ(s) −Aη(s)] ds.

If

c =

∫ T

0

ηf dt ∈ X,

then (6.41) implies that

(6.42)

∫ T

0

(f − c)φdt = 0 for all φ ∈ C∞
c (0, T ),

and Corollary 6.33 implies that f = c pointwise a.e. on (0, T ). �

It also follows that a function is weakly differentiable if and only if it is the
integral of an integrable function.

Theorem 6.35. Suppose that X is a Banach space and f ∈ L1(0, T ;X). Then
f is weakly differentiable with integrable derivative ft = g ∈ L1(0, T ;X) if and only

if

(6.43) f(t) = c0 +

∫ t

0

g(s) ds

pointwise a.e. in (0, T ). In that case, f is differentiable pointwise a.e. and its

pointwise derivative coincides with its weak derivative.

Proof. If f is given by (6.43), then

f(t+ h)− f(t)

h
=

1

h

∫ t+h

t

g(s) ds,

and the Lebesgue differentiation theorem, Theorem 6.32, implies that the strong
derivative of f exists pointwise a.e. and is equal to g.

We also have that

∥

∥

∥

∥

f(t+ h)− f(t)

h

∥

∥

∥

∥

≤
1

h

∫ t+h

t

‖g(s)‖ ds.
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Extending f by zero to a function f : R → X , and using Fubini’s theorem, we get
∫

R

∥

∥

∥

∥

f(t+ h)− f(t)

h

∥

∥

∥

∥

dt ≤
1

h

∫

R

(

∫ t+h

t

‖g(s)‖ ds

)

dt

≤
1

h

∫

R

(

∫ h

0

‖g(s+ t)‖ ds

)

dt

≤
1

h

∫ h

0

(
∫

R

‖g(s+ t)‖ dt

)

ds

≤

∫

R

‖g(t)‖ dt.

If φ ∈ C∞
c (0, T ), this estimate justifies the use of the dominated convergence theo-

rem and the previous result on the pointwise a.e. convergence of ft to get
∫ T

0

φ′(t)f(t) dt = lim
h→0

∫ T

0

[

φ(t+ h)− φ(t)

h

]

f(t) dt

= − lim
h→0

∫ T

0

φ(t)

[

f(t)− f(t− h)

h

]

dt

= −

∫ T

0

φ(t)g(t) dt,

which shows that g is the weak derivative of f .
Conversely, if ft = g ∈ L1(0, T ) in the sense of weak derivatives, let

f̃(t) =

∫ t

0

g(s) ds.

Then the previous argument implies that f̃t = g, so the weak derivative (f − f̃)t
is zero. Proposition 6.34 then implies that f − f̃ is constant pointwise a.e., which
gives (6.43). �

We can also characterize the weak derivative of a vector-valued function in
terms of weak derivatives of the real-valued functions obtained by duality.

Proposition 6.36. LetX be a Banach space with dual X ′. If f, g ∈ L1(0, T ;X),
then f is weakly differentiable with ft = g if and only if for every ω ∈ X ′

(6.44)
d

dt
〈ω, f〉 = 〈ω, g〉 as a real-valued weak derivative in (0, T ).

Proof. If ft = g, then
∫ T

0

φ′f dt = −

∫ T

0

φg dt for all φ ∈ C∞
c (0, T ).

Acting on this equation by ω ∈ X ′ and using the continuity of the integral, we get
∫ T

0

φ′〈ω, f〉 dt = −

∫ T

0

φ〈ω, g〉 dt for all φ ∈ C∞
c (0, T )

which is (6.44). Conversely, if (6.44) holds, then
〈

ω,

∫ T

0

(φ′f + φg) dt

〉

= 0 for all ω ∈ X ′,
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which implies that
∫ T

0

(φ′f + φg) dt = 0.

Therefore f is weakly differentiable with ft = g. �

A consequence of these results is that any of the natural ways of defining what
one means for an abstract evolution equation to hold in a weak sense leads to the
same notion of a solution. To be more explicit, suppose that X →֒ Y are Banach
spaces with X continuously and densely embedded in Y and F : X × (0, T ) → Y .
Then a function u ∈ L1(0, T ;X) is a weak solution of the equation

ut = F (u, t)

if it has a weak derivative ut ∈ L1(0, T ;Y ) and ut = F (u, t) for t pointwise a.e. in
(0, T ). Equivalent ways of stating this property are that

u(t) = u0 +

∫ t

0

F (u(s), s) ds for t pointwise a.e. in (0, T );

or that
d

dt
〈ω, u(t)〉 = 〈ω, F (u(t), t)〉 for every ω ∈ Y ′

in the sense of real-valued weak derivatives. Moreover, by approximating arbitrary
smooth functions w : (0, T ) → Y ′ by linear combinations of functions of the form
w(t) = φ(t)ω, we see that this is equivalent to the statement that

−

∫ T

0

〈wt(t), u(t)〉 dt =

∫ T

0

〈w(t), F (u(t), t)〉 dt for every w ∈ C∞
c (0, T ;Y ′).

We define Sobolev spaces of vector-valued functions in the same way as for
scalar-valued functions, and they have similar properties.

Definition 6.37. Suppose that X is a Banach space, k ∈ N, and 1 ≤ p ≤ ∞.
The Banach space W k,p(0, T ;X) consists of all (equivalence classes of) measurable
functions u : (0, T ) → X whose weak derivatives of order 0 ≤ j ≤ k belong to
Lp(0, T ;X). If 1 ≤ p <∞, then the W k,p-norm is defined by

‖u‖Wk,p(0,T ;X) =





k
∑

j=1

∥

∥

∥∂
j
tu
∥

∥

∥

p

X
dt





1/p

;

if p = ∞, then

‖u‖Wk,p(0,T ;X) = sup
1≤j≤k

∥

∥

∥∂
j
t u
∥

∥

∥

X
.

If p = 2, and X = H is a Hilbert space, then W k,2(0, T ;H) = Hk(0, T ;H) is the
Hilbert space with inner product

(u, v)Hk(0,T ;H) =

∫ T

0

(u(t), v(t))H dt.

The Sobolev embedding theorem for scalar-valued functions of a single variable
carries over to the vector-valued case.

Theorem 6.38. If 1 ≤ p ≤ ∞ and u ∈ W 1,p(0, T ;X), then u ∈ C([0, T ];X).
Moreover, there exists a constant C = C(p, T ) such that

‖u‖L∞(0,T ;X) ≤ C ‖u‖W 1,p(0,T ;X) .
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Proof. From Theorem 6.35, we have

‖u(t)− u(s)‖ ≤

∫ t

s

‖ut(r)‖ dr.

Since ‖ut‖ ∈ L1(0, T ), its integral is absolutely continuous, so u is uniformly con-
tinuous on (0, T ) and extends to a continuous function on [0, T ].

If h : (0, T ) → R is defined by h = ‖u‖, then

|h(t)− h(s)| ≤ ‖u(t)− u(s)‖ ≤

∫ t

s

‖ut(r)‖ dr.

It follows that h is absolutely continuous and |ht| ≤ ‖ut‖ pointwise a.e. on (0, T ).
Therefore, by the Sobolev embedding theorem for real valued functions,

‖u‖L∞(0,T ;X) = ‖h‖L∞(0,T ) ≤ C ‖h‖W 1,p(0,T ) ≤ C ‖u‖W 1,p(0,T ;X) .

�

6.A.4. The Radon-Nikodym property. Although we do not use this dis-
cussion elsewhere, it is interesting to consider the relationship between weak differ-
entiability and absolute continuity in the vector-valued case.

The definition of absolute continuity of vector-valued functions is a natural
generalization of the real-valued definition. We say that f : [0, T ] → X is absolutely
continuous if for every ǫ > 0 there exists a δ > 0 such that

N
∑

n=1

‖f(tn)− f(tn−1)‖ < ǫ

for every collection {[t0, t1], [t2, t3], . . . , [tN−1, tN ]} of non-overlapping subintervals
of [0, T ] such that

N
∑

n=1

|tn − tn−1| < δ.

Similarly, f : [0, T ] → X is Lipschitz continuous on [0, T ] if there exists a constant
M ≥ 0 such that

‖f(s)− f(t)‖ ≤M |s− t| for all s, t ∈ [0, T ].

It follows immediately that a Lipschitz continuous function is absolutely continuous
(with δ = ǫ/M).

A real-valued function is weakly differentiable with integrable derivative if and
only if it is absolutely continuous c.f. Theorem 3.60. This is one of the few properties
of real-valued integrals that does not carry over to Bochner integrals in arbitrary
Banach spaces. It follows from the integral representation in Theorem 6.35 that
every weakly differentiable function with integrable derivative is absolutely contin-
uous, but it can happen that an absolutely continuous vector-valued function is not
weakly differentiable.

Example 6.39. Define f : (0, 1) → L1(0, 1) by

f(t) = tχ[0,t].

Then f is Lipschitz continuous, and therefore absolutely continuous. Nevertheless,
the derivative f ′(t) does not exist for any t ∈ (0, 1) since the limit as h → 0 of the
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difference quotient
f(t+ h)− f(t)

h
does not converge in L1(0, 1), so by Theorem 6.35 f is not weakly differentiable.

A Banach space for which every absolutely continuous function has an inte-
grable weak derivative is said to have the Radon-Nikodym property. Any reflexive
Banach space has this property but, as the previous example shows, the space
L1(0, 1) does not. One can use the Radon-Nikodym property to study the geomet-
ric structure of Banach spaces, but this question is not relevant for our purposes.
Most of the spaces we use are reflexive, and even if they are not, we do not need
an explicit characterization of the weakly differentiable functions.

6.B. Hilbert triples

Hilbert triples provide a useful framework for the study of weak and variational
solutions of PDEs. We consider real Hilbert spaces for simplicity. For complex
Hilbert spaces, one has to replace duals by antiduals, as appropriate.

Definition 6.40. A Hilbert triple consists of three separable Hilbert spaces

V →֒ H →֒ V ′

such that V is densely embedded in H, H is densely embedded in V ′, and

〈f, v〉 = (f, v)H for every f ∈ H and v ∈ V .

Hilbert triples are also referred to as Gelfand triples, variational triples, or
rigged Hilbert spaces. In this definition, 〈·, ·〉 : V ′ × V → R denotes the duality
pairing between V ′ and V , and (·, ·)H : H ×H → R denotes the inner product on
H. Thus, we identify: (a) the space V with a dense subspace of H through the
embedding; (b) the dual of the ‘pivot’ space H with itself through its own inner
product, as usual for a Hilbert space; (c) the space H with a subspace of the dual
space V ′, where H acts on V through the H-inner product, not the V-inner product.

In the elliptic and parabolic problems considered above involving a uniformly
elliptic, second-order operator, we have

V = H1
0 (Ω), H = L2(Ω), V ′ = H−1(Ω),

(f, g)H =

∫

Ω

fg dx, (f, g)V =

∫

Ω

Df ·Dg dx,

where Ω ⊂ R
n is a bounded open set. Nothing will be lost by thinking about

this case. The embedding H1
0 (Ω) →֒ L2(Ω) is inclusion. The embedding L2(Ω) →֒

H−1(Ω) is defined by the identification of an L2-function with its corresponding
regular distribution, and the action of f ∈ L2(Ω) on a test function v ∈ H1

0 (Ω) is
given by

〈f, v〉 =

∫

Ω

fv dx.

The isomorphism between V and its dual space V ′ is then given by

−∆ : H1
0 (Ω) → H−1(Ω).

Thus, a Hilbert triple allows us to represent a ‘concrete’ operator, such as −∆, as
an isomorphism between a Hilbert space and its dual.
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As suggested by this example, in studying evolution equations such as the heat
equation ut = ∆u, we are interested in functions u that take values in V whose
weak time-derivatives ut takes values in V ′. The basic facts about such functions
are given in the next theorem, which states roughly that the natural identities for
time derivatives hold provided that the duality pairings they involve make sense.

Theorem 6.41. Let V →֒ H →֒ V ′ be a Hilbert triple. If u ∈ L2(0, T ;V) and

ut ∈ L2(0, T ;V ′), then u ∈ C([0, T ];H). Moreover:

(1) for any v ∈ V, the real-valued function t 7→ (u(t), v)H is weakly differen-

tiable in (0, T ) and

(6.45)
d

dt
(u(t), v)H = 〈ut(t), v〉;

(2) the real-valued function t 7→ ‖u(t)‖2H is weakly differentiable in (0, T ) and

(6.46)
d

dt
‖u‖

2
H = 2〈ut, u〉;

(3) there is a constant C = C(T ) such that

(6.47) ‖u‖L∞(0,T ;H) ≤ C
(

‖u‖L2(0,T ;V) + ‖ut‖L2(0,T ;V′)

)

.

Proof. We extend u to a compactly supported map ũ : (−∞,∞) → V with
ũt ∈ L2(R;V ′). For example, we can do this by reflection of u in the endpoints of
the interval [4]: Write u = φu + ψu on [0, T ] where φ, ψ ∈ C∞

c (R) are nonnegative
test functions such that φ + ψ = 1 on [0, T ] and suppφ ⊂ [−T/4, 3T/4], suppφ ⊂
[T/4, 5T/4]; then extend φu, ψu to compactly supported, weakly differentiable
functions v, w : (−∞,∞) → V defined by

v(t) =











φ(t)u(t) if 0 ≤ t ≤ T ,

φ(−t)u(−t) if −T ≤ t < 0,

0 if |t| > T ,

w(t) =











ψ(t)u(t) if 0 ≤ t ≤ T ,

ψ(2T − t)u(2T − t) if T < t ≤ 2T ,

0 if |t− T | > T ,

and finally define ũ = v + w. Next, we mollify the extension ũ with the standard
mollifier ηǫ : R → R to obtain a smooth approximation

uǫ = ηǫ ∗ ũ ∈ C∞
c (R;V), uǫ(t) =

∫ ∞

−∞

ηǫ(t− s)ũ(s) ds.

The same results that apply to mollifiers of real-valued functions apply to these
vector-valued functions. As ǫ→ 0+, we have: uǫ → u in L2(0, T ;V), uǫt = ηǫ ∗ut →
ut in L2(0, T ;V ′), and uǫ(t) → u(t) in V for t pointwise a.e. in (0, T ). Moreover,
as a consequence of the boundedness of the extension operator and the fact that
mollification does not increase the norm of a function, there exists a constant 0 <
C < 1 such that for all 0 < ǫ ≤ 1, say,

(6.48) C ‖uǫ‖L2(R;V) ≤ ‖u‖L2(0,T ;V) ≤ ‖uǫ‖L2(R;V) .

Since uǫ is a smooth V-valued function and V →֒ H, we have

(6.49) (uǫ(t), uǫ(t))H =

∫ t

−∞

d

ds
(uǫ(s), uǫ(s))H ds = 2

∫ t

−∞

(uǫs(s), u
ǫ(s))H ds.
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Using the analogous formula for uǫ − uδ, the duality estimate and the Cauchy-
Schwartz inequality, we get

∥

∥uǫ(t)− uδ(t)
∥

∥

2

H
≤ 2

∫ ∞

−∞

∥

∥uǫs(s)− uδs(s)
∥

∥

V′

∥

∥uǫ(s)− uδ(s)
∥

∥

V
ds

≤ 2
∥

∥uǫt − uδt
∥

∥

L2(R;V′)

∥

∥uǫ − uδ
∥

∥

L2(R;V)
.

Since {uǫ} is Cauchy in L2(R;V) and {uǫt} is Cauchy in L2(R;V ′), it follows that
{uǫ} is Cauchy in Cc(R;H), and therefore converges uniformly on [0, T ] to a func-
tion v ∈ C([0, T ];H). Since uǫ converges pointwise a.e. to u, it follows that u is
equivalent to v, so u ∈ C([0, T ];H) after being redefined, if necessary, on a set of
measure zero.

Taking the limit of (6.49) as ǫ→ 0+, we find that for t ∈ [0, T ]

‖u(t)‖
2
H = ‖u(0)‖

2
H + 2

∫ t

0

〈us(s), u(s)〉 ds,

which implies that ‖u‖
2
H : [0, T ] → R is absolutely continuous and (6.46) holds.

Moreover, (6.47) follows from (6.48), (6.49), and the Cauchy-Schwartz inequality.
Finally, if φ ∈ C∞

c (0, T ) is a test function φ : (0, T ) → R and v ∈ V , then
φv ∈ C∞

c (0, T ;V). Therefore, since uǫt → ut in L
2(0, T ;V ′),

∫ T

0

〈uǫt, φv〉 dt→

∫ T

0

〈ut, φv〉 dt.

Also, since uǫ is a smooth V-valued function,
∫ T

0

〈uǫt, φv〉 dt = −

∫ T

0

φ′ 〈uǫ, v〉 dt → −

∫ T

0

φ′ 〈u, v〉 dt

We conclude that for every φ ∈ C∞
c (0, T ) and v ∈ V

∫ T

0

φ 〈ut, v〉 dt = −

∫ T

0

φt 〈u, v〉 dt

which is the weak form of (6.45). �

We further have the following integration by parts formula.

Theorem 6.42. Suppose that u, v ∈ L2(0, T ;V) and ut, vt ∈ L2(0, T ;V ′). Then
∫ T

0

〈ut, v〉 dt = (u(T ), v(T ))H − (u(0), v(0))H −

∫ T

0

〈u, vt〉 dt.

Proof. This result holds for smooth functions u, v ∈ C∞([0, T ];V). Therefore
by density and Theorem 6.41 it holds for all functions u, v ∈ L2(0, T ;V) with
ut, vt ∈ L2(0, T ;V ′). �
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