1. Evaluate the following indefinite integrals.
(a)

$$
\begin{aligned}
& \int \sin x \cos x d x \\
& {\left[\begin{array}{l}
u=\sin x \\
d u=\cos x d x
\end{array}\right.} \\
& =\int u d u \\
& =\frac{1}{2} u^{2}+C \\
& =\frac{1}{2} \sin ^{2} x+C
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int \frac{x-1}{x+1} d x \\
& {\left[\begin{array}{l}
u=x+1 \\
d u=d x
\end{array}\right.} \\
= & \int \frac{u-2}{u} d u \\
= & \int 1-\frac{2}{u} d u \\
= & u-2 \ln |u|+C \\
= & x+1-2 \ln |x+1|+C
\end{aligned}
$$

2. Evaluate the following definite integrals.
(a)

$$
\begin{aligned}
& \int_{0}^{1} \sqrt{1+2 r} d r \\
& {\left[\begin{array}{l}
u=1+2 r \\
d u=2 d r
\end{array}\right.} \\
& =\frac{1}{2} \int_{1}^{3} \sqrt{u} d u \\
& \left.=\frac{1}{3} u^{3 / 2}\right]_{1}^{5} \\
& =\frac{1}{3}\left(3^{3 / 2}-1\right)
\end{aligned}
$$

(b)

$$
\int_{-1}^{1} 1-\sqrt{1-x^{2}} d x
$$

From geometric considerations, the area under the graph is $2-\pi / 2$.
3.

$$
\int_{-1}^{4}|x| d x
$$

From geometric considerations, the area under the graph is $\frac{17}{2}$.
4.

$$
\begin{aligned}
& \int \frac{1}{e^{x}+e^{-x}+2} d x \\
& {\left[\begin{array}{l}
u=e^{x} \\
d u=e^{x} d x=u d x
\end{array}\right.} \\
= & \int \frac{1}{u+1 / u+2}\left(\frac{1}{u}\right) d u \\
= & \int \frac{1}{u^{2}+2 u+1} d u \\
= & \int \frac{1}{(u+1)^{2}} d u \\
= & -(u+1)^{-1}+C \\
= & -\left(e^{x}+1\right)^{-1}+C
\end{aligned}
$$

5. For x with $0 \leq x \leq 1$, define $g(x)=\int_{0}^{\pi} t(\sin t)^{x} d t$. Find the maximum value of g over the interval $[0,1]$.

Solution. Suppose that x is a number in $[0,1]$. Since $0 \leq \sin t \leq 1$ for all $t \in[0, \pi]$, we have

$$
(\sin t)^{x} \leq 1=(\sin t)^{0}
$$

It follows that

$$
t(\sin t)^{x} \leq t(\sin t)^{0}
$$

for all t in $[0, \pi]$. Thus by the domination property (see property 7 in table 5.3 and also problem 10 from homework 2), we have

$$
\int_{o}^{\pi} t(\sin t)^{x} d t \leq \int_{0}^{\pi} t(\sin t)^{0} d t
$$

i.e., $g(x) \leq g(0)$. It follows that the max occurs at $g(0)=\int_{0}^{\pi} t d t=\frac{1}{2} \pi^{2}$.
6. Find $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} \cos \left(t^{2}\right) d t$.

Solution. Let $A(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$. Then by the Fundamental Theorem of Calculus, we have $A^{\prime}(x)=\cos \left(x^{2}\right)$. Hence

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{A(x)}{x} & =\lim _{x \rightarrow 0} \frac{A(x)-A(0)}{x} \\
& =A^{\prime}(0) \\
& =\cos \left(0^{2}\right)=1
\end{aligned}
$$

One could also use l'Hopital's rule here (see the solution to problem 6 from homework 2).
7. The gas mileage of a car depends on its velocity. When the velocity is v, the gas mileage is $f(v)=e^{-v^{2}}$ miles/gallon. If the velocity at time t is $v(t)=t$ miles/hour, how many gallons of gas are used after 5 hours?

Solution. Let

$$
\begin{aligned}
g(t) & =\text { gas used by time } t \\
s(t) & =\text { position at time } t
\end{aligned}
$$

From the definition of velocity,

$$
\frac{d s}{d t}=v(t)=t .
$$

From the equation given for gas mileage,

$$
\frac{d s}{d g}=e^{-v^{2}},
$$

which implies that

$$
\frac{d g}{d s}=e^{v^{2}}=e^{t^{2}}
$$

Hence by the chain rule

$$
\begin{aligned}
\frac{d g}{d t} & =\frac{d g}{d s} \frac{d s}{d t} \\
& =e^{t^{2}} \cdot t .
\end{aligned}
$$

The amount of gas used is

$$
\begin{aligned}
\int_{0}^{5} g^{\prime}(t) d t & =\int_{0}^{5} t e^{t^{2}} d t \\
& \left.=\frac{1}{2} e^{t^{2}}\right]_{0}^{5} \\
& =\frac{1}{2} e^{25}-\frac{1}{2} \quad \text { gallons. }
\end{aligned}
$$

Although the calculations here are not difficult, this problem is more conceptual than the others and a majority of the class got 0 points. This was the only problem on the exam not inspired by a homework problem.

