1. (20 points.) The region bounded by the graphs of $y=2 \sqrt{x}, y=2$ and $x=0$ is revolved about the x-axis. Find the volume of the resulting solid.

Solution. Find intersection point:

$$
\begin{aligned}
2 & =2 \sqrt{x} \\
\sqrt{x} & =1 \\
x & =1
\end{aligned}
$$

Washer:

$$
\begin{aligned}
V & =\pi \int_{0}^{1} 2^{2}-(2 \sqrt{x})^{2} d x \\
& =\pi \int_{0}^{1} 4-4 x d x \\
& =\pi\left[4 x-2 x^{2}\right]_{0}^{1}=2 \pi
\end{aligned}
$$

2. (20 points.) The region bounded by the graphs of $y=\sqrt{x}$ and $y=x^{2} / 8$ is revolved about the y-axis. Find the volume of the resulting solid.

Solution. Find intersection points:

$$
\begin{aligned}
\sqrt{x} & =x^{2} / 8 \\
8 \sqrt{x} & =x^{2} \\
64 x & =x^{4} \\
0 & =x^{4}-64 x=x\left(x^{3}-64\right) \\
\Rightarrow x & =0,4
\end{aligned}
$$

Shell:

$$
\begin{aligned}
V & =2 \pi \int_{0}^{4} x\left(\sqrt{x}-\frac{x^{2}}{8}\right) d x \\
& =2 \pi \int_{0}^{4} x^{3 / 2}-\frac{x^{3}}{8} d x \\
& =2 \pi\left[\frac{2}{5} x^{5 / 2}-\frac{1}{32} x^{4}\right]_{0}^{4} \\
& =2 \pi\left[\frac{2}{5} \cdot 32-8\right]=\frac{48 \pi}{5}
\end{aligned}
$$

3. (20 points.) Find the area of the region bounded by the graphs of $y=0, y=2, y=\sqrt{x}$ and $y=\sqrt{x-1}$.

Solution. If you draw a picture you see that horizontal strips are better. The curve on the left is $x=y^{2}$ and the curve on the right is $x=y^{2}+1$. So

$$
\begin{aligned}
A & =\int_{0}^{2}\left(y^{2}+1\right)-y^{2} d y \\
& =\int_{0}^{2} 1 d y=2
\end{aligned}
$$

4. (20 points.) A car traveling at a constant speed of 10 miles per hour has a deteriorating engine. After t hours the gas mileage is $20 /(t+1)$ miles per gallon. How far will the car go on 6 gallons of gas?

Solution. Let $s(t)$ be the position at time t. Then

$$
\frac{d s}{d t}=10 ; \quad \frac{d s}{d g}=\frac{20}{t+1} .
$$

Re-arranging terms gives

$$
d g=\frac{1}{2}(t+1) d t
$$

The gas used by time T is

$$
\begin{aligned}
\int d g & =\int_{0}^{T} \frac{1}{2}(t+1) d t \\
& \left.=\frac{1}{4}(t+1)^{2}\right]_{0}^{T} \\
& =\frac{1}{4}\left[(T+1)^{2}-1\right]
\end{aligned}
$$

This is 6 when $T=4$. After 4 hours the car has gone $10 \times 4=40$ miles.
5. (20 points.) Find the mass of the triangular region below. All lengths are in meters, and the density of the region is given by $\delta(y)=y$ grams $/ \mathrm{m}^{2}$.

Solution. Consider a horizontal strip of width $d y$ at height y. It has length $L(y)=2(1-y)$, which can be seen by the following calculation: The line in the first quadrant is the graph of $y=1-x$, or $x=1-y$, and $L(y)=2 x=2(1-y)$. Thus

$$
\begin{aligned}
\text { strip area } & =L(y) d y \\
\Rightarrow \text { strip mass } d m & =\delta(y) L(y) d y \\
& =y \cdot 2(1-y) d y
\end{aligned}
$$

Hence

$$
\begin{aligned}
m & =\int d m \\
& =\int_{0}^{1} 2 y(1-y) d y \\
& =2 \int_{0}^{1} y-y^{2} d y \\
& =2\left[\frac{1}{2} y^{2}-\frac{1}{3} y^{3}\right]_{0}^{1}=1 / 3 \text { grams }
\end{aligned}
$$

6. (20 points.) Find the area of the surface obtained by revolving the curve $y=x+1,0 \leq x \leq 1$ about the y-axis.

Solution. We have

$$
\begin{aligned}
d s & =\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\sqrt{1+1^{2}} d x \\
& =\sqrt{2} d x
\end{aligned}
$$

so

$$
\begin{aligned}
A & =\int_{0}^{1} 2 \pi x d s \\
& =\int_{0}^{1} 2 \pi x \sqrt{2} d x \\
& =2 \sqrt{2} \pi \int_{0}^{1} x d x \\
& =2 \sqrt{2} \pi\left[\frac{1}{2} x^{2}\right]_{0}^{1}=\sqrt{2} \pi
\end{aligned}
$$

7. (20 points.) A rope 50 meters long weighing 2 Newtons per meter is hanging over the edge of a tall building and does not touch the ground. How much work is required to lift the entire rope to the top of the building?

Solution. When the rope extends a distance x from the top of the building, the weight of the part hanging down is $F(x)=2 x$. Thus the work is

$$
\begin{aligned}
W & =\int_{0}^{50} F(x) d x \\
& =\int_{0}^{50} 2 x d x \\
& \left.=x^{2}\right]_{0}^{50}=2500 \mathrm{Nm}
\end{aligned}
$$

