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“REGULARITY SINGULARITIES” AND THE SCATTERING OF
GRAVITY WAVES IN APPROXIMATE LOCALLY INERTIAL

FRAMES∗

MORITZ REINTJES† AND BLAKE TEMPLE‡

Abstract. It is an open question whether solutions of the Einstein-Euler equations are smooth
enough to admit locally inertial coordinates at points of shock wave interaction, or whether “regu-
larity singularities” can exist at such points. The term regularity singularity was proposed by the
authors as a point in spacetime where the gravitational metric tensor is Lipschitz continuous (C0,1),
but no smoother, in any coordinate system of the C1,1 atlas. An existence theory for shock wave
solutions in C0,1 admitting arbitrary interactions has been proven for the Einstein-Euler equations
in spherically symmetric spacetimes, but C1,1 is the requisite smoothness required for space-time
to be locally flat. Thus the open problem of regularity singularities is the problem as to whether
locally inertial coordinate systems exist at shock waves within the larger C1,1 atlas. To clarify this
open problem, we identify new “Coriolis type” effects in the geometry of C0,1 shock wave metrics
and prove they are essential in the sense that they can never be made to vanish within the atlas of
smooth coordinate transformations, the atlas usually assumed in classical differential geometry. Thus
the problem of existence of regularity singularities is equivalent to the question as to whether or not
these Coriolis type effects are essentially non-removable and ‘real’, or merely coordinate effects that
can be removed, (in analogy to classical Coriolis forces), by going to the less regular atlas of C1,1

transformations. If essentially non-removable, it would argue strongly for a ‘real’ new physical effect
for General Relativity, providing a physical context to the open problem of regularity singularities.
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1. Introduction. A basic question for the shock wave theory in General Rela-
tivity (GR) is the regularity of the gravitational metric at shock waves. Shock waves
are solutions of the Einstein-Euler equations in which the fluid density and velocity
are discontinuous. Shock waves always form in solutions of the compressible Euler
equations whenever the flow is sufficiently compressive, [9, 15]. Shock waves introduce
increase of entropy, time-irreversibility and loss of information into GR, and they also
create discontinuities in the curvature tensors of space-time. Classical shock waves
in non-relativistic gas dynamics are regularized by shock profiles when viscosity and
heat conduction are included, but the theory of dissipation is problematic in relativ-
ity due to the fact that parabolic equations introduce infinite speed of propagation,
and modified theories of dissipation have been controversial as they typically are ei-
ther not causal, or do not admit shock profiles (see [5] for references).1 Moreover,
the discontinuities that appear in the zero dissipation limit are replaced by steep
gradients near the limit, and the essential issues of shock waves persist. Thus the
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1See [5] for a new theory of dissipation based on including relativistic viscosity and heat conduc-
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Stokes-Fourier equations for pure radiation, such that the resulting equations are causal and dissi-
pative, and such that all shocks admit shock profiles.

233



234 M. REINTJES AND B. TEMPLE

Einstein-Euler equations have played a fundamental role in relativity both because
they accurately model highly relativistic flows, and because, at a fundamental level,
shock waves describe an accurate idealized limit which introduces dissipation into
relativity without giving up causality. Even so, it remains an open problem as to
the regularity of the gravitational metric at GR shock waves. Specifically, it is not
known whether the space-time is smooth enough to admit locally inertial coordinates
in which the metric is Minkowski and the derivatives of the metric vanish at points
of shock wave interaction.2 If space-time is not locally inertial in the zero dissipation
limit, then the lack of existence of locally inertial frames in this limit would persist as
an issue under perturbation by shock profiles because the jumps in first-order deriva-
tives would get replaced by large second-order derivatives, and the irregularity of the
metric would simply be spread out over a small region which would appear to be a
regularity singularity in the far field limit.

A basic existence theory for shock wave interactions in the Einstein-Euler equa-
tions based on Glimm’s method was established in [6] for spherically symmetric space-
times, and interestingly, the methods are only sufficient to prove existence for gravi-
tational metrics g which are only Lipschitz continuous. It is not known whether the
metrics associated with solutions in [6], or any more general shock wave solutions,
can be smoothed from C0,1 to C1,1 by coordinate transformation at points of compli-
cated shock wave interaction.3 The metric regularity C1,1 is the minimum regularity
that guarantees a metric admits locally inertial coordinate frames, and for the weak
and strong formulation of the Einstein equations to be equivalent, [16]. Moreover,
within the C1,1 atlas, the condition that solutions be free of delta function sources
is a covariant condition, and this appears to be the weakest atlas with this property,
appropriate for shock wave solutions in GR, c.f. [16].

To set up a framework for addressing the question as to whether metrics associated
with shock waves can be smoothed from C0,1 to C1,1 by coordinate transformation, we
begin below by proving that if g is a shock wave solution which is only C0,1 regular
in one coordinate system, then the metric cannot be smoothed to C1,1 within the
atlas of smooth (say, C2,1) coordinate transformations, the atlas usually assumed in
classical differential geometry. Therefore such metrics do not admit locally inertial
coordinate frames within the smooth atlas, (c.f. Theorem 3.2 below). However, the
Einstein equations remain consistent in the weak sense when the smooth atlas is
extended to the larger atlas of C1,1 coordinate transformations, [16]. The Jacobians
of C1,1 transformations are only C0,1, and thus C1,1 transformations have the required
properties to potentially eliminate jumps in the metric derivatives at shocks. Thus
the more singular atlas of C1,1 coordinate transformations is the atlas that holds the
possibility of lifting the metric regularity to C1,1, [8, 16]. Thus a most natural open
question is whether the gravitation metric can be smoothed from C0,1 to C1,1 by C1,1

coordinate transformations, and this addresses the locally flat character of space-time
at GR shock waves.

Following our work in [12], we define a regularity singularity as a point in space-
time where the metric does not admit locally inertial frames within the C1,1 atlas, and
it is an open problem as to whether regularity singularities can be created by shock

2We say a point of shock wave interaction is a point where multiple waves interact in any
complicated fashion, so long as one of them is a shock wave.

3Here C0,1 denotes continuous with Holder derivative one, (i.e., Lipschitz continuous, [4]), so
for metrics g ∈ C0,1, first derivatives of the metric suffer a jump discontinuity at shocks, while for
g ∈ C1,1 the second derivative suffers a jump discontinuity at shocks.
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wave interactions in GR. The authors know of no physical or mathematical principle
that can rule out regularity singularities in the Einstein-Euler equations ahead of
time, and only mathematical proof can ultimately resolve the issue.

The starting point for our analysis here is the celebrated paper [8] by Israel, in
which he shows that at smooth co-dimension one shock surfaces in n dimensions,
the gravitational metric can always be smoothed from C0,1 to C1,1 by introducing
Gaussian normal coordinates (GNC) at the shock. The transformation to GNC is
a C1,1 transformation [16]. GNC are only defined for single, non-interacting shock
surfaces and do not exist for the more complicated C0,1 metrics constructed in the
Groah-Temple framework [6]. Since Israel’s result in [8], it has been unknown whether
the regularity of the gravitational metric can always be smoothed from C0,1 to C1,1 by
coordinate transformation at shock wave interactions. Thus it remains an outstanding
open problem as to whether space-time is always locally flat at points of shock wave
interaction in GR.

The first extension of Israel’s theorem to the more complicated setting of shock
wave interactions was accomplished by the authors in their recent papers [13, 11].
The proof demonstrates in the first case ever that the gravitational metric can always
be smoothed from C0,1 to C1,1 at a point of interacting shock waves in GR, namely
the case of regular shock wave interaction in spherical symmetry between shocks from
different characteristic families. The proof introduces an explicit physical procedure
for finding the coordinates that display the physics in their simplest form, replacing the
GNC construction in an essential new way, based on solving a non-local hyperbolic-
type system of equations. But the argument is tailored to the specific case of two
interacting shock waves, and there are many miracles in the proof, places where the
Rankine-Hugoniot jump conditions come in to surprisingly make an apparently over-
determined system barely solvable. Thus it is not clear whether or how this proof
can be extended to more complicated shock wave interactions. For complicated shock
interactions, including the more complicated C0,1 solutions that exist by [6], or for
complicated asymmetric shock interactions in (3 + 1)-dimensions, the question as to
the locally flat nature of space-time and whether regularity singularities can be created
by shock wave interactions, remains an open problem.

Our work on the problem has led us to conjecture that if regularity singulari-
ties actually exist, the structure of space-time at the singularity would be essentially
determined by its structure within the smooth atlas alone. That is, at a regularity
singularity, the larger C1,1 atlas would offer no essential improvement in the regularity
of the gravitational metric over and above that observed in the C2,1 atlas. Thus to
begin studying the implications of regularity singularities, should they actually exist,
we first determine properties of a Lipschitz continuous space-time metric within the
smooth C2,1 atlas in a neighborhood of a point on a single shock surface. These prop-
erties extend easily to the case of shock wave interaction. Our purpose in this paper,
then, is to establish physical implications of the assumption that the gravitational
metric is no more regular than its regularity within the smooth atlas.

In Theorem 3.2 we prove that, restricting to the smooth atlas for a metric Lip-
schitz continuous across shock surfaces, the closest one can get to a locally inertial
coordinate system is one which is approximate locally inertial in a natural sense we
make precise. We then characterize what we interpret as Coriolis type effects in
approximate locally inertial coordinates, effects which arise from terms which only
vanish in a true locally inertial coordinate system, should one exist. These Corio-
lis type effects are analogous to classical Newtonian Coriolis forces which are due to



236 M. REINTJES AND B. TEMPLE

terms in the gravitational force law which arise from the rotation of the earth, but
would vanish in a true locally inertial coordinate system. (Keep in mind that classical
Coriolis forces would be treated as real until inertial coordinates, which remove them,
are identified.) In Section 5, we identify the Coriolis terms in the geodesic equa-
tions in approximate locally inertial frames. In Theorem 6.1 of Section 6, we derive
a canonical form of the linearized Einstein equations in approximate locally inertial
coordinate systems and use this to identify the Coriolis terms associated with gravity
waves. In Theorem 6.3, we use our formulation of the linearized Einstein equations
to prove that these Coriolis terms are nonzero and cannot be removed by coordinate
transformation to any approximate locally inertial frame. This quantifies the con-
tributions to the scattering of gravitational radiation in approximate locally inertial
coordinates. The main results are summarized in Theorem 5.1. Theorem 5.1 is in-
teresting in its own right, because it describes how far a metric Lipschitz continuous
across shock surfaces is from being locally inertial within the smooth atlas, in terms
of gravitational radiation. Within this context, the open problem of regularity sin-
gularities, then, is the problem as to whether locally inertial coordinate systems and
the essential regularity of space-time can be improved upon by extending the smooth
atlas to the larger C1,1 atlas. We conclude that, if no such improvement exists, then
the quantifiable effects produced by these non-removable Coriolis terms are physical
implications of regularity singularities. 4

2. Preliminaries. In General Relativity, the gravitational field is described by a
Lorentzian metric g of signature (−1, 1, 1, 1) on a four-dimensional spacetime manifold
M . We call M a Ck-manifold if it is endowed with a Ck-atlas, a collection of four-
dimensional local diffeomorphisms that are Ck regular from M to R4. A composition
of two local diffeomorphisms x and y of the form x◦y−1 is referred to as a coordinate
transformation.

Our index notation for tensors here sometimes uses indices to determine the coor-
dinate system, e.g., T µ

ν denotes a (1, 1)-tensor in coordinates xµ and Tα
β denotes the

same tensor in coordinates xα. We use the Einstein summation convention whereby
repeated up-down indices are summed over all values for the given indices. Tensors
transform by contraction with the Jacobian Jµ

α = ∂xµ

∂xα and the inverse Jacobian,
(J−1)αν , which we denote by Jα

ν whenever there is no confusion. In particular, the
metric transforms as gµν = Jα

µ J
β
ν gαβ . Tensor-indices are raised and lowered with the

metric gµν and its inverse gµν .

The time evolution of a gravitational field in general relativity is governed by the
Einstein equations [3]

Gij = κT ij, (2.1)

a system of 10 second-order partial differential equations that relate the metric tensor

4The assumption that the curvature tensors contain no delta function sources is crucial for the
conjecture as to whether regularity singularities exist in GR. Shock surfaces, by definition, are weak
solutions which contain no delta function sources. Interfaces which contain delta function sources
were introduced in Israel’s theory of thin shells, and these include the domain wall between the false
vacuum and the true vacuum in Guth’s celebrated theory of inflation, [1]. Metrics with interfaces
containing delta function sources lie in C0,1, but cannot be smoothed to C1,1 within the C1,1 atlas
at the start because C1,1 metrics have classical curvature tensors which contradict the existence of
delta function sources. But, when the curvature tensor is free of delta function sources, there appears
to be no physical reason for this loss of regularity.
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gij to the undifferentiated sources T ij through the Einstein curvature tensor

Gij = Rij −
1

2
Rgij , (2.2)

a tensor involving second derivatives of g. The Ricci tensor, Rjl, is the trace of the
Riemann tensor, and the scalar curvature, R, is the trace of the Ricci tensor, that is,

Rjl = gikRijkl and R = gjlRjl.

The Riemann tensor is given in terms of the Christoffel symbols Γi
lj by the formula

Rijkl = Γijk,l − Γijl,k + gσρ (ΓiσlΓρjk − ΓiσkΓρjl) , (2.3)

where

Γl ij =
1

2
(gli,j + gjl,i − gij,l) and Γk

ij = gklΓl ij . (2.4)

and κ = − 8π
c4
G is the coupling constant which incorporates Newton’s gravitational

constant G and the speed of light c.5 Here T ij is the energy-momentum tensor. For
our methods we do not need to specify the matter sources, but our motivation comes
from the case when T ij is the energy-momentum tensor for a perfect fluid,

T ij = (p+ ρ)uiuj + pgij, (2.5)

where ρ is the energy density, ui the unit 4-velocity, uiui = −1, and p the pressure.
Conservation of energy and momentum enter the Einstein equations through

T ij
;j = 0 , (2.6)

which reduces to the relativistic compressible Euler equations in flat spacetime, and
follows from the divergence-free property of the Einstein equations, Gij

;j = 0, a
property built into G at the start as an identity following from the Bianchi identities
of geometry, [20]. Here as usual, semicolon denotes covariant differentiation

vi;j = vi,j + Γi
ljv

l,

where Γi
lj denote the Christoffel symbols associated with metric g, defined in (2.4).

In the special case of a perfect fluid, equations (2.1) and (2.6) form the coupled
Einstein-Euler equations; a system of second-order differential equations for the un-
known metric gij , coupled to the fluid variables ρ, p and uj, a system which closes
upon specification of the equation of state, [20].

In special relativity the spacetime metric is taken to be gij ≡ ηij where
ηij = diag(−1, 1, 1, 1) is the Minkowski metric, in which case (2.6) reduces to the
relativistic compressible Euler equations, a system of conservation laws in which it

5Note that because the curvature tensor is anti-symmetric in (k, l) it requires a choice of sign, and
this choice is not uniform in the literature. Here we use Weinberg’s convention [20], also used by the
tensor package of MAPLE, and with this sign convention for the curvature tensor, the gravitational
constant κ is negative, i.e., κ = − 8π

c4
G. The careful reader should beware that Hawking and Ellis,

as well as the MAPLE geometry package, use the opposite sign convention, defining R to be minus
our R, resulting in κ = 8π

c4
G. Note that Weinberg’s convention η = (1,−1,−1,−1), different from

ours, has no bearing on this choice of sign. We also point out that our methods apply essentially
unchanged for non-zero cosmological constant.
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is well-known that shock waves form out of smooth initial data whenever the flow is
sufficiently compressive. Shock waves are discontinuous solutions that solve the Euler
equations weakly, in a distributional sense, [9, 15]. Across a smooth shock surface Σ,
the Rankine-Hugoniot jump conditions hold,

[T ij ]nj = 0, (2.7)

where [f ] = fL−fR denotes the jump from right to left in function f across Σ, and nj

is the surface normal. In particular, for smooth shock surfaces, the jump conditions
(2.7) are equivalent to the shock wave solution satisfying the weak formulation of (2.6)
across Σ, c.f. [15].

3. The smooth (C2,1) atlas at points of shock wave interaction and
approximate locally inertial frames. At a point p where the space-time metric
is at least C1,1, the Riemann normal coordinate construction implies that one can
always transform the metric to locally inertial coordinates at p, coordinates for which
gij(p) = ηij ≡ diag(−1, 1, 1, 1) and gαβ,γ(p) = 0 so that the metric can be Taylor-
expanded and written as

gαβ = ηαβ +O(δ2), (3.1)

where δ is the 4-dimensional (Euclidean, non-covariant) coordinate distance to p.
That is,

δ(q) ≡ δ(x(q) − x(p)) =

√

√

√

√

3
∑

α=0

∣

∣xα(q) − xα(p)
∣

∣

2
. (3.2)

In Theorem 3.2 below we show that the closest you can get to a locally inertial
coordinate frame within the atlas of smooth (at least C2,1) coordinate transformations
for a Lipschitz metric at a point of shock wave interaction is an approximate locally
inertial coordinate system, a term we make precise in the following definition.

Definition 3.1. We call a coordinate system xα an “approximate locally inertial
coordinate system” at a point p if the metric takes the form

g = η + ḡ

in a neighborhood V of p where ḡ is a Lipschitz continuous symmetric tensor vanishing
at p, satisfying the condition that there exists an open set U ⊂ V containing p in its
closure, constants M, M̄ > 0, and indices α,β, γ ∈ {0, ..., 3}, such that ḡ is smooth6

in U , and
∣

∣ḡαβ,γ
∣

∣ > M in U, (3.3)

and, as a consequence of the Lipschitz continuity of ḡ,
∣

∣ḡαβ(q)
∣

∣ ≤ M̄ δ(q) in U, (3.4)

where δ is defined in (3.2).

Condition (3.3) says that the shock wave interaction at p is sufficiently localized
that there still exists an open set U with p in its closure in which the metric is smooth,

6In all of this paper ḡ ∈ C1,1(U) suffices, except for Section 6.1 where ḡ ∈ C2,1(U) suffices.
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but the derivative of the metric has a lower bound within this set, because the metric
derivative takes a minimum jump on some shock wave in the neighborhood. This is
a very weak structural condition which should easily be met at a point of finite shock
wave interaction, including the shock waves which have been simulated in [19], by
choosing U as one of the regions between two adjacent shock curves intersecting in p.
The metric smoothness in U makes our analysis in Section 6 feasible.

Our next theorem, gives a precise sense in which approximate locally inertial
frames are the closest you can get to an actual locally inertial frame within the smooth
atlas in a neighborhood of a point on a smooth shock surface across which the metric
is only Lipschitz continuous. The result extends from single shock surfaces to points
of multiple shock wave interaction.

Theorem 3.2. Assume a gravitational metric gµν is Lipschitz continuous across
a smooth co-dimension one (shock) surface Σ in a given coordinate system xµ, in the
sense that the metric is smooth (at least C1,1) away from Σ and smooth tangential to
Σ, and such that there exists a constant M > 0 and indices µ, ν,σ such that the jump
in the derivative, [gµν,σ], across the shock surface satisfies

∣

∣[gµν,σ]
∣

∣ > M. (3.5)

Then the following holds: (i) For any coordinate system xα that can be reached within
the C2,1 atlas, the transformed metric gαβ = Jµ

αJ
ν
βgµν is Lipschitz continuous but no

smoother and there exist indices α,β, γ such that across the shock surface

∣

∣[gαβ,γ ](q)
∣

∣ > ∥J−1(q)∥−3 M, (3.6)

for all q ∈ Σ inside the coordinate patch and where ∥ · ∥ denotes the operator norm
induced by the maximum norm on R4, (c.f. (3.8) below). (ii) Given a point p ∈ Σ, you
can always find a coordinate transformation within the C2,1 atlas such that gαβ(p) =
ηαβ, and every such coordinate system is an approximate locally inertial coordinate
system in the sense of Definition 3.1, but never exactly locally inertial.

The condition (3.6) shows that M is a uniform bound over all coordinate trans-
formations with bounded Jacobian. Thus assuming the shock strength is on the order
of the jump in the derivatives in the original coordinates, M is then on the order of
the shock strength, giving it an invariant physical meaning.

Proof. To prove (i), we follow the idea leading to the smoothing condition, first
introduced in [12], which lies at the heart of the method in [11, 13]: The covariant
transformation law of the metric is given by gαβ = Jµ

αJ
ν
βgµν , where Jµ

α = ∂xµ

∂xα is the
Jacobian of the coordinate transformation. Differentiating this transformation law
with respect to σ (we assume the index σ belongs to the coordinates xµ) and taking
the jump of the resulting expression across Σ leads to

[gαβ,σ] =
(

[Jµ
α,σ]J

ν
β + Jµ

α [J
ν
β,σ]

)

gµν + Jµ
αJ

ν
β [gµν,σ],

for all indices α,β and σ. The above equation holds point-wise on Σ and the first term
on the right hand side vanishes since the Jacobians are continuously differentiable.
Thus, contracting the resulting equation with the inverse Jacobians Jα

µ and Jβ
ν gives

Jα
µ J

β
ν J

γ
σ [gαβ,γ ] = [gµν,σ].
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Taking the maximum of the absolute value of all components of the previous equation,
we get

max
µ,ν,σ

∣

∣Jα
µ J

β
ν J

γ
σ [gαβ,γ]

∣

∣ = max
µ,ν,σ

∣

∣[gµν,σ]
∣

∣ > M, (3.7)

where the lower bound of the right hand side follows from (3.5). The left hand side
can now be bounded from above as follows: Let ∥ · ∥ denote the induced operator
norm (taken point-wise for q ∈ Σ), that is, for the inverse Jacobian, (J−1)αµ ≡ Jα

µ , we
have

∥J−1(q)∥ = sup
{

max
µ

|Jα
µ (q)wα|

∣

∣

∣
wα ∈ R,α ∈ {0, ..., 3} and max

α
|wα| = 1

}

, (3.8)

from which, for fixed µ, ν,σ, we successively get
∣

∣Jα
µ J

β
ν J

γ
σ [gαβ,γ ]

∣

∣ ≤
∥

∥J−1
∥

∥ ·max
α

∣

∣Jβ
ν J

γ
σ [gαβ,γ ]

∣

∣

≤
∥

∥J−1
∥

∥

2
·max

α,β

∣

∣Jγ
σ [gαβ,γ ]

∣

∣

≤
∥

∥J−1
∥

∥

3
· max
α,β,γ

∣

∣[gαβ,γ ]
∣

∣.

Using the above inequality to replace the left hand side in (3.7), we obtain

max
α,β,γ

∣

∣[gαβ,γ]
∣

∣ >
∥

∥J−1
∥

∥

−3
M,

which proves (3.6) for some indices α,β, γ, completing the proof of (i).
We now prove (ii). By the symmetry of gµν(p) there exist an orthonormal basis

of eigenvectors at p. Choosing the Jacobian on a neighborhood around p to be the
constant matrix that maps the coordinate basis of xµ to this orthonormal basis at p,
we achieve a coordinate system xα within the smooth atlas for which gαβ(p) = ηαβ .
We now prove that xα is an approximate locally inertial frame. Defining ḡ = g − η,
the Lipschitz continuity implies (3.4) with M̄ being the Lipschitz constant of g at p.
The inequality (3.3) follows from the metric smoothness away from the shock surface
together with (3.6), where we can take U to be the open set to the left or right of Σ.
This completes the proof of the Theorem 3.2.

4. Regularity singularities. Assume a Lipschitz continuous gravitational met-
ric whose Riemann curvature tensor is bounded with discontinuities containing no
delta function sources, c.f. [12].

Definition 4.1. We say that a point p in space-time is a regularity singularity if
there does not exist a locally inertial coordinate system at p within the C1,1 atlas. We
say a point p is a weak regularity singularity if there exists locally inertial frames at
p, but the metric is not C1,1 regular in a neighborhood of p, in any coordinate system
of the C1,1 atlas.

We conjecture that if a regularity singularity exists, then the C1,1 atlas would
offer no improvement to the smooth atlas regarding locally inertial frames, [6, 11, 16].
Theorem 3.2 implies that regularity singularities exist when the atlas is restricted to
the class of smooth coordinate transformations. The open question, then, is whether
weak or strong regularity singularities exist with respect to the C1,1 atlas, at points of
shock wave interaction. Note that if a metric can be smoothed to C1,1 in a neighbor-
hood of p, it must then admit locally inertial frames at p, but it is an open problem as
to whether a metric might admit locally inertial frames at p, but not be smoothable
to C1,1 in a neighborhood of p. Thus we make the distinction between regularity
singularities and weak regularity singularities.
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5. Coriolis type effects in approximate locally inertial coordinates and
statement of the main result. In a locally inertial coordinate system centered at a
point p where the spacetime is locally flat, the motion of test particles in free-fall will
follow geodesics which are straight lines to errors quadratic in coordinate distance to
p, because the Christoffel symbols vanish at p, i.e., Γl

ij(p) = 0. Thus, neglecting these
second-order errors, the geodesic equation is,

d2xl

dτ2
= Γl

ij(p)ẋ
iẋj = 0,

where τ parameterizes the curve, c.f. [20]. In contrast, if p is a regularity singularity,
then by (3.3), in each approximate locally inertial coordinate frame, there exists
components of the metric whose derivatives are bounded from below by a constant
M > 0 in an open set U containing p in its closure. Since we can always solve for
the derivatives of the metric in terms of the Christoffel symbols at a point via the
formula,

ḡαβ,γ = gαβ,γ = Γαβγ + Γβ γα,

there exists some set of indices, which for simplicity we again label as α,β, γ, such
that

|Γγ
αβ | ≥ M/2, (5.1)

in the open set U . To avoid technicalities, (possible cancellations), assume for sim-
plicity that α = 0 = β. Then, choosing initial data for the geodesic such that ẋ0 = 1
and ẋi = 0 for i = 1, ..., 3, the corresponding geodesic equation for the fixed indices
α = 0 = β and γ becomes initially

d2xγ

dτ2
= Γγ

00,

thereby isolating the presence of an acceleration in the geodesic on the order of
∣

∣Γγ
00

∣

∣ ≥
M/2 throughout an open set U in each approximate locally inertial coordinate frame.
We refer to the non-vanishing terms Γγ

αβ as Coriolis terms. Since by Israel’s theorem
points on single shock surfaces admit locally inertial coordinates, such Coriolis terms
and the resulting acceleration effects can be removed at points p on single shock
surfaces, but by definition such effects could not be removed if p were a regularity
singularity.

Thus, at a regularity singularity, the non-removable Coriolis terms create geodesic
deflection and scattering effects which (by definition) could not be removed by coor-
dinate transformations. That is, in case spacetime is locally inertial, the trajectory
of a particle following a geodesic curve can locally be approximated by a straight
line with second-order error terms (in coordinate distance), which are determined by
the curvature of spacetime. In case a regularity singularity is present at p, (larger)
first order errors, which are due to the Coriolis terms, deflect the possible motion of
the trajectory beyond what would be expected by the second-order errors (and hence
curvature) alone. Since the Coriolis terms are of order M , the order of the shock
strengths, they would represent physical effects at a regularity singularity should one
exist.

The purpose of the remainder of this paper is to characterize the non-removable
Coriolis acceleration terms that appear in the linearized Einstein equations associated
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with a given approximate locally inertial coordinate system in the sense of Definition
3.1. In particular, shock wave interactions will typically form in dense matter where
geodesic motion of test particles would be highly obscured by the matter, but, gravity
waves are weakly interacting with matter, and the scattering of such waves at regular-
ity singularities could be an effect that would in principle be measurable. In the next
section we derive a canonical form for the linearized Einstein equations for gravity
waves in approximate locally inertial coordinates, accomplished in Theorem 6.1. The
main technical problem is to identify non-zero terms first-order in the derivatives of
g, which survive in the linearized equations after all cancellation is accounted for.
Indeed, since the curvature tensor has no delta function sources, we know that delta
function sources in the second derivatives must all cancel out in the curvature tensor
in an approximate locally inertial coordinate frame. This then begs the question as
to whether there is a corresponding cancellation in the gravity wave equations that
makes it so that nonzero first-order derivatives have no physical observable effect due
to cancellation as well. We answer this question in Theorem 6.3 by proving that
no such cancellation occurs. Combining Theorems 6.1 and 6.3, we obtain our main
theorem which states that no such cancellation occurs, and the linearized Einstein
equations cannot be reduced to the Minkowski wave equation at p in any approxi-
mate locally inertial frame. (We always assume a background metric with curvature
tensor bounded and free of delta functions sources.)

Theorem 5.1. For each approximate locally inertial coordinate system centered
at a point p, and for each perturbation of the gravitational metric of the form η+ḡ+ϵh,
there exist a wave gauge such that, to leading order in ϵ > 0, the linearized Einstein
equations take the form

1

2
!ηhjl = κ

(

T̃jl −
1

2
ηjlη

σρT̃σρ

)

−
κ

2
(hjlη

σρ + ηjlh
σρ) T̂σρ−hikR̂ijkl − Cjl(h), (5.2)

where !η ≡ ηρσ ∂2

∂xρ∂xσ is the wave operator, T̂ is the matter source and R̂ is the

bounded curvature for the background metric ĝ = η + ḡ, T̃ is the contribution to the
matter sources due to the perturbation h, and the terms Cij are the new Coriolis terms
which involve first derivatives of ḡ and hence would vanish in an actual locally inertial
frame, were one to exist. Moreover, for each locally inertial frame, equations (5.2)
always admit solutions h and indicies j and l such that

|Cjl(h)| ≥
1

4
M (5.3)

in some open set containing p in its closure.7

Since a gravity wave at a locally inertial point of spacetime evolves to leading
order by the pure wave equation of Minkowski spacetime, the term C(h) supplies the
accelerations which characterize the scattering of gravity waves by the singularity.
Since C(h) depends on the wave h as well as on the choice of coordinate system, the
challenge is to prove that in every approximate locally inertial frame, there exists
an h where the magnitude of C is on the order of h, and this is the substance of
the Theorem. It establishes that regularity singularities would create Coriolis type

7That is, the regularity singularity creates non-removable accelerations in each approximate
locally inertial coordinate system within the class of gravity waves that meet the wave gauge in that
coordinate system, a physically verifiable condition.
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accelerations that can not be removed by coordinate transformation due to the non-
existence of locally inertial frames. We thus propose that if regularity singularities
exist, this is a physical scattering effect of the gravitational field due essentially to the
lack of regularity in the underlying spacetime geometry.

6. Linearizing the Einstein equations at a regularity singularity. In this
section we formally derive the linearized Einstein equations in approximate locally
inertial coordinate systems as defined in Definition 3.1. The main issue here is to
incorporate the first-order derivatives of the metric into the linearized equations, (c.f.
[14] for a detailed description of the linearization procedure around the Minkowski
metric).

To start, assume an approximate locally inertial coordinate system xj at p where

ĝij = ηij + ḡij , (6.1)

where ḡ is at best Lipschitz continuous, and we always assume the curvature tensor is
bounded and free of delta function sources. Gravitational waves propagating through
this background spacetime are represented by a symmetric tensor hij such that the
perturbed spacetime metric takes the form

gij = ηij + ḡij + ϵhij , (6.2)

for some sufficiently small constant ϵ > 0. In the next paragraph we introduce the
wave gauge, and linearize the equations in this gauge. This is accomplished formally
by substituting (6.2) into the Einstein equations in the wave gauge, assuming the
neighborhood size δ is order ϵ, and discarding terms of order ϵ2. The linearized
equations (5.2) then emerge as the equations, linear in h, which result at order ϵ. We
then prove that not all Cjl can vanish in a given locally inertial coordinate system,
and since the equations are linear in h, we conclude that there exist solutions h which
experience nonzero accelerations due to the Coriolis terms Cjl. In this argument
we do not address the issue of the validity of neglecting the O(ϵ2) terms based on
the smoothness of the perturbations h. For example, in the case of two interacting
shocks, a gravity wave perturbation ϵh would create a small change in the positions
of the shock waves encoded in the metric ḡ, and in such a case the derivatives of the
perturbation ϵh would not necessarily be small. However, as long as we can restrict
to a subset of the original neighborhood in which the perturbation h is smooth,
the linearization procedure would be valid in this neighborhood, and the effect of
the Coriolis terms on h would be observed in that neighborhood. Thus, for our
purposes here, we are content with applying the formal linearization procedure and
not concerning ourselves with the actual regularity of the perturbations h. In line
with this, we here understand second order derivatives of the background metric
tensor ḡij , which is C1,1 regular in the region under consideration, in a point-wise
almost everywhere sense.

6.1. The wave gauge. To linearize the Einstein equations in approximate lo-
cally inertial coordinates, we introduce the wave gauge condition, (also called the
harmonic gauge condition, [2, 7, 14]), on solutions of the Einstein equations. The
wave gauge condition removes the gauge freedom from the Einstein equations by re-
ducing the leading order terms to the wave operator (i.e., the D’Alambertian), and
provides a canonical form for the Coriolis terms in the context of gravitational radi-
ation. Differently from the standard linearization procedure, we start by introducing
a wave gauge condition on the initial data for h which is propagated exactly by the
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full nonlinear Einstein equations, rather than by the linearized equation. In this
gauge, the Einstein equations in the highest order derivatives produce the hyperbolic
wave operator

(

ηij + ḡij
)

∂
∂xi

∂
∂xj of the background spacetime. Now, ḡ is O(δ) and

δ = O(ϵ) so only ηij ∂
∂xi

∂
∂xj survives in the leading order derivatives at order O(ϵ) in

the linearization procedure. The main point then is that derivatives of ḡ are O(1)
in approximate locally inertial coordinates, so they appear at order O(ϵ) on lower
order derivatives of the equations in wave gauge, the result being that the first-order
derivatives of ḡ only affect the lower order derivatives of the resulting linearized equa-
tions at order O(ϵ). These terms then constitute the sought after Coriolis terms.
In particular, by this choice of wave gauge, it follows that we can only expect the
wave gauge condition to be maintained within O(ϵ2) errors under evolution by the
linearized equations.

Following the development in [2], we define the wave gauge condition by

ωi = 0, (6.3)

where

ωi ≡ ϵ gσρΓ̃iσρ, (6.4)

for

Γ̃k ij =
1

2
(hik,j + hjk,i − hij,k) ,

so that

ϵΓ̃k ij = Γk ij − Γ̂k ij ,

with Γk ij denoting the Christoffel symbols of g = ĝ + ϵh and Γ̂k ij the Christoffel
symbols of the background metric ĝ = η + ḡ. As was shown in Choquet-Bruhat’s
pioneering work on the existence theory of the Einstein equations, (6.3) is a condition
on the Cauchy data only [2, 7]. That is, Choquet-Bruhat proved that whenever the
initial data of a solution of the Einstein equations satisfies (6.3), the Bianchi identities
ensure that (6.3) holds in the whole Cauchy development. We explain this remarkable
property of the Einstein equations in the following formal exposition.

In her celebrated existence theory, to overcome the problem of the Einstein equa-
tions being degenerate hyperbolic, due to the constraint equations, Choquet-Bruhat’s
strategy was to introduce the reduced Einstein equations, a modified hyperbolic ver-
sion of the Einstein equations to which the Leray-existence theory can be applied
directly. The idea is that the solution of the reduced Einstein equations then solves
the Einstein equations as long as it satisfies the wave gauge. For our purposes we take
the reduced Einstein equations to be

Hij [g] = κ

(

Tij −
1

2
gijTσρg

σρ

)

, (6.5)

DivgT = 0, (6.6)

where in a given coordinate system xj the “reduced” Ricci tensor is defined in terms
of the Ricci tensor and the gauge fields by

Hij [g] = Rij [g] + ωi,j + ωj,i , (6.7)
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and (6.6) expresses conservation of energy for the matter fields, which no longer is a
consequence of the coupling to the Einstein tensor, c.f. [2, 7].

The system (6.5)-(6.6) is a system for the pair (gij , Tij), giving 14 equations in
14 unknowns. To compare, the original Einstein equations consist of four constraint
equations and six evolutionary equations for gij . Assuming the constraint equations
are satisfied initially, and assuming the six evolutionary equations hold, one can use
the Bianchi identities to replace the constraint equation by DivgT = 0, resulting in
ten evolutionary equations in 14 unknowns. This leaves four degrees of freedom upon
which to impose gauge conditions. The idea of the reduced Einstein equations is to
give up the gauge freedom. Namely, fix any coordinate system xi, then (6.5) and (6.6)
give 14 equations in 14 unknowns in xi. The ten equations for the metric are second-
order hyperbolic and the four for conservation are first-order hyperbolic, and there is
a unique evolution of initial data. We show in the following that this evolution agrees
with the evolution of the Einstein equations whenever the gauge condition (6.3) holds.

To start, we first show that H [g] is a hyperbolic operator. For this, it suffices to
consider the terms of the Ricci tensor containing second-order derivatives. By (2.3) -
(2.4), these terms are given by

gikΓij[k,l] =
1

2
gik (gik,jl − gjk,il − gil,jk + gjl,ik) (6.8)

=
1

2
gikgjl,ik −

1

2

(

gik
[

gjk,il −
1

2
gik,jl

]

+ gik
[

gil,jk −
1

2
gik,jl

])

=
1

2
!ggjl −

1

2

(

gik∂l

[

gjk,i −
1

2
gik,j

]

+ gik∂j

[

gil,k −
1

2
gik,l

])

,

where !ggjl ≡ gikgjl,ik denotes the wave equation based on g and

Γij[k,l] ≡ Γijk,l − Γijl,k.

A straight-forward computation starting from the definition of the Christoffel symbols
(2.4) shows that

gik
(

gjk,i −
1

2
gik,j

)

= gσρΓj σρ = gσρ
(

Γ̂j σρ + ϵΓ̃j σρ

)

,

where we used that Γk ij = Γ̂k ij + ϵ Γ̃k ij . We now conclude by (6.4) that

ωj = gik
(

gjk,i −
1

2
gik,j

)

− gikΓ̂j ik. (6.9)

Substituting (6.9) into (6.8) gives the leading order part of the Ricci tensor as

gikΓij[k,l] =
1

2
!ggjl − (ωj,l + ωl,j) + l.o.t.

=
ϵ

2
!ghjl − (ωj,l + ωl,j) + l.o.t., (6.10)

where l.o.t. denotes sums of all terms not relevant to the hyperbolic structure of the
Einstein equations for h, that is, sums of terms containing h and first derivatives of
h, together with terms containing up to second-order derivatives of the background
metric ĝ. From (6.10), it follows that

Rij =
ϵ

2
!ghjl − (ωj,l + ωl,j) + l.o.t.
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and hence

Hij [g] =
ϵ

2
!ghjl + l.o.t. .

The conclusion then is that the reduced Einstein equations are hyperbolic and reduce
to the Einstein equations whenever the gauge condition (6.3) holds, c.f. [2].

In this context, we now outline Choquet-Bruhat’s argument for the wave gauge
(6.3) being propagated by the reduced Einstein equations, (6.5) - (6.6). That is, we
show that if the wave gauge holds initially, then it is satisfied in the whole Cauchy
development. To begin, assume the Einstein constraint equations and the wave gauge
conditions are satisfied by the initial data. In order to apply the Bianchi identities in
the form DivgG = 0, we write (6.5) in its equivalent form

Hij [g]−
1

2
gijHσρ[g]g

σρ = κTij , (6.11)

and correspondingly the definition of Hij [g] in (6.7) as

Hij [g]−
1

2
gijHσρ[g]g

σρ = Gij [g] + ωi,j + ωj,i −
1

2
gij (ωσ,ρ + ωρ,σ) g

σρ

= Gij [g] + ωi,j + ωj,i − gijg
σρωσ,ρ. (6.12)

Then substituting (6.12) into (6.11) leads to the following equivalent form of the
reduced Einstein equations

κTij −Gij [g] = ωi,j + ωj,i − gijg
σρωσ,ρ. (6.13)

Taking the divergence of (6.13) and using the conservation equation (6.6) as well as
the Bianchi identities in the form DivgG = 0, the left hand side of (6.13) vanishes
and we obtain

gjτωi,jτ + gjτωj,iτ − gσρωσ,ρi + Lσρ
i ωσ,ρ = 0, (6.14)

where Lσ
i depends only on g and on the Christoffel symbols of g. A direct computation

shows that the second and third terms in (6.14) cancel, so that (6.14) is equivalent to

gσρωi,σρ + Lσρ
i ωσ,ρ = 0. (6.15)

The main point now is that (6.15) is a homogeneous hyperbolic second-order equation
for ωi, so that the unique solution of (6.15) vanishes whenever its initial data vanishes.
Thus, to prove that the wave gauge holds in the Cauchy development, assuming the
gauge condition (6.3) holds initially, it remains only to prove that the derivatives of
ωi in a direction normal to the Cauchy surface vanish initially. For our purposes it
suffices to consider the Cauchy surface Σ = {x0 = 0} only. We now show that the
sought-after vanishing of ωi,0 on Σ follows from the Einstein constraint equations on
Σ.

The Einstein constraint equations are given on the surface Σ by

Gi0[g] = κTi0. (6.16)

These are precisely the four Einstein equations for which the second-order x0-
derivatives drop out. Substituting (6.11) for the right hand side of (6.16) gives us

Gi0[g] = Hi0[g]−
1

2
gi0Hσρ[g]g

σρ (6.17)
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on Σ. By (6.12), equations (6.17) are equivalent to

ωi,0 + ω0,i = gi0g
σρωσ,ρ, (6.18)

and contraction with gij results in

gij (ωi,0 + ω0,i) = δj0g
σρωσ,ρ, (6.19)

where δji denotes the Kronecker delta. Now, the wave gauge (6.3) implies that ωi,j = 0
for j ̸= 0 everywhere on Σ, and from this we find that (6.19) is equivalent to

gσjωσ,0 + g0jω0,0 − δj0 g
σ0ωσ,0 = 0. (6.20)

In the context of approximate locally inertial frames g00 can always be taken to be
non-zero, thus the j = 0 component of (6.20) implies w0,0 = 0 on Σ. This then implies
that the j = α component, for α ∈ {1, 2, 3}, is given by

gασωσ,0 = 0,

and since the metric is non-singular we finally obtain

ωi,0 = 0 (6.21)

on Σ for all i ∈ {0, ..., 3}. This proves that (6.21) holds whenever (6.3) holds initially
and therefore the wave gauge is propagated by the reduced Einstein equations.

6.2. The linearized Einstein equations in approximate locally inertial
frames. In the above subsection, we have shown that the wave gauge is propagated
by solutions of the Einstein equations (6.5)-(6.6), as long as the wave gauge and the
Einstein constraint equations hold initially. Based on this, we assume the wave gauge
(6.3) at the start, and derive the linearized Einstein equations in wave gauge in an
approximate locally inertial frame. This formal procedure accomplishes the following
theorem, which identifies the non-removable Coriolis terms we seek.

Theorem 6.1. Assume the background metric ĝij = ηij + ḡij is given in ap-
proximate locally inertial coordinates and solves the Einstein equations for a source
T̂ , while its perturbation gij = ηij + ḡij + ϵhij solves the Einstein equations for some
perturbed source T ≡ T̂ + ϵT̃ . In addition, assume that ḡ = O(δ), δ = O(ϵ) and h and
derivatives of h are O(1) as ϵ tends to 0, and assume that the perturbation hij is in
the wave gauge (6.3). Then, formally, substituting the ansatz gij = ηij+ ḡij+ϵhij into
the Einstein equations, dropping O(ϵ2)-terms and dividing by ϵ, leads to the following
linearized equations for h:

1

2
!ηhjl+Cjl(h)−hikR̂ijkl = κ

(

T̃jl −
1

2
ηjlη

σρT̃σρ

)

−
κ

2
(hjlη

σρ − ηjlh
σρ) T̂σρ. (6.22)

Here κ = − 8π
c4
G,8 !η denotes the flat linear wave operator,

!ηhjl ≡ ησρhjl,σρ

8Recall that κ is negative by our sign convention of the Riemann curvature tensor, as we discussed
in a footnote in the Preliminaries. Using the opposite sign convention, the term −hikR̂ijkl must be

replaced by +hikR̂ijkl in (6.22) with no other changes required.
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and Cjl(h) are given by

Cjl(h) ≡ bρτjlσΓ̃
σ
ρτ − hikSijkl (6.23)

where

Sijkl ≡ Γ̄σ
ilΓ̄k jσ − Γ̄σ

iσΓ̄k jl, (6.24)

bρτjlσ ≡ δτl Γ̄
ρ
jσ − δτσΓ̄

ρ
jl + δρj Γ̄

τ
σl − δρj δ

τ
l Γ̄

k
σk +

1

2

(

ηjσ ĝ
ρτ
,l + ηlσ ĝ

ρτ
,j

)

, (6.25)

Γ̃k ij ≡
1

2
(hik,j + hjk,i − hij,k) , (6.26)

Γ̄k ij ≡
1

2
(ḡik,j + ḡjk,i − ḡij,k) , (6.27)

and we use the notation hik ≡ ηiσηkρhσρ, Γ̄l
ij ≡ ηlkΓ̄k ij and Γ̃l

ij ≡ ηlkΓ̃k ij and ĝij

denotes the inverse of ĝij.

The terms Cjl(h), the Coriolis terms, are precisely the terms in (6.22) which do
not appear in the linearized Einstein equations in an exact locally inertial frame. It is
important to note that Cjl(h) contains derivatives of ḡij which are large throughout
the approximate locally inertial frame in a neighborhood of p, not just at p itself.

Proof. By assumption, the backgroundmetric, ĝij = ηij+ḡij , satisfies the Einstein

equations for the energy momentum tensor T̂ij , that is,

R̂jl ≡ Rjl[ĝ] = κ

(

T̂jl −
1

2
ĝjlĝ

σρT̂σρ

)

, (6.28)

while the perturbed metric, gij = ηij + ḡij + ϵhij , solves the Einstein equations for a

likewise perturbed energy and matter source, Tij = T̂ij + ϵT̃ij, namely,

Rjl[ĝ + ϵh] = κ

(

Tjl −
1

2
gjlg

σρTσρ

)

. (6.29)

For the purpose of raising and lowering indices, we now introduce approximate
expressions for the inverse of gij and of ĝij . To begin with, denote the exact inverse
of gij with gij and the exact inverse of ĝij with ĝij . Then, setting

ḡij = ηiσηjρḡσρ,

we find by cancellation that
(

ηiσ − ḡiσ
)

ĝσj =
(

ηiσ − ḡiσ
)

(ησj + ḡσj)
= δij − ḡiσ ḡσj
= δij +O(ϵ2),

and since ĝij is assumed O(1), we conclude that

ĝij = ηij − ḡij +O(ϵ2). (6.30)

Likewise, defining

hij ≡ ηiσηjρhσρ,
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a computation using (6.30) gives
(

ĝiσ − ϵhiσ
)

gσj =
(

ĝiσ − ϵhiσ
)

(ĝσj + ϵhσj) = δij +O(ϵ2),

and since gij is assumed O(1), it follows that

gij = ĝij − ϵhij +O(ϵ2). (6.31)

In the argument below we are careful not to take derivatives of (6.31) or (6.30), as
this could introduce larger errors in the derivative.

Now, using the metric ansatz (6.2) and our approximation of the inverse metric
in (6.31), we write the Einstein equation (6.29) as

Rjl[ĝ + ϵh] = κ

(

Tjl −
1

2
ĝjlĝ

σρTσρ

)

−
κϵ

2
(hjl ĝ

σρ − ĝjlh
σρ)Tσρ +O(ϵ2), (6.32)

which simplifies after substituting Tij = T̂ij + ϵ T̃ij and applying (6.30) to the form

Rjl[ĝ + ϵh] = κ

(

T̂jl −
1

2
ĝjlĝ

σρT̂σρ

)

+ κϵ

(

T̃jl −
1

2
ηjlη

σρT̃σρ

)

−
κϵ

2
(hjlη

σρ − ηjlh
σρ) T̂σρ +O(ϵ2). (6.33)

We now expand the left hand side of (6.28) and (6.33). Recall that the Ricci
tensor is the trace of the Riemann tensor,

Rjl = gikRijkl, (6.34)

and the Riemann tensor is given in terms of the Christoffel symbols by the formula

Rijkl = Γij[k,l] + gσρ (ΓiσlΓρjk − ΓiσkΓρjl) , (6.35)

where we define the commutator

Γij[k,l] = Γijk,l − Γijl,k,

and

Γk ij =
1

2
(gik,j + gjk,i − gij,k) .

Moreover, due to (6.26) and (6.27), the Christoffel symbols separate as

Γk ij = Γ̄k ij + ϵ Γ̃k ij . (6.36)

Now, by (6.34) and (6.35), the second-order derivative terms of the Ricci tensor are
given by gikΓij[k,l], and to separate these into its Γ̄ijk- and Γ̃ijk-dependence, use that
(6.31) agrees with the inverse metric up to O(ϵ2) errors, giving

gikΓij[k,l] =
(

ĝik − ϵhik
)

(

Γ̄ij[k,l] + ϵΓ̃ij[k,l]

)

+O(ϵ2)

= ĝikΓ̄ij[k,l] − ϵhikΓ̄ij[k,l] + ϵĝikΓ̃ij[k,l] + O(ϵ2). (6.37)

To expand the lower-order derivative terms in (6.35) in ϵ, using that all terms con-
taining ϵΓ̃ squared are of order O(ϵ2), we obtain

gikgσρ (ΓiσlΓρ jk − ΓiσkΓρ jl) = {·}I + {·}II + {·}III +O(ϵ2), (6.38)
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where

{·}I ≡ ĝikĝσρ
(

Γ̄iσlΓ̄ρ jk − Γ̄iσkΓ̄ρ jl

)

, (6.39)

{·}II ≡ −ϵ
(

ĝikhσρ + hikĝσρ
) (

Γ̄iσlΓ̄ρ jk − Γ̄iσkΓ̄ρ jl

)

, (6.40)

{·}III ≡ ϵĝikĝσρ
(

Γ̃iσlΓ̄ρ jk − Γ̃iσkΓ̄ρ jl + Γ̄iσlΓ̃ρ jk − Γ̄iσkΓ̃ρ jl

)

. (6.41)

Combining (6.37) and (6.38), we write the Einstein equations (6.33) as

Rjl[ĝ + ϵh] ≡ ĝikΓ̄ij[k,l] − ϵhikΓ̄ij[k,l] + ϵĝikΓ̃ij[k,l]

+{·}I + {·}II + {·}III +O(ϵ2)

= κ

(

T̂jl −
1

2
ĝjlĝ

σρT̂σρ

)

+ κϵ

(

T̃jl −
1

2
ηjlη

σρT̃σρ

)

−
κϵ

2
(hjlη

σρ − ηjlh
σρ) T̂σρ. (6.42)

To simplify (6.42) further, observe that (6.39) and the first term in (6.37) combine
to give the Ricci tensor for the background metric, so that we can write the Einstein
equations for the background metric (6.28) as

Rjl[ĝ] ≡ ĝikΓ̄ij[k,l] + {·}I = κ

(

T̂jl −
1

2
ĝjlĝ

σρT̂σρ

)

. (6.43)

Now subtracting the Einstein equations for the background metric (6.43) from the
above form of Einstein equations for the perturbed metric (6.42), we obtain

ϵĝikΓ̃ij[k,l] − ϵhikΓ̄ij[k,l] + {·}II + {·}III +O(ϵ2)

= κϵ

(

T̃jl −
1

2
ĝjlĝ

σρT̃σρ

)

−
κϵ

2
(hjlĝ

σρ − ĝjlh
σρ) T̂σρ. (6.44)

For further simplification of (6.44), we use the formula (6.35) for the Riemann
tensor of the background metric, which leads to

−ϵhikΓ̄ij[k,l] + {·}II = −ϵhik
(

Γ̄ij[k,l] + ĝσρ
(

Γ̄iσlΓ̄ρ jk − Γ̄iσkΓ̄ρ jl

)

)

− ϵĝikhσρ
(

Γ̄iσlΓ̄ρ jk − Γ̄iσkΓ̄ρ jl

)

= −ϵhikR̂ijkl − ϵĝikhσρ
(

Γ̄iσlΓ̄ρ jk − Γ̄iσkΓ̄ρ jl

)

= −ϵhikR̂ijkl − ϵhikSijkl +O(ϵ2), (6.45)

where we substituted (6.30) for ĝik in the last equality together with the definition of
Sijkl, (6.24). Thus, substituting (6.45) into (6.44), the linearized Einstein equations
obtain the form

ϵĝikΓ̃ij[k,l] + {·}III − ϵhikR̂ijkl − ϵhikSijkl +O(ϵ2)

= κϵ

(

T̃jl −
1

2
ĝjlĝ

σρT̃σρ

)

−
κϵ

2
(hjlĝ

σρ − ĝjlh
σρ) T̂σρ. (6.46)

To derive the final form of the linearized Einstein equations in approximate locally
inertial coordinates it remains only to impose the wave gauge condition. The main
step is the following lemma.

Lemma 6.2. Assume hij satisfies the wave gauge (6.3), then

ϵĝikΓ̃ij[k,l] + {·}III =
ϵ

2
!ηhjl + ϵ bρτjlσΓ̃

σ
ρτ +O(ϵ2), (6.47)
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where bρτjlσ is defined in (6.25).

Before giving the proof of the Lemma, note that (6.47) implies the linearized
Einstein equations (6.22), by substituting (6.47) into (6.46) and dividing the resulting
equation by ϵ, yielding

1

2
!ηhjl + bρτjlσΓ̃

σ
ρτ − hikSijkl − hikR̂ijkl +O(ϵ)

= κ

(

T̃jl −
1

2
ηjlη

σρT̃σρ

)

−
κ

2
(hjlη

σρ − ηjlh
σρ) T̂σρ, (6.48)

which is (6.22). To complete the proof Theorem 6.1, it remains only to prove the
lemma.

Proof of the Lemma. We first show that using the wave gauge condition, (6.3), the
second-order derivative terms combine to the flat wave operator !η. To begin with,
substitute (6.30) for ĝik in the second-order terms in (6.44) and use that ḡij = O(δ),
we then get

ϵĝikΓ̃ij[k,l] = ϵ
(

ηik − ḡik
)

Γ̃ij[k,l] +O(ϵ2)

= ϵηikΓ̃ij[k,l] +O(ϵ2), (6.49)

while a straight forward computation leads to (c.f. (6.8))

ηikΓ̃ij[k,l] = Γ̃k
jk,l − Γ̃k

jl,k

=
1

2

(

hk
k,jl − hk

j,kl − hk
l,jk + ησρhjl,σρ

)

=
1

2
!ηhjl −

1

2
∂l

(

hk
j,k −

1

2
hk

k,j

)

−
1

2
∂j

(

hk
l,k −

1

2
hk

k,l

)

, (6.50)

where we raise indices on hij and Γ̃ijk with the Minkowski metric. From the definition
of Γ̃ijk, (6.26), a straight forward computation shows that

hk
l,k −

1

2
hk

k,l = ησρΓ̃l σρ , (6.51)

and substituting (6.51) into (6.50) yields

ηikΓ̃ij[k,l] =
1

2
!ηhjl −

1

2
∂l
(

ησρΓ̃j σρ

)

−
1

2
∂j

(

ησρΓ̃lσρ

)

. (6.52)

Let us remark at this point, if locally inertial frames existed, we could impose the
gauge condition ησρΓ̃lσρ = 0, which would be propagated by the resulting flat wave
equation, in which case the right hand side of (6.52) would reduce to 1

2!η. However,
in an approximate locally inertial frame, we work with the wave gauge condition (6.3)
which is propagated by the full non-linear Einstein equation. In order to use (6.3)
in (6.52), we have to separate ησρΓ̃lσρ from the remaining terms in the wave gauge
condition. Naively, this could be achieved using the approximate inverse of gij in
(6.31), then the wave gauge condition assumes the form

ησρΓ̃iσρ = (ĝσρ + ϵhσρ) Γ̃iσρ +O(ϵ2). (6.53)

However, using (6.53) in (6.52), at this stage we would loose control of the error due
to the derivatives ∂l and ∂j on the gauge functions. Therefore, we approximate gij in
a way such that we can control derivatives of the error terms. For this, we introduce

ϵh̃ij ≡ gij − ĝij , (6.54)

g̃ij ≡ ĝij − ηij , (6.55)
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from which one obtains the exact identity

gij = ĝij + ϵh̃ij = ηij + g̃ij + ϵh̃ij . (6.56)

Now, ϵh̃ij and g̃ij are both of order ϵ because substituting (6.31) into (6.54) gives

ϵh̃ij = −ϵhij +O(ϵ2) = O(ϵ), (6.57)

and similarly approximating ĝij in (6.55) by (6.30) leads to

g̃ij = −ḡij + O(ϵ2) = O(ϵ).

Regarding derivatives of gij , there is no reason to assume that ĝij,l = g̃ij,l is O(ϵ), so

we must keep all such terms in the linearized equations. However, ϵh̃ij
,l = O(ϵ), since

the derivative of the inverse metric is given by

gij,l = −giσgjρgσρ,l,

which implies by (6.54) that

ϵ h̃ij
,l = ∂l

(

gij − ĝij
)

= −giσgσρ,lg
jρ + ĝiσ ĝσρ,lĝ

jρ

= ĝiσ ĝjρ (ĝσρ,l − gσρ,l)− ϵ
(

ĝiσh̃jρ + h̃iσ ĝjρ
)

gσρ,l, (6.58)

and using now (6.57) and

ĝσρ,l − gσρ,l = ϵhσρ,l = O(ϵ),

we finally obtain

ϵh̃ij
,l = O(ϵ). (6.59)

From this we conclude, that the inverse of gij in the form (6.56) separates off the
O(1) term ηij from the O(ϵ) terms ϵh̃ij and g̃ij , and (6.58) confirms that raising the
indicies on h keeps h and derivatives of h order 1.

Using (6.56), we write the wave gauge condition in its equivalent form

ησρΓ̃iσρ = −
(

g̃σρ + ϵh̃σρ
)

Γ̃iσρ. (6.60)

Now, substituting (6.60) into (6.52) we obtain

ηikΓ̃i j[k,l] =
1

2
!ηhjl +

1

2
∂l
(

(

g̃σρ + ϵh̃σρ
)

Γ̃j σρ

)

+
1

2
∂j

(

(

g̃σρ + ϵh̃σρ
)

Γ̃lσρ

)

, (6.61)

so that using (6.59), ĝij,l = g̃ij,l and ϵh̃ij = O(ϵ) = g̃ij finally leads to

ϵηikΓ̃i j[k,l] =
ϵ

2
!ηhjl +

ϵ

2
ĝσρ,l Γ̃j σρ +

ϵ

2
ĝσρ,j Γ̃l σρ +O(ϵ2). (6.62)

To finish the proof, we combine the derivatives of ĝij in (6.62) with {·}III and
substitute (6.30) for ĝik which yields up to O(ϵ2) errors that

{·}III +
ϵ

2
ĝσρ,l Γ̃j σρ +

ϵ

2
ĝσρ,j Γ̃lσρ

= ϵ

(

Γ̃k
σlΓ̄

σ
jk − Γ̃k

σkΓ̄
σ
jl + Γ̄k

σlΓ̃
σ
jk − Γ̄k

σkΓ̃
σ
jl +

1

2
ĝσρ,lΓ̃j σρ +

1

2
ĝσρ,jΓ̃lσρ

)

= ϵ

{

δτl Γ̄
ρ
jσ − δτσΓ̄

ρ
jl + δρj Γ̄

τ
σl − δρj δ

τ
l Γ̄

k
σk +

1

2

(

ηjσ ĝ
ρτ
,l + ηlσ ĝ

ρτ
,j

)

}

Γ̃σ
ρτ , (6.63)
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where we raise indices on Γ̃ and Γ̄ with the Minkowski metric. Comparing the terms
in the braces of the previous equation with the definition of the coefficients bρτjlσ in
(6.25) immediately yields

{·}III +
ϵ

2
ĝσρ,lΓ̃j σρ +

ϵ

2
ĝσρ,jΓ̃l σρ = ϵ bρτjlσΓ̃

σ
ρτ . (6.64)

Finally, combining (6.64) with (6.62), we obtain (6.47). This proves the Lemma and
completes the proof of Theorem 6.1.

6.3. Coriolis accelerations for gravitational waves in approximate lo-
cally inertial frames . Our goal here is to prove that in each approximate locally
inertial frame there exists gravity waves hij in the wave gauge which solve (6.22), such
that Cjl(h) is of order O(1) in a neighborhood of p. In this case, Cjl(h) represents an
acceleration to the gravity wave hij which we identify as a non-removable GR Coriolis
acceleration in analogy to the classical Coriolis force.

We see from (6.22) that even though ḡ is only Lipschitz continuous and the lin-
earized Einstein equations contain second derivatives of ḡ, the delta functions cancel
out in every approximate locally inertial frame because they only appear through the
curvature tensor. Due to cancellation, the curvature tensor does not distinguish an
approximate locally inertial frame from an actual one. This then begs the question
as to whether it is possible for the first-order derivatives to similarly cancel in ap-
proximate locally inertial frames. Asked differently, do the first-order derivatives of
ḡ distinguish approximate locally inertial frames from actual ones? The purpose of
this section is to answer this question in the affirmative by isolating a non-vanishing
scattering effect in approximate locally inertial coordinate frames which distinguish
them from actual locally inertial frames, and thereby complete the proof of Theorem
5.1 of the Introduction.

Theorem 6.3. Under the assumptions of Theorem 6.1, in each approximate
locally inertial coordinate system at p, in the sense of Definition 3.1, there exists
indices j, l,σ, ρ, τ with ρ ̸= τ , such that

|bρτjlσ | ≥
1

4
M. (6.65)

Moreover, within the class of initial data satisfying the wave gauge (6.3), there exist
solutions h of (6.22) and l, j from (6.65) such that

|Cjl(h)| ≥
1

8
M, (6.66)

in some open subset of U .

The theorem makes things simpler than one might expect because it applies when-
ever any derivative of ḡ fails to vanish.

Proof. The well-posedness for (6.22) follows from the standard existence theory
for linear hyperbolic PDE’s of second-order [4, 2]. It remains to prove (6.65) and to
show that there exists initial data for which the resulting solution satisfies (6.66).

We first prove (6.65). By (3.3) of Definition 3.1, there exist indices α,β, γ for
which |ḡαβ,γ| > M in U . Now, since ḡαβ,γ can be expressed as

ḡαβ,γ = Γ̄αβγ + Γ̄βγα,
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we know that

|Γ̄αβγ + Γ̄βγα| = |ḡαβ,γ| > M,

yielding that there exists some set of indices, which for simplicity we again label as
α,β, γ, such that

|Γ̄α
βγ | ≥ M/2. (6.67)

We next verify that (6.67) alone implies (6.65). To start, recall the definition of
the coefficients bρτjlσ , (6.25):

bρτjlσ = δτl Γ̄
ρ
jσ − δτσΓ̄

ρ
jl + δρj Γ̄

τ
σl − δρj δ

τ
l Γ̄

k
σk +

1

2

(

ηjσ ĝ
ρτ
,l + ηlσ ĝ

ρτ
,j

)

.

To prove that (6.67) implies (6.65), we compute bρτjlσ under four different conditions
on the indices l, j,σ, ρ, τ . For these explicit cases, we do not use the summation
convention, but rather calculate bρτjlσ for fixed indices l, j,σ, ρ, τ when explicit relations
between them are assumed.

Case I: Assume σ = τ , ρ ̸= σ, σ /∈ {j, l}, and ρ /∈ {j, l}. Then by (6.25)

bρσjlσ = 0− δσσ Γ̄
ρ
jl + 0− 0 +

1

2
0 = Γ̄ρ

jl. (6.68)

Case II: Assume ρ = l, τ = σ, j ̸= l, and σ /∈ {j, l}. Then by (6.25)

blσjlσ = 0− δσσ Γ̄
l
jl + 0− 0 +

1

2
0 = −Γ̄l

jl. (6.69)

The constraints on the indices in Cases I and II together with the symmetry Γ̄ρ
lj = Γ̄ρ

jl

allow us to solve for any Γ̄ρ
jl on the right hand side of either (6.68) or (6.69), except

for the case when ρ = j = l. To address this last possibility we require one additional
case:

Case III: Assume ρ = l, τ = σ, σ ̸= l = j. Then by (6.25)

blσjlσ = 0− δσσ Γ̄
l
jl + δljΓ̄

σ
σl − 0 +

1

2
0 = −Γ̄l

ll + Γ̄σ
σl. (6.70)

Now assume Γ̄α
βγ ≥ M/2 for some values of α,β, γ such that not all of α,β, γ are

equal, then, (since Γ̄ is symmetric in the lower two indices), either α /∈ {β, γ} or
β ̸= γ,α = γ. If the possibility α /∈ {β, γ} holds, then we can apply (6.68) of Case I
to conclude

|bασβγσ| = |Γ̄α
βγ | >

1

2
M,

for some σ ̸= α, (again, we do not sum over σ in the above equation). If the possibility
β ̸= γ and α = γ holds, then we can apply (6.69) of Case II to conclude

|bασαβσ| = |Γ̄α
βα| >

1

2
M

for σ /∈ {α,β}, and hence for some σ ̸= α. This confirms 6.65 for every possibility
except the case α = β = γ. So assume α = β = γ. Using this in (6.70) of Case III
with k ̸= α, we conclude

Γ̄α
αα = Γ̄k

kα − bαkααk. (6.71)
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Now, substituting (6.69) for some σ /∈ {α, k} and k ̸= α, (that is, bkσαkσ = −Γ̄k
αk), into

(6.71) yields

Γ̄α
αα = −bkσαkσ − bαkααk, (6.72)

which immediately implies

|bkσαkσ |+ |bαkααk| ≥ |bkσαkσ + bαkααk| = |Γ̄α
αα| >

M

2
. (6.73)

From this we conclude that either |bkσαkσ| > M/4 or |bαkααk| > M/4. In Summary, we
have proven that (6.65) holds for some coefficient bρτjlσ such that ρ ̸= τ .

To verify (6.66), we need to prove that for some j, l, there is not sufficient can-
cellation among the expression for Cjl given in (6.23) to make |Cjl| < M/4 for all h.
To prove this, recall that by (6.65), there exists fixed indices j, l,σ, ρ, τ (with ρ ̸= τ)
such that

|bρτjlσ| >
M

4
.

Now, we first decompose Cjl as

Cjl = bρτjlσ

(

Γ̃σ
ρτ +Q(Γ̃, h)

)

, (6.74)

where we define Q to be the sum over all terms on the right hand side of (6.23), which
do not involve Γ̃σ

ρτ , for the fixed indices σ, ρ, τ , divided by the non-zero bρτjlσ from
(6.65).

Now, to finish the proof, fix an arbitrary point q ∈ U . Then, by (6.74), it remains
only to show that there exist an h such that, at the point q, Γ̃σ

ρτ satisfies

M

8b
−Q < Γ̃σ

ρτ < −
M

8b
−Q, (6.75)

for b = |bρτjlσ|. Indeed, (6.75) is the sought after estimate (6.66) at the point q ∈ U ,
which by continuity would hold on some neighborhood of q. Therefore, it remains
only to show that there exists enough freedom to choose h and derivatives of h at the
single point q to make Γ̃σ

ρτ satisfy (6.75) at q. For this final step, the only restriction

among all Γ̃l
ij are the Einstein constraint equations and the wave gauge condition (6.3),

because Γ̃l
ij at q can be considered to be initial data from which h is determined.

The rigorous analysis of the constraint equations is beyond the scope of this paper,
but all we are assuming here is that assigning some value for the Γ̃σ

ρτ , at the single
point q, is consistent with the well-posedness of the constraint equations.

Finally, by [2], the solution hij is determined by initial data hαβ and hαβ,0 for
α,β ∈ {1, 2, 3} on Σ = {x0 = 0}, leaving the freedom to arbitrarily assign hi0 and
hi0,0 for i ∈ {0, .., 3}. These are determined by the wave gauge conditions (6.3) in its
equivalent form

ϵ gk0 (hik,0 + hi0,k − hk0,i) =
3

∑

α,β=1

gαβΓ̃iαβ ,

where the right hand side only depends on spatial components of h. Thus, the wave
gauge conditions (6.3) can be satisfied by choosing hi0,0 accordingly (c.f. p. 164,
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chapter 7, in [2]), which then leaves hαβ and hαβ,0 for α,β ∈ {1, 2, 3} free to assign
as initial data and this freedom clearly suffices to arrange for (6.66) to hold. In
summary, we have shown that one can choose the value of Γ̃σ

ρτ at q to satisfy (6.75) at
the start and then it is consistent to solve the wave gauge and the constraint equations
simultaneously with that value. This completes the proof of the Theorem.

7. Conclusion. The point of departure for this paper is the authors’ recent
work in [13, 11] which gives the first proof that spacetime is locally inertial at a
point of shock wave interaction. The method in [13, 11] is tailored to the simplest
case of shock wave interaction, to the case of interaction between two shock waves
from different characteristic families in spherical symmetry, and it is an open problem
whether regularity singularities exist for more complicated shock wave interactions.
We know of no physical principle that can rule out regularity singularities ahead of
time, and only a mathematical proof can resolve the problem as to whether regular-
ity singularities exist. In this paper we clarify and motivate the open problem by
investigating the physical implications of regularity singularities should they in fact
exist. To clarify the issue, we make the distinction between the smooth atlas of C2,1

coordinate transformations and the larger atlas of C1,1 transformations. We then
prove that, restricting to the C2,1 atlas for a metric that is Lipschitz continuous at a
point of shock wave interaction, the closest one can get to a locally inertial coordinate
system is one which is approximate locally inertial in a sense we clarify. We then
linearize the Einstein equations in an approximate locally inertial coordinate system,
and identify and characterize the Coriolis type terms which we prove will only vanish
in a true locally inertial coordinate system, should one exist. The open problem of
regularity singularities, then, is the problem as to whether the approximate locally
inertial coordinate systems can be improved to locally inertial coordinate systems
within the larger C1,1 atlas. If locally inertial coordinates do not exist within the
C1,1 atlas, then the scattering of gravitational radiation by a regularity singularity
would produce quantifiable physical effects analogous to non-removable Coriolis type
forces, and these Coriolis effects are characterized in this paper.
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