Laws of Large Numbers

Chebyshev’s Inequality: Let X be a random variable and a € RT. We
assume X has density function fx. Then

E(X?) = / 22 fx(z) dx
R
> / 22 fx () dx
|z|>a
> a2/ fx(z)dz = a®P (|X]| > a).
|z|>a
That is, we have proved

P(X|>a) < 5 B(X?) (1)

We can generalize this to any moment p > 0:
B(XP) = [ laPfx(a)do
R
> / |z|P fx (x) dx
|z|>a
> ap/ fx(x)dz = d’P (|X| > a).
|z|>a
That is, we have proved
1
P(IX] 2 a) < = E(X]) (2)

for any p = 1,2,.... (Of course, this assumes that F(|X|?) < oo for
otherwise the inequality would not be saying much!)

Remark: We have proved (1) and (2) assuming X has a density func-
tion fx. However, (almost) identical proofs show the same inequalities
for X having a discrete distribution.

Weak Law of Large Numbers: Let X;, X9,X3, ... be a sequence of
independent random variables with common distribution function. Set
p= E(X;) and 02 = Var(X;). As usual we define

Sn:X1+X2++Xn



and let g
Sp=—r—H

We apply Chebyshev’s inequality to the random variable Sy. A by
now routine calculation gives

E(S;) =0 and Var(S;) = U:.
Then Chebyshev (1) says that for every ¢ > 0
P(IS3] > ¢) < = Var(s;).
Writing this out explicitly:
°(

Thus for every € > 0, as n — o0
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Borel-Cantelli Lemma: Let Aq, Ao,... be an infinite sequence of events
in . Consider the sequence of events

o Ot O
n=1 n=2 n=3

Observe that this is a decreasing sequence in the sense that

3 e O

n=m-+1
for all m = 1,2,.... We are interested in those events w that lie in
infinitely many A,. Such w would lie in [ J;._ for every m. Thus we
define

[o.¢]
limsupA, = lim U A, = {w that are in infinitely many A, } .
m—oQ

n=m

We write this event as
limsupA,, = {w € A, i.0.}

where “i.0.” is read as “infinitely often.” We can now state the Borel-
Cantelli Lemma:



If Y°  P(A,) < o0, then P (w € Ay i.0.) =0.

Proof: First observe that

o
0 < limsupA,, C U A,

m=n
for every m since the sequence is a decreasing sequence of events. Thus

0 < P (limsupA,) < 3 P(4y) 3)

n=m

for every m. But we are assuming that the series >~ P(A,) con-
verges. This means that

ZP(An)—>0 as m — oo.

Taking m — oo in (3) then gives (since the right hand side tends to
Z€ero)
P(limsupA,) = 0.

Strong Law of Large Numbers: As above, let X, X5, X3... denote
an infinite sequence of independent random variables with common
distribution. Set

Spn=X14+ -+ Xn.

Let 4 = E(X;) and 0 = Var(X;). The weak law of large numbers
says that for every sufficiently large fized n the average S, /n is likely
to be near p. The strong law of large numbers ask the question in
what sense can we say

lim Sn(w)

n—oo n

= . (4)

Clearly, (4) cannot be true for all w € Q. (Take, for instance, in coining
tossing the elementary event w = HHHH... for which S, (w) = 1 for
every n and hence lim,_,o Sp(w)/n = 1.) Thus we want to look at

the event S
5:{wEQ: lim n(w) :u}.

n— oo n

The Strong Law of Large Numbers says that
P(&)=1.



We will prove this under the additional restriction that 02 = E (ij) <
oo and E(X;l) < 00.
It is no loss of generality to assume p = 0. (Simply look at the new

random variables Y; = X; — p1.) Now if

lim Sn(w)

n—oo n

# 0,
then there exist € > 0 such that for infinitely many n

‘ Sn(w)

n

>

Thus to prove the theorem we prove that for every € > 0
P (|Sp| > ne i.0.) =0.

This then shows (by looking at the complement of this event) that

pie)-p (5 ~0) -1

n

We use the Borel-Cantelli lemma applied to the events
Ap ={weQ:|S,| > ne}.

To estimate P(A,) we use the generalized Chebyshev inequality (2)
with p = 4. Thus we must compute E(S;) which equals

El Y XiX;XpX,
1<i,5,kL<n
When the sums are multiplied out there will be terms of the form
E(X}X;), B(X7X;Xy), B(X:X; X X0)

with 4,7, k, ¢ all distinct. These terms are all equal to zero since
E(X;) = 0 and the random variables are independent (and the sub-
scripts are distinct). (Recall E(XY) = E(X)E(Y) when X and Y are

independent.) Thus the nonzero terms in the above sum are

7

E(X}) and BE(X?X?) = (E(X2))?

4



There are n terms of the form E(X}). The number of terms of the
form E(XZQXJQ) is 3n(n — 1).! Thus we have shown

E(S}) = nE(X{) +3n(n — 1)ot.
For n sufficiently large there exists a constant C' such that
30'n® + (B(X{) — 30*) n < Cn?.

(For n sufficiently large, C' can be chosen to be 30 + 1.) That is,

E(SH < Ccn?. (5)
Then the Chebyshev inequality (2) (with p = 4) together with (5)
gives
1 C
P(|S,| > < E(SH) < ——_ .
(| | = ns) = (n€)4 ( n) — in?

Thus C

Z P (|Sn| > ne) < Z 1,7 <00

n>ng n>ng

(Here ng is the first n so that the inequality (5) holds. Since we
are neglecting a finite set of terms in the sum, this cannot affect the
convergence or divergence of the infinite series.) Thus by the Borel-
Cantelli lemma

P (|S,| > ne i.0.) =0.

Since this holds for every € > 0 we have proved the strong law of large
numbers.

Remarks: Our proof assumed that the moments E(X}) and E(X?) are
finite. It can be shown that the strong law of large numbers holds only
under the assumption E(]|X;|) < co. Of course, we are still taking X;
to be independent with common distribution.

There are (g) ways to choose the indices ¢ and j and once these are chosen there are

6 terms giving XZ-QX]?.



