
Laws of Large Numbers

Chebyshev’s Inequality: Let X be a random variable and a ∈ R+. We
assume X has density function fX . Then

E(X2) =
∫

R
x2fX(x) dx

≥
∫
|x|≥a

x2fX(x) dx

≥ a2

∫
|x|≥a

fX(x) dx = a2P (|X| ≥ a) .

That is, we have proved

P (|X| ≥ a) ≤ 1
a2

E(X2). (1)

We can generalize this to any moment p > 0:

E(|X|p) =
∫

R
|x|pfX(x) dx

≥
∫
|x|≥a

|x|pfX(x) dx

≥ ap

∫
|x|≥a

fX(x) dx = apP (|X| ≥ a) .

That is, we have proved

P (|X| ≥ a) ≤ 1
ap

E(|X|p) (2)

for any p = 1, 2, . . . . (Of course, this assumes that E(|X|p) < ∞ for
otherwise the inequality would not be saying much!)

Remark: We have proved (1) and (2) assuming X has a density func-
tion fX . However, (almost) identical proofs show the same inequalities
for X having a discrete distribution.

Weak Law of Large Numbers: Let X1, X2,X3, . . . be a sequence of
independent random variables with common distribution function. Set
µ = E(Xj) and σ2 = Var(Xj). As usual we define

Sn = X1 + X2 + · · ·+ Xn
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and let
S∗n =

Sn

n
− µ.

We apply Chebyshev’s inequality to the random variable S∗n. A by
now routine calculation gives

E(S∗n) = 0 and Var(S∗n) =
σ2

n
.

Then Chebyshev (1) says that for every ε > 0

P (|S∗n| ≥ ε) ≤ 1
ε2

Var(S∗n).

Writing this out explicitly:

P
(∣∣∣∣X1 + X2 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

)
≤ 1

ε2

σ2

n
.

Thus for every ε > 0, as n →∞

P
(∣∣∣∣X1 + X2 + · · ·+ Xn

n
− µ

∣∣∣∣ ≥ ε

)
→ 0.

Borel-Cantelli Lemma: Let A1, A2, . . . be an infinite sequence of events
in Ω. Consider the sequence of events

∞⋃
n=1

An,

∞⋃
n=2

An,

∞⋃
n=3

An, . . . .

Observe that this is a decreasing sequence in the sense that
∞⋃

n=m+1

An ⊆
∞⋃

n=m

An

for all m = 1, 2, . . .. We are interested in those events ω that lie in
infinitely many An. Such ω would lie in

⋃∞
m=n for every m. Thus we

define

limsupAn = lim
m→∞

∞⋃
n=m

An = {ω that are in infinitely many An} .

We write this event as

limsupAn = {ω ∈ An i.o.}

where “i.o.” is read as “infinitely often.” We can now state the Borel-
Cantelli Lemma:
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If
∑∞

n=1 P(An) < ∞, then P (ω ∈ An i.o.) = 0.

Proof: First observe that

0 ≤ limsupAn ⊆
∞⋃

m=n

An

for every m since the sequence is a decreasing sequence of events. Thus

0 ≤ P (limsupAn) ≤
∞∑

n=m

P(An) (3)

for every m. But we are assuming that the series
∑∞

n=1 P(An) con-
verges. This means that

∞∑
n=m

P(An) → 0 as m →∞.

Taking m → ∞ in (3) then gives (since the right hand side tends to
zero)

P(limsupAn) = 0.

Strong Law of Large Numbers: As above, let X1, X2, X3 . . . denote
an infinite sequence of independent random variables with common
distribution. Set

Sn = X1 + · · ·+ Xn.

Let µ = E(Xj) and σ2 = Var(Xj). The weak law of large numbers
says that for every sufficiently large fixed n the average Sn/n is likely
to be near µ. The strong law of large numbers ask the question in
what sense can we say

lim
n→∞

Sn(ω)
n

= µ. (4)

Clearly, (4) cannot be true for all ω ∈ Ω. (Take, for instance, in coining
tossing the elementary event ω = HHHH... for which Sn(ω) = 1 for
every n and hence limn→∞ Sn(ω)/n = 1.) Thus we want to look at
the event

E =
{

ω ∈ Ω : lim
n→∞

Sn(ω)
n

= µ

}
.

The Strong Law of Large Numbers says that

P (E) = 1.
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We will prove this under the additional restriction that σ2 = E(X2
j ) <

∞ and E(X4
j ) < ∞.

It is no loss of generality to assume µ = 0. (Simply look at the new
random variables Yj = Xj − µ.) Now if

lim
n→∞

Sn(ω)
n

6= 0,

then there exist ε > 0 such that for infinitely many n∣∣∣∣Sn(ω)
n

∣∣∣∣ > ε.

Thus to prove the theorem we prove that for every ε > 0

P (|Sn| > nε i.o.) = 0.

This then shows (by looking at the complement of this event) that

P(E) = P
(

Sn

n
= 0

)
= 1.

We use the Borel-Cantelli lemma applied to the events

An = {ω ∈ Ω : |Sn| ≥ nε} .

To estimate P(An) we use the generalized Chebyshev inequality (2)
with p = 4. Thus we must compute E(S4

n) which equals

E

 ∑
1≤i,j,k,`≤n

XiXjXkX`

 .

When the sums are multiplied out there will be terms of the form

E(X3
i Xj), E(X2

i XjXk), E(XiXjXkX`)

with i, j, k, ` all distinct. These terms are all equal to zero since
E(Xi) = 0 and the random variables are independent (and the sub-
scripts are distinct). (Recall E(XY ) = E(X)E(Y ) when X and Y are
independent.) Thus the nonzero terms in the above sum are

E(X4
i ) and E(X2

i X2
j ) =

(
E(X2

i )
)2
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There are n terms of the form E(X4
i ). The number of terms of the

form E(X2
i X2

j ) is 3n(n− 1).1 Thus we have shown

E(S4
n) = nE(X4

1 ) + 3n(n− 1)σ4.

For n sufficiently large there exists a constant C such that

3σ4n2 +
(
E(X4

1 )− 3σ4
)
n ≤ Cn2.

(For n sufficiently large, C can be chosen to be 3σ4 + 1.) That is,

E(S4
n) ≤ Cn2. (5)

Then the Chebyshev inequality (2) (with p = 4) together with (5)
gives

P (|Sn| ≥ nε) ≤ 1
(nε)4

E(S4
n) ≤ C

ε4n2
.

Thus ∑
n≥n0

P (|Sn| ≥ nε) ≤
∑
n≥n0

C

ε4n2
< ∞.

(Here n0 is the first n so that the inequality (5) holds. Since we
are neglecting a finite set of terms in the sum, this cannot affect the
convergence or divergence of the infinite series.) Thus by the Borel-
Cantelli lemma

P (|Sn| ≥ nε i.o.) = 0.

Since this holds for every ε > 0 we have proved the strong law of large
numbers.

Remarks: Our proof assumed that the moments E(X4
i ) and E(X2

i ) are
finite. It can be shown that the strong law of large numbers holds only
under the assumption E(|Xi|) < ∞. Of course, we are still taking Xi

to be independent with common distribution.

1There are
(

n
2

)
ways to choose the indices i and j and once these are chosen there are

6 terms giving X2
i X2

j .
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